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ABSTRACT:  Two terms of a second-order approximation to the bias of the
multivariate OLS estimate are derived using the same technique as in Nicholls and
Pope (1988).  The resulting second-order bias approximation is then tested against
first-order alternatives on two bivariate Monte Carlo simulated VAR models.  Even
though the second-order terms do not completely remedy the bias left unadjusted by
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where the first-order approximations fail, notably in the smallest samples and when
systems approach non-stationarity.
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1. Introduction

Although the bias of least squares estimates of VAR parameters can be

sizeable, it is still a method frequently used by analysts. In most cases no

attention is paid to the effects of this bias on the results of the analysis, but if it

were, there are at least two approximations to the bias (Tjøstheim and Paulsen

1983; Nicholls and Pope 1988) capable of reducing the bias problem. Monte

Carlo studies (Brännström and Karlsson 1993; Brännström 1994a; Brännström

1994b) have examined the properties of these two approximations and found

them to approximate the bias well, at least in simple, bivariate first- and

second-order VAR models. The results also suggest that bias-reduced

estimates may be obtained using any one of these approximations, thereby

reducing not only the bias but also the mean square error of the parameter

estimates.

However, the approximations do not perform equally well for all sample sizes

and for all eigenvalue combinations. More precisely, in samples as small as 25

or 50 observations, the approximations perform worse than in samples of size

100 or 200. Furthermore they perform better when the system is stationary than

when one of the characteristic roots approaches unity. These differences are

probably (at least in part) due to the fact that the approximations are first order

and therefore include no O(T –2 ) terms. The present paper attempts to add

second-order terms to the approximations and investigate to what extent such

an expansion improves the performance of the approximations in the cases

outlined above. The approximations will be evaluated using estimated as well

as true parameters.

It is however important to emphasize that the analysis is partial in the sense

that only two second-order terms are derived, although presumably the two

most important terms. Also, Monte Carlo simulations of two bivariate VAR

systems are used to evaluate the approximations, which of course means that

the analysis will be very restricted but, as Lütkepohl (1993) points out, in small

samples analytical results are difficult to obtain and so one has to resort to

Monte Carlo methods.
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The paper is organized as follows. The VAR models and the two first-order

approximations are presented in Section 2. Second-order terms are derived in

Section 3. Section 4 holds a comparison between a first-order and a second-

order approximation for Monte Carlo simulated data, and bias-reduced

estimates are constructed and evaluated in Section 5. Section 6 concludes.

2. Preliminaries

Consider the following m-dimensional VAR( p) process:

x A x A x A xt t t p t p t= + + + + +− − −µ ε1 1 2 2 L (2.1)

where x, µ and ε are m×1 vectors and the parameter matrices Ai are m×m.

Assuming (for simplicity) that µ is a zero vector and stacking lagged x

vectors in xt and xt–1 makes it possible to write (2.1) as a VAR(1) process:

x Axt t t
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−
∗ ∗= +1 ε (2.2)
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It is a well-known fact that estimating the parameter matrix A in (2.2) by

means of OLS introduces a bias (in finite samples). There are however a

number of ways to approximate the bias of the OLS estimate (henceforth

denoted by Â), for instance that suggested by Tjøstheim and Paulsen (1983):
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where T is the sample size, I is the identity matrix of dimension mp, C0 is the

autocovariance function of xt , G is the autocovariance function of εt, and ρi

(i=1,...,mp) are the eigenvalues of A. Nicholls and Pope (1988) attack the

same problem in a different manner and derive the following approximation:
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(2.4)

The two approximations may appear to bear but faint resemblance with each

other, but it is not difficult to show that they are in fact equivalent for first-

order VAR models (but not for p ≥ 2 since the denominator in the last term of

(2.3) will then be less than

T ). Both or them are of a first-order character and therefore include no O(T –2 )

terms. Nevertheless, Monte Carlo studies (Brännström and Karlsson 1993;

Brännström 1994a; Brännström 1994b) have demonstrated that for a first-

order bivariate VAR model (m=2, p=1) the approximations perform

excellently, whereas for a second-order bivariate VAR model (m=p=2) both

approximations perform worse and that (2.3) is then slightly outperformed by

(2.4). The conclusions appear to hold even under the more realistic assumption

that A, G, C0 and ρi are unknown and replaced by their estimates, even though

both approximations then perform slightly worse. It was also demonstrated in

Brännström (1994a) and Brännström (1994b) how these bias approximations

can be used to construct bias-reduced estimates, and that such estimates have

smaller mean square error than the original estimates.

On the other hand, the Monte Carlo simulations produce less impressive

results when one (or more) eigenvalue approaches unity (ρ = 0.9 or ρ = 1.0) and

for the smallest sample sizes (T= 25 or T= 50) than for stationary processes and

sample sizes of 100 or 200. In an earlier paper it was proposed that by adding

second-order terms, such  behaviour on the part of the bias functions might be
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better modelled. In the next section, a second-order term will be derived and

tested against the first-order alternative (2.3).

3. Derivation of second-order terms

Both approximations are based on the Yule-Walker estimate $ $ $A C C= −
−

1 0
1 ,

where C–1 is the covariance function between xt and xt–1 and C0 is the

autocovariance function of xt 
, but unlike Tjøstheim and Paulsen (1983), the

discussion in Nicholls and Pope (1988) centres around the equivalent

expression ( )( )$A A P I Q= + + −1
, where

P C C C Q C C C= − = −− −
− −( $ ) ( $ )1 1 0

1
0 0 0

1  and  .

Since I Q I Q Q Q+ = − + − +−/ 4 1 2 3 K , this approach leads to the following

alternative expression:

( ) ( )$A A P Q= + −
=
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(3.1)

The precision of the resulting approximation will thus (basically) depend on

how many terms in this sum are evaluated. Nicholls and Pope derive (2.4) as

an approximate expression for the expectation of the first five terms A + P –

AQ – PQ + AQ2, ignoring all remaining terms of (3.1). However, the

expectation of PQ2 – AQ3, the two terms to follow next, is not very difficult to

evaluate:
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Since Q2 – E(Q2 ) is Op(T
 –2 ) and $ ( $ )C C− E  is Op(T

 –1 ) as demonstrated by

Nicholls and Pope (1988) and A and C0
1−  are O(1), the second term on the last

row above is Op(T
 –3 ) and can be ignored from this point. The first term can of

course be decomposed into E E E E( $ ) ( ) ( $ ) ( )C C Q A C C Q−
− −−1 0

1 2
0 0

1 2 , making it

clear that three expectations must be evaluated. Fortunately, these three

approximations were derived as well in Nicholls and Pope (1988):
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After some manipulation, an extended version of (2.3) or (2.4) is thus found to

be
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It should however be kept in mind that this approximation does not include all

second-order terms but presumably the two leading terms. Including all

second-order terms would mean having to evaluate each of the numerous O(T 
–

2) terms that arise as residual terms at various stages in Nicholls and Pope’s

analysis as well as possible second-order terms attributable to terms

succeeding PQ2 – AQ3.

4. Performance of second-order vs. first-order approximation

In this section the performance of (3.2) (meaning (2.4) with second-order

terms) will be compared with the performance of (2.3) and (2.4) by means of

Monte Carlo simulation. Data were generated by two bivariate versions of

(2.1); a first-order (m=2, p =1) and a second-order (m = p =2) model, both of

which without constants (µ= 0).   For reasons of clarity, the parameters will be

indexed a1 through a4 for the first-order system, thus A =
�
��

 
"!

a a

a a
1 2

3 4

, but a11
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through a24 in the second-order system, thus A =

�

�

����

 

"

!!!!

a a a a

a a a a
11 12 13 14

21 22 23 24

1 0 0 0

0 1 0 0

 in that

case.

Eight eigenvalues, ρ={1.0, 0.9, 0.5, 0.3, 0, – 0.3, – 0.5, – 0.9}, were used,

leading to 64 eigenvalue combinations for the first-order and 1296 *

combinations for the second-order system to be simulated for each of the four

sample sizes T={25, 50, 100, 200}. The number of replications was 10,000.

The parameter matrix A was OLS estimated (as was µ) after each replication,

and after all 10,000 replications average estimates and their variances were

computed. The resulting bias was then regressed on the corresponding

approximate value provided by inserting the true or estimated values of A, G,

C0 
, ρ and T into (2.3), (2.4) or (3.2), the underlying idea being that for an

approximation to work well, not only should it be strongly positively

correlated with the observed bias, but the intercept in the regression should

also be zero and the slope should be one. Table 1 below holds estimated

parameters and squared correlations from such regressions for the first-order

approximation (2.3 or 2.4, since they are equivalent here) and for the second-

order approximation (3.2) based on true parameters for 49 stationary cases, i.e.

excluding (ρ1 =1.0 ∪ ρ2 =1.0).

                                                          
* Of which 882 were actually simulated. For a detailed account of how the Monte Carlo

experiments  were designed, see Brännström and Karlsson (1993) or Brännström (1994a).
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(2.3 / 2.4)   (3.2)
Parameter Sample size       a      b    R2       a      b    R2

        25 –0.0069 0.9683 0.985 –0.0027 0.9641 0.996
(–4.04) (–1.80) (–2.95) (–3.95)

a1         50 –0.0019 1.0090 0.989 –0.0008 1.0077 0.994
(–2.56) (0.59) (–1.43) (0.69)

       100 –0.0004 1.0174 0.992 –0.0001 1.0178 0.993
(–1.18) (1.27) (–0.31) (1.45)

       200 –0.0002 1.0186 0.989 –0.0001 1.0183 0.989
(–1.23) (1.20) (–0.78) (1.17)

        25 0.0002 0.9580 0.975 0.0002 0.9616 0.994
(0.38) (–1.87) (0.75) (–3.44)

a2         50 0.0000 1.0023 0.986 0.0000 1.0044 0.993
(0.07) (0.13) (0.10) (0.35)

       100 0.0000 1.0115 0.987 0.0000 1.0124 0.990
(0.24) (0.69) (0.27) (0.82)

       200 0.0000 1.0157 0.987 0.0000 1.0157 0.987
(0.66) (0.91) (0.67) (0.91)

        25 –0.0008 0.9580 0.975 –0.0003 0.9414 0.989
(–0.38) (–1.87) (–0.21) (–4.12)

a3         50 –0.0001 1.0023 0.986 –0.0001 1.0007 0.994
(–0.07) (0.13) (–0.11) (0.07)

       100 –0.0001 1.0115 0.987 –0.0001 1.0118 0.991
(–0.24) (0.69) (–0.28) (0.82)

       200 –0.0001 1.0159 0.987 –0.0001 1.0156 0.987
(–0.59) (0.93) (–0.59) (0.90)

        25 –0.0062 0.9610 0.984 –0.0015 0.9674 0.995
(–3.57) (–2.18) (–1.52) (–3.24)

a4         50 –0.0020 1.0008 0.990 –0.0008 1.0049 0.995
(–2.82) (0.06) (–1.49) (0.46)

       100 –0.0004 1.0081 0.991 –0.0001 1.0095 0.993
(–1.07) (0.58) (–0.27) (0.76)

       200 –0.0001 1.0055 0.991 –0.0001 1.0056 0.992
(–0.76) (0.40) (–0.32) (0.42)

Table 1: Fitted OLS regressions of the type y = α + βx + ε, where y = observed bias, x = approximation
to the bias (as defined by (2.3), (2.4) or (3.2), based on true parameters), and t ratios are reported in
brackets (tests of zero intercept and unit slope, respectively). Based on 49 stationary eigenvalue
combinations, each simulated 10,000 times.

It is clear from Table 1 that the effects of adding second-order terms to (2.3) or

(2.4) (remember that they are equivalent in this case since p =1) are minimal in

most cases, no doubt due to the fact that the first-order approximation already

performs so well in this case. But (3.2) is more strongly correlated with the

observed bias than the first-order approximation is. This effect is quite

substantial for the smallest samples but fades out rapidly since it is second-

order only. As a somewhat discomforting result, sample correlations actually

decline as the sample size increases for (3.2), whereas they increase with

increasing sample size, a more intuitively appealing result, for (2.3) and (2.4).

Also the estimated slopes are significantly (at the 5 % significance level)

smaller than unity for a sample size of 25 in all four cases for (3.2), but only in

one case (â4) for the first-order approximations.
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So judging by Table 1, the efforts of deriving (3.2) are poorly rewarded in

terms of fit, but let us recall for a moment that the underlying objective of

deriving these second-order terms was to approximate the bias more accurately

when the first-order approximation performs less satisfactorily, notably for

small sample sizes and for eigenvalues close to unity.

(2.3 / 2.4)   (3.2)
Parameter Sample size       a      b    R2       a      b    R2

        25 –0.0084 1.1328 0.983 –0.0054 1.0262 0.973
(–4.78) (6.18) (–2.39) (1.05)

a1         50 –0.0021 1.0919 0.991 –0.0013 1.0326 0.991
(–2.89) (5.55) (–1.83) (2.23)

       100 –0.0004 1.0582 0.991 –0.0002 1.0161 0.993
(–1.27) (4.03) (–0.59) (1.33)

       200 –0.0002 1.0385 0.989 0.0003 1.0127 0.989
(–1.28) (2.40) (1.55) (0.82)

        25 0.0002 1.0936 0.978 0.0008 0.8703 0.961
(0.41) (3.94) (1.39) (–5.07)

a2         50 0.0000 1.0730 0.988 0.0003 0.9663 0.962
(0.07) (4.20) (1.11) (–1.21)

       100 0.0000 1.0463 0.987 0.0001 0.9765 0.956
(0.25) (2.69) (0.59) (–0.77)

       200 0.0000 1.0328 0.986 –0.0000 0.9585 0.959
(0.68) (1.85) (–0.39) (–1.41)

        25 –0.0008 1.0936 0.978 –0.0042 0.8876 0.983
(–0.41) (3.94) (–2.35) (–6.67)

a3         50 –0.0001 1.0730 0.988 –0.0003 0.9857 0.995
(–0.07) (4.20) (–0.54) (–1.35)

       100 –0.0001 1.0463 0.987 –0.0001 0.9950 0.991
(–0.25) (2.69) (–0.29) (–0.36)

       200 –0.0002 1.0316 0.986 –0.0002 1.0040 0.986
(–0.79) (1.74) (–0.78) (0.22)

        25 –0.0078 1.1222 0.983 –0.0038 0.9988 0.989
(–4.43) (5.73) (–2.64) (–0.08)

a4         50 –0.0020 1.0834 0.991 –0.0010 1.0180 0.996
(–3.29) (5.52) (–2.14) (1.92)

       100 –0.0004 1.0481 0.991 –0.0000 1.0054 0.994
(–1.17) (3.29) (–0.14) (0.48)

       200 –0.0001 1.0251 0.991 –0.0000 1.0019 0.992
(–0.79) (1.77) (–0.26) (0.14)

Table 2: Fitted OLS regressions of the type y = α + βx + ε, where y = observed bias, x = approximation
to the bias (as defined by (2.3), (2.4) or (3.2), based on estimates), and t ratios are reported in brackets
(tests of zero intercept and unit slope, respectively). Based on 49 stationary eigenvalue combinations,
each simulated 10,000 times.

Table 2 holds the corresponding results for the bias approximations based on

estimates in the same 49 stationary cases. It demonstrates that using estimates

instead of true parameters has a very adverse effect on the performance of the

first-order approximation, whose estimated slopes significantly (at the 5 %

significance level) exceed unity for all sample sizes smaller than 200,

signalling that (2.3) and (2.4) understate the bias when based on estimates. In
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Table 1, only one of the estimated slopes is significantly greater than unity (â4

when T=25). Estimated intercepts and correlations are not affected much by

the estimation of A, G, C0 
 and ρ though.

Turning to the right-hand half of Table 2, the second-order approximation

appears to be able to handle the bias better. Correlations are slightly lower than

in Table 1 and some of the previously insignificant intercept estimates turn out

to be significant in Table 2 but more importantly, estimated slopes have not

deteriorated the way they do for (2.3) and (2.4). In fact, in terms of inference

they are qualitatively unchanged; (3.2) significantly overstates the bias in a

sample of 25 observations (except for â1) but not in samples of 50 observations

or more, based on parameters as well as based on estimates.

Let us now focus on the 15 eigenvalue combinations involving one or two unit

roots, which were not included in Tables 1 and 2. In fact, all three

approximations are intended for stationary combinations only, but here they

will be evaluated for unit-root combinations as well. The 15 unit-root cases are

of special interest here because with this particular experiment design, one unit

root in the bivariate first-order system corresponds to the two variables in xt

being first-order cointegrated, and two unit roots correspond to them being I(1)

but not cointegrated.

It is however impossible to insert unit roots into the formulæ since that will

make (I–A) noninvertible, causing all three approximations to break down.

Thus it is not possible to evaluate the approximations in the presence of unit

roots by regressing bias on approximations based on true parameters as in

Table 1. However, basing the results on estimates is possible for unit-root

combinations as well, at least as long as no eigenvalue is estimated exactly at

unity. Therefore Table 3 below, which holds regression results for the same 49

stationary eigenvalue combinations as the two previous tables plus 15

combinations involving one or two unit roots, should be related to Table 2

rather than Table 1.

It should however be pointed out that (3.2) appears to be highly sensitive to

eigenvalues estimated close to unity. As a consequence it occasionally

produces values which are clearly nonsensical while at the same time the first-

order approximations yield realistic results. Such nonsensical results (a total 12

out of 4·15=60 unit-root combinations) are of no use and have been discarded
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from the table below, not only for (3.2) but for the first-order approximations

as well for reasons of comparison. Therefore, instead of 64 eigenvalue

combinations (49 stationary, 14 CI(1,1), and one I(1) but not cointegrated), the

results in Table 3 are based on around 60 combinations for each sample size.

(2.3 / 2.4)   (3.2)
Parameter Sample size       a      b    R2       a      b    R2

        25 –0.0117 1.2564 0.953 –0.0060 1.0362 0.970
(–3.58) (6.91) (–2.25) (1.54)

a1         50 –0.0026 1.2000 0.963 –0.0016 1.0666 0.981
(–1.76) (6.40) (–1.45) (3.41)

       100 –0.0009 1.1662 0.960 –0.0004 1.0504 0.984
(–1.13) (5.24) (–0.70) (2.90)

       200 0.0001 1.1151 0.967 0.0002 1.0335 0.989
(0.23) (4.04) (1.15) (2.29)

        25 0.0004 1.1425 0.956 –0.0010 0.8505 0.954
(0.73) (4.34) (–0.90) (–3.29)

a2         50 0.0000 1.1448 0.948 0.0004 0.9901 0.963
(0.02) (4.05) (1.22) (–0.39)

       100 0.0001 1.1044 0.934 0.0000 0.9872 0.935
(0.34) (2.68) (0.01) (–0.38)

       200 –0.0000 1.1093 0.917 –0.0000 0.9953 0.931
(–0.01) (2.06) (–0.80) (–0.13)

        25 –0.0023 1.1533 0.970 –0.0037 0.9304 0.983
(–0.93) (5.66) (–1.77) (–4.14)

a3         50 0.0009 1.1552 0.971 –0.0009 1.0023 0.988
(0.65) (5.82) (–1.01) (0.16)

       100 –0.0002 1.1157 0.957 –0.0000 1.0159 0.981
(–0.31) (3.70) (–0.02) (0.84)

       200 0.0001 1.1057 0.959 –0.0002 1.0168 0.990
(0.28) (3.35) (–1.02) (1.21)

        25 –0.0089 1.2099 0.971 –0.0043 0.9958 0.984
(–3.41) (7.71) (–2.16) (–0.25)

a4         50 –0.0020 1.1723 0.975 –0.0009 1.0455 0.992
(–1.62) (6.93) (–1.25) (3.68)

       100 –0.0007 1.1601 0.969 –0.0001 1.0342 0.989
(–0.92) (5.83) (–0.25) (2.34)

       200 –0.0002 1.0899 0.971 –0.0001 1.0164 0.991
(–0.54) (3.55) (–0.40) (1.26)

Table 3: Fitted OLS regressions of the type y = α + βx + ε, where y = observed bias, x = approximation
to the bias (as defined by (2.3), (2.4) or (3.2), based on estimates), and t ratios are reported in brackets
(tests of zero intercept and unit slope, respectively). Based on around 60 eigenvalue combinations, each
simulated 10,000 times.

The table clearly illustrates that the introduction of unit-root combination

makes the performance of all three approximations considerably less

impressive. Correlations are much lower than before, especially for â2, and

estimated slopes are even more in excess of unity than before, this time even

for T=200. The fact that intercept estimates are still mainly insignificant

suggests that it is basically a scale problem which could be solved by inflating

the approximations based on estimates by some unknown factor. As for the

relative performance of the first- and second-order approximations, (3.2) again
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  Sample   (2.3)   (2.4)   (3.2)
Parameter   size       a      b    R2       a      b    R2       a      b    R2

25 –.0010 1.3998 .886 –.0017 1.3798 .896 .0027 1.2092 .905
(–.83) (22.3) (–1.57) (22.7) (2.54) (15.0)

a11 50 –.0003 1.2489 .937 –.0005 1.2387 .940 .0008 1.1662 .951
(–.77) (21.5) (–1.33) (21.3) (2.32) (17.6)

100 –.0001 1.1309 .964 –.0002 1.1259 .965 .0001 1.0934 .971
(–1.17) (16.8) (–1.57) (16.4) (.98) (13.8)

200 –.0000 1.0684 .959 –.0000 1.0659 .959 .0000 1.0501 .961
(–.40) (8.71) (–.59) (8.42) (.57) (6.67)

25 –.0002 1.0944 .424 –.0002 1.1365 .478 .0001 .8943 .642
(–.79) (2.07) (–.83) (3.23) (.50) (–3.87)

a12 50 –.0001 1.1051 .599 –.0001 1.1088 .618 .0000 .9895 .733
(–.62) (3.26) (–.63) (3.50) (.11) (–.43)

100 –.0000 1.0628 .579 –.0000 1.0604 .584 .0000 1.0017 .670
(–.26) (1.94) (–.25) (1.89) (.36) (.06)

200 –.0001 1.0158 .432 –.0001 1.0131 .433 –.0000 .9736 .490
(–1.68) (.38) (–1.68) (.32) (–.60) (–.65)

25 .0252 1.1664 .971 .0243 1.1572 .971 .0262 1.0699 .952
(28.1) (23.1) (27.2) (22.0) (22.5) (8.16)

a13 50 .0075 1.1135 .984 .0073 1.1092 .984 .0080 1.0720 .982
(23.7) (22.6) (23.1) (21.8) (23.5) (13.7)

100 .0016 1.0534 .990 .0016 1.0514 .990 .0018 1.0349 .991
(14.0) (14.4) (13.5) (13.9) (15.5) (9.67)

200 .0003 1.0186 .986 .0003 1.0176 .986 .0004 1.0098 .986
(4.54) (4.28) (4.37) (4.06) (5.21) (2.28)

25 .0000 1.1820 .965 .0000 1.1728 .965 .0008 1.0879 .947
(.21) (22.6) (.21) (21.6) (3.23) (9.53)

a14 50 –.0001 1.1170 .967 –.0001 1.1128 .967 .0001 1.0783 .966
(–.70) (16.0) (–.70) (15.5) (1.31) (10.8)

100 .0000 1.0473 .957 .0000 1.0454 .957 .0000 1.0306 .958
(.07) (5.95) (.07) (5.72) (.98) (3.96)

200 –.0000 1.0102 .924 –.0000 1.0093 .924 –.0000 1.0024 .924
(–.72) (.99) (–.72) (.90) (–.38) (.24)

25 .0005 1.0877 .457 .0005 1.1293 .516 –.0025 .8852 .664
(.38) (2.08) (.39) (3.31) (–2.57) (–5.11)

a21 50 .0002 1.1015 .691 .0002 1.1064 .714 –.0007 .9828 .806
(.41) (3.86) (.43) (4.26) (–2.16) (–1.00)

100 .0000 1.0782 .821 .0000 1.0761 .828 –.0002 1.0122 .868
(.14) (4.35) (.14) (4.35) (–1.70) (.87)

200 .0000 1.0321 .796 .0000 1.0299 .797 –.0001 .9958 .809
(.03) (1.72) (.03) (1.61) (–.75) (–.24)

25 –.0009 1.4134 .887 –.0017 1.3931 .898 .0063 1.1931 .902
(–.80) (23.0) (–1.56) (23.4) (5.58) (13.7)

a22 50 –.0003 1.2569 .939 –.0005 1.2465 .942 .0017 1.1653 .954
(–.93) (22.5) (–1.51) (22.4) (5.20) (18.0)

100 –.0001 1.1370 .968 –.0002 1.1318 .969 .0004 1.0963 .975
(–1.11) (18.6) (–1.54) (18.2) (3.50) (15.3)

200 –.0001 1.0619 .964 –.0002 1.0594 .964 –.0000 1.0425 .966
(–2.46) (8.45) (–2.67) (8.15) (–.44) (6.08)

25 –.0002 1.1887 .976 –.0002 1.1794 .976 –.0040 1.0935 .957
(–0.26) (28.7) (–.26) (27.4) (–3.64) (11.3)

a23 50 .0001 1.1227 .986 .0001 1.1184 .986 –.0008 1.0833 .984
(.44) (25.9) (.44) (25.1) (–2.54) (16.8)

100 –.0000 1.0601 .990 –.0000 1.0581 .990 –.0002 1.0428 .991
(–.08) (16.1) (–.08) (15.6) (–2.07) (12.0)

200 .0000 1.0223 .986 .0000 1.0213 .986 –.0000 1.0141 .987
(.70) (5.19) (.70) (4.97) (–.12) (3.36)

25 .0258 1.1710 .967 .0248 1.1618 .967 .0285 1.0478 .929
(26.9) (22.2) (26.5) (21.2) (19.7) (4.61)

a24 50 .0073 1.1136 .984 .0070 1.1093 .984 .0085 1.0632 .976
(22.9) (22.4) (22.4) (21.7) (21.8) (10.7)

100 .0016 1.0550 .990 .0016 1.0530 .990 .0020 1.0333 .989
(13.7) (14.3) (13.3) (13.8) (15.9) (8.52)

200 .0003 1.0218 .986 .0003 1.0209 .986 .0004 1.0117 .986
(4.29) (4.97) (4.11) (4.76) (5.63) (2.69)

Table 4: Fitted OLS regressions of the type y = α + βx + ε, where y = observed bias, x = approximation to the bias
(based on true parameters), and t ratios are reported in brackets. Based on 784 stationary eigenvalue combinations.



-13-

appears to approximate the bias better than the first-order approximations

when based on estimates. Although it significantly understates the bias of â1

and â4 in most cases and overstates the bias of â2 and â3 in a sample of 25, it

does so less (in absolute terms as well as relative terms) than (2.3) and (2.4).

Furthermore, (3.2) correlates more strongly with bias.

Tables 4, 5 and 6 hold the corresponding results for bivariate second-order

models (m=p=2). Increasing the order p to 2 doubles the number of parameters

in A to eight and increases the number of unique eigenvalue combinations to

784 stationary and 512 unit-root combinations. Every stationary combination

was simulated, but only 98 of the 512 unit-root combinations.

The results of regressing the bias on the three approximations based on true

parameter values can be found in Table 4 for stationary eigenvalue

combinations. These results are the counterparts of the results in Table 1, and

even though different sets of data have been generated, it should be safe to

compare the results between tables since the number of replicates is so large.

The general impression after such a comparison is that all three

approximations perform markedly worse in the second-order than in the first-

order case. Slope estimates significantly in excess of unity (except for â12 and

â21, but that is probably due to the very poor fit) signal that all three

approximations severely understate the bias of Â even when based on true

parameters. Squared correlations are lower than in Table 1 (in the case of â12

and â21 much lower) but still generally high. Furthermore, for the second-order

cross-term estimates â13 and â24 the estimated intercepts are highly significant

for all sample sizes, which was never the case for the first-order system. The

implications of using (2.3), (2.4) or (3.2) to approximate the bias of these two

estimates is that they will show no bias when in fact â13 and â24 are biased, and

vice versa.

As far as the relative performance of the three approximations is concerned,

the two first-order approximations perform almost identically, which is not

surprising considering that they differ only by T − −
1

1/ 4 A  when p is 2.

Nevertheless, (2.4) appears to correlate more strongly with the bias, in

particular for the smaller sample sizes, and in addition its estimated slopes are

often closer (in absolute terms) to unity than in the case of (2.3). The second-

order approximation, on the other hand, is easier to rank since correlations

generally are about as high or higher than for (2.3) and (2.4) and slope
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  Sample   (2.3)   (2.4)   (3.2)
Parameter   size       a      b    R2       a      b    R2       a      b    R2

25 –.0005 1.8254 .913 –.0024 1.7455 .936 .0039 1.5217 .931
(–.44) (38.2) (–2.85) (44.2) (4.29) (34.0)

a11 50 –.0002 1.4119 .942 –.0006 1.3875 .952 .0012 1.2932 .962
(–.40) (30.6) (–1.80) (34.2) (4.06) (31.3)

100 –.0001 1.2032 .962 –.0001 1.1950 .968 .0003 1.1516 .975
(–.55) (22.2) (–1.19) (24.9) (2.93) (22.7)

200 .0000 1.1049 .959 .0000 1.1045 .958 .0001 1.0836 .960
(.02) (11.1) (.04) (11.1) (1.82) (10.6)

25 –.0006 1.6468 .592 –.0004 1.6748 .689 –.0002 1.0226 .618
(–2.40) (12.5) (–2.05) (16.1) (–.96) (.75)

a12 50 –.0002 1.2846 .625 .0000 1.2958 .656 .0001 1.0646 .684
(–1.91) (7.55) (.27) (8.62) (.80) (2.44)

100 –.0001 1.1443 .564 –.0000 1.1633 .583 –.0000 1.0605 .596
(–1.31) (3.78) (–.33) (4.63) (–.39) (1.93)

200 –.0001 .9617 .375 –.0000 1.0788 .429 –.0000 1.0350 .434
(–1.85) (–.81) (–1.48) (1.77) (–1.48) (.83)

25 .0254 1.6272 .945 .0219 1.6026 .939 .0244 1.4794 .907
(18.7) (41.6) (16.6) (39.9) (14.7) (27.4)

a13 50 .0069 1.3080 .979 .0067 1.3143 .970 .0078 1.2672 .964
(17.3) (41.5) (15.2) (37.5) (16.1) (30.1)

100 .0014 1.1414 .989 .0016 1.1603 .980 .0020 1.1392 .979
(10.8) (30.9) (9.78) (27.0) (11.6) (23.4)

200 .0003 1.0607 .986 .0004 1.0802 .974 .0005 1.0698 .974
(3.85) (12.4) (4.49) (12.6) (5.47) (11.1)

25 .0003 1.6522 .935 .0001 1.5714 .937 .0003 1.3789 .881
(1.05) (38.4) (.35) (38.0) (.76) (20.3)

a14 50 –.0000 1.3146 .964 –.0001 1.2809 .962 –.0001 1.2072 .950
(–.14) (31.7) (–1.60) (30.2) (–1.23) (20.6)

100 –.0000 1.1386 .958 –.0000 1.1342 .956 –.0000 1.1134 .955
(–.05) (14.9) (–.84) (15.3) (–.87) (13.0)

200 –.0000 1.0524 .928 –.0001 1.0583 .924 –.0001 1.0499 .924
(–1.24) (4.59) (–2.33) (5.38) (–2.32) (4.64)

25 .0012 1.6204 .625 .0003 1.6843 .766 .0001 1.2864 .821
(1.21) (13.2) (.34) (19.6) (.08) (12.8)

a21 50 .0004 1.2746 .743 –.0002 1.3002 .798 –.0004 1.1366 .874
(1.25) (9.78) (–.79) (12.5) (–1.52) (8.63)

100 .0001 1.1513 .834 –.0000 1.1687 .850 –.0000 1.0873 .886
(.86) (7.88) (–.21) (9.56) (–.28) (6.23)

200 .0000 1.0702 .800 .0000 1.0714 .804 .0000 1.0301 .816
(.49) (3.51) (.14) (3.79) (.16) (1.73)

25 –.0016 1.8551 .908 –.0029 1.7335 .934 .0042 1.5148 .938
(–1.33) (37.3) (–3.51) (43.1) (4.94) (35.7)

a22 50 –.0007 1.4225 .941 –.0008 1.3649 .954 .0011 1.2749 .970
(–1.59) (30.4) (–2.57) (33.5) (4.20) (33.5)

100 –.0002 1.2065 .966 –.0003 1.1858 .969 .0002 1.1438 .967
(–1.52) (23.6) (–2.29) (24.5) (1.87) (22.4)

200 –.0002 1.0702 .960 –.0002 1.0852 .962 –.0001 1.0642 .964
(–2.46) (3.51) (–2.78) (11.1) (–1.00) (8.79)

25 –.0017 1.6437 .944 –.0002 1.5841 .948 –.0004 1.4305 .914
(–1.27) (41.6) (–.26) (42.6) (–.29) (26.6)

a23 50 –.0002 1.3153 .980 .0001 1.2966 .981 .0004 1.2478 .973
(–.50) (43.3) (.44) (45.1) (1.03) (33.1)

100 –.0000 1.1482 .990 –.0000 1.1420 .989 .0001 1.1235 .988
(–.13) (23.5) (–.08) (23.3) (.63) (20.5)

200 .0001 1.0646 .987 .0000 1.0627 .986 .0001 1.0542 .986
(1.47) (13.6) (.70) (13.6) (1.92) (12.1)

25 .0279 1.6396 .939 .0227 1.5821 .944 .0168 1.3583 .912
(19.3) (40.3) (17.9) (41.0) (10.8) (23.2)

a24 50 .0072 1.3120 .978 .0054 1.2776 .980 .0060 1.2230 .977
(7.90) (41.7) (15.3) (41.9) (15.7) (32.5)

100 .0016 1.1458 .989 .0013 1.1372 .989 .0016 1.1147 .988
(11.6) (31.4) (10.4) (31.5) (12.4) (26.4)

200 .0003 1.0671 .986 .0002 1.0652 .987 .0003 1.0555 .986
(3.90) (14.1) (3.14) (14.7) (4.57) (12.6)

Table 5: Fitted OLS regressions of the type y = α + βx + ε, where y = observed bias, x = approximation to the bias
(based on estimates), and t ratios are reported in brackets. Based on 784 stationary eigenvalue combinations.
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estimates are closer to unity in most cases, in absolute as well as relative terms.

In a number of cases however, estimated intercepts are significant for (3.2) but

not for (2.3) or (2.4), causing the same sort of confusion as over â13 and â24 for

all three approximations. It is nonetheless safe to say that (3.2) outperforms

(2.3) and (2.4) in correlations as well as in the unit slope-zero intercept respect.

Its performance is particularly impressive in the case of the first-order cross

terms â12 and â21, where the first-order approximations fail completely. Not

only does the second-order approximation correlate much more strongly with

the bias (albeit not at all like for the remaining six estimates), slopes are also

insignificantly close to unity for T=50 or more.

Not surprisingly, using estimates instead of true parameter values makes the

results look even worse. Most slope estimates are much greater in Table 5 than

in Table 4, which means that the three approximations understate the bias even

more when based on estimates than when based on true parameters, just like in

the first-order case. Intercept estimates are basically unaffected by the move

from true to estimated parameters, and squared correlations actually increase in

several cases (notably for the smallest sample sizes). Just like in Table 4, the

two first-order approximations perform more or less equally well, the second-

order approximation considerably better.

Finally, Table 6 below illustrates the effects of adding some unit-root

combinations to the 784 stationary combinations in Table 5. Owing to the

design of the Monte Carlo experiment, one unit root in the bivariate second-

order model corresponds to the two variables in xt being CI(1,1); if there are

two unit roots the variables can be either I(1) without cointegration or CI(2,2),

depending on the allocation of the two unit roots. Three unit roots correspond

to the two variables being CI(2,1), and four unit roots to them being I(2)

without cointegrating vectors.

Just like in the first-order case (cf. Table 3), eigenvalue estimates exactly at

unity cause all three approximations to break down; hence there can be no

results based on true parameters for unit-root combinations. Furthermore,

eigenvalues estimated close to unity appear to cause (3.2) to produce highly

implausible values while at the same time the two first-order approximations

do not. Whenever this occurred (around 30 times out of 98 for each sample

size), the results were discarded not only for (3.2) but for (2.3) and (2.4) as

well in order to enhance comparison between approximations. Therefore Table
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6 is based on the same 784 eigenvalue combinations as in Table 5 plus the

unit-root combinations for which all three approximations produced

reasonable results (normally 50 to 60 additional cases).

Not surprisingly, adding unit-root cases causes the results in Table 5 to

deteriorate. The three approximations understate the bias even more for unit-

root cases than for stationary cases, making the estimated slopes even greater.

However, just like in the first-order case this is merely a scale effect; the

approximations work in the right direction but approximate only part of the

bias. Also parallel to the first-order case, correlations are generally lower than

in Table 5; with the exception of â12 and â21 most of them are reduced by

around 0.10.

Once again the second-order approximation compares very favourably to the two first-

order approximations. Correlations are generally higher and slope estimates closer to

unity for (3.2) than for (2.3) and (2.4).
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  Sample   (2.3)   (2.4)   (3.2)
Parameter   size       a      b    R2       a      b    R2       a      b    R2

25 –.0009 1.9407 .856 –.0023 1.9022 .863 .0035 1.5737 .887
(–.61) (33.2) (–1.62) (33.4) (2.67) (28.7)

a11 50 –.0003 1.4962 .869 –.0006 1.4821 .871 .0014 1.3547 .901
(–.54) (24.2) (–.98) (24.0) (2.51) (22.3)

100 –.0001 1.3034 .833 –.0002 1.2969 .833 .0004 1.2206 .897
(–.35) (15.0) (–.55) (14.7) (1.62) (15.3)

200 .0000 1.1901 .823 .0000 1.1927 .833 –.0002 1.0544 .857
(.20) (9.90) (.29) (10.4) (–1.69) (3.62)

25 –.0007 1.7155 .455 –.0006 1.7206 .494 –.0002 1.0166 .585
(–2.12) (10.6) (–2.07) (11.5) (–.77) (.54)

a12 50 –.0002 1.2386 .395 –.0002 1.2382 .408 –.0001 .9831 .553
(–1.13) (4.39) (–1.15) (4.52) (–.45) (–.54)

100 –.0001 1.1249 .364 –.0001 1.1241 .369 –.0000 .9634 .511
(–.70) (2.41) (–.68) (2.42) (–.70) (–1.11)

200 –.0001 .9364 .250 –.0001 .9430 .254 –.0000 .9596 .438
(–2.08) (–1.13) (–2.09) (–1.01) (–1.28) (–1.19)

25 .0254 1.6272 .945 .0301 1.7387 .873 .0268 1.5050 .877
(18.7) (41.6) (14.2) (31.4) (13.1) (25.2)

a13 50 .0069 1.3080 .979 .0116 1.4534 .903 .0112 1.3390 .912
(17.3) (41.5) (12.9) (27.2) (13.1) (23.3)

100 .0014 1.1414 .989 .0045 1.2936 .892 .0030 1.1795 .940
(10.8) (30.9) (9.89) (18.8) (9.22) (17.3)

200 .0003 1.0607 .986 .0012 1.1619 .914 .0009 1.1080 .945
(3.85) (12.4) (6.22) (13.0) (6.11) (11.6)

25 .0010 1.7911 .870 .0010 1.7763 .871 .0011 1.3976 .850
(2.25) (32.4) (2.15) (32.1) (2.22) (19.1)

a14 50 .0000 1.4520 .906 .0000 1.4460 .906 –.0001 1.2242 .904
(.01) (27.5) (.02) (27.4) (–.49) (16.0)

100 –.0000 1.2581 .916 –.0001 1.2607 .910 –.0001 1.1139 .914
(–.62) (19.5) (–.77) (18.9) (–1.51) (9.61)

200 –.0000 1.1470 .897 –.0000 1.1493 .900 –.0001 1.0446 .885
(–.74) (10.9) (–.96) (11.3) (–1.64) (3.41)

25 .0023 1.6556 .436 .0021 1.6508 .477 .0011 1.3156 .684
(1.47) (9.66) (1.44) (10.4) (.96) (9.78)

a21 50 –.0001 1.3180 .547 –.0001 1.3152 .564 –.0006 1.0994 .765
(–.20) (7.43) (–.20) (7.64) (–1.46) (4.57)

100 –.0001 1.0839 .439 –.0001 1.0824 .444 –.0002 1.1111 .751
(–.19) (1.96) (–.20) (1.95) (–.97) (4.98)

200 –.0001 1.0400 .612 –.0001 1.0441 .620 –.0000 1.0032 .751
(–.74) (1.38) (–.70) (1.54) (–.29) (.16)

25 –.0023 1.9462 .816 –.0035 1.9084 .825 .0003 1.4661 .875
(–1.34) (28.8) (–2.15) (29.0) (.21) (23.6)

a22 50 –.0010 1.5214 .806 –.0012 1.5082 .810 –.0011 1.2046 .897
(–1.22) (20.0) (–1.54) (19.9) (–1.91) (14.3)

100 –.0004 1.2858 .787 –.0005 1.2809 .789 .0001 1.1806 .889
(–1.17) (12.3) (–1.30) (12.2) (.26) (12.5)

200 –.0002 1.1501 .830 –.0003 1.1480 .828 –.0003 1.0377 .917
(–1.64) (8.27) (–1.76) (8.14) (–2.82) (3.47)

25 –.0054 1.8131 .880 –.0054 1.7967 .879 –.0017 1.5081 .887
(–2.49) (34.1) (–2.47) (33.6) (–.82) (26.5)

a23 50 –.0002 1.4454 .929 –.0003 1.4395 .929 .0006 1.3404 .940
(–.32) (31.8) (–.34) (31.5) (.85) (28.8)

100 –.0004 1.2796 .926 –.0004 1.2773 .928 .0003 1.1881 .954
(–1.01) (22.3) (–1.01) (22.4) (.96) (20.8)

200 .0000 1.1468 .942 .0000 1.1495 .933 .0001 1.1081 .962
(.00) (14.8) (.21) (13.9) (.90) (14.2)

25 .0449 1.8270 .860 .0435 1.8108 .859 .0305 1.4872 .881
(19.0) (31.7) (18.5) (31.3) (15.0) (25.2)

a24 50 .0128 1.4302 .909 .0126 1.4247 .909 .0089 1.2705 .938
(14.9) (27.0) (14.7) (26.8) (13.1) (23.5)

100 .0050 1.2789 .915 .0049 1.2767 .915 .0042 1.2097 .948
(12.5) (20.7) (12.3) (20.5) (13.9) (21.4)

200 .0013 1.1540 .934 .0013 1.1534 .932 .0008 1.0841 .965
(8.39) (14.4) (8.11) (14.1) (7.03) (11.7)

Table 6: Fitted OLS regressions of the type y = α + βx + ε, where y = observed bias, x = approximation to the bias
(based on estimates), and t ratios are reported in brackets. Based on around 840 eigenvalue combinations.
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5. Bias-reduced estimates

The results in the previous section may not appear to invite to further use of

any of the three bias approximations, at least not based on estimates since they

were all found to perform worse when based on estimates than when based on

true parameter values. Two important properties to keep in mind however are

that they can be expected to work in the right direction and that they correlate

strongly with bias (again, except for â12 and â21 of the second-order model).

Using them to construct bias-reduced estimates should therefore prove fruitful,

even if only part of the bias were to be reduced.

To illustrate this point, the bias before and after bias reduction will be plotted

against the eigenvalues (in the case of the second-order model against

eigenvalue products or eigenvalues sums) and surfaces will be smoothed using

distance-weighted least squares. Since it would hardly be meaningful to speak

of bias-reduced estimates when approximations are based true parameters, all

results in this section are based on estimates.

Starting with the four estimates of the first-order model, the following figures

show that deducting (2.3), (2.4) or (3.2) based on estimates from Â really does

reduce its bias considerably. Note the often dramatic change of scales from the

first figure on each row to the second and third figures – in most cases only a

fraction of the original bias remains after bias reduction.

Another important conclusion from the bias plots is that more bias remains

along the surface edges than in their interior. This effect is particularly

apparent along the edges closest to the reader (i.e. in the presence of unit roots)

and stronger for the first-order approximations than for (3.2), which is an

encouraging result considering that one intention of the latter approximation

was to improve the performance as eigenvalues tend to unity. The second-

order terms really appear to handle ”near-integration” and integration better,

but fail to completely approximate the bias, leaving surfaces that still bend

more as eigenvalues tend to unity. In addition the second-order terms have

smaller impact at the (1,1) corner, where the system is first-order integrated

but not cointegrated, than when it is CI(1,1). There is also virtually no effect
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far away from the unit-root regions; in particular the remaining bias left by

(2.3) and (2.4) along the two back edges is not adjusted at all.

<<<  FIGURES 1 to 48 ABOUT HERE  >>>

Turning to the corresponding plots for the second-order model, it should again

be noted that increasing the order p to 2 introduces a difference between (2.3)

and (2.4), but as the regression results in Tables 4, 5 and 6 showed, this

difference is marginal for such a low-order model. Considering that there are

four bias plots (original bias and three remaining bias plots) for each of the

eight parameter estimates and for each of the four sample sizes, displaying all

results would be unmanageable. Therefore results are given for two estimates

only, â11 and â14, where â11 is taken to represent all four autoregressive

estimates (â11, â13, â22 and â24) and â14 to represent all four cross-term estimates

(â12, â14, â21 and â23). In both cases an alternative projection than in the first-

order case must be used since there are now four eigenvalues against which to

plot bias. In the case of â11 this problem is solved by projecting the bias against

the eigenvalue sums instead of the eigenvalues, and in the case of â14 the

horizontal scales represent eigenvalue products. Again, all results are based on

estimates.

<<<  FIGURES 49 to 80 ABOUT HERE  >>>

As the figures above show, all three bias approximations reduce a smaller

fraction of the bias in the cases of â11 and â14 than of the bias of the four

estimates in the first-order model, a result which is consistent with the

regression results presented in Section 4. In addition, the biases of â11 and of

â14 appear to be more difficult to approximate, with sharp bias increases along

the edges (where the two variables in xt are second-order integrated, with or

without cointegration). These are also the regions in which the

approximations, in particular the first-order approximations, perform the

worst. As intended, the second-order approximation performs considerably

better in these regions, but still leaves sizeable remaining bias (which, as we

shall see, is likely to be significant in most cases). It should be noted that it

often leaves more or less as much bias in the corner where there is second-

order integration but no cointegration (i.e. in the (2,2) corner in the case of â11

and the (1,1) corner in the case of â14) as the first-order approximations do.
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As expected, the two first-order approximations perform almost identically,

which again is consistent with the tables in Section 4. Furthermore, in the

interior of the figures the performance of (3.2) is more or less the same as the

performance of (2.3) and (2.4), just like in the case of the four estimates in the

first-order model.

So far the results in this section appear to support the idea of bias reduction,

because even if the three approximations perform less well when based on

estimates, they can still be expected to reduce at least part of the bias. In

addition, the second-order approximation appears to outperform the first-order

approximations in situations that the latter cannot handle very well, notably in

the presence of unit roots. But even the second-order approximation leaves

bias unadjusted in such situations. Also, all three approximations work better

when based on an estimated first-order than a second-order model.

However, before concluding this section it is important to study the relative

biases after bias reduction and the effects on mean square error of bias

reduction. In both cases it is vital to make sure that an absolute bias reduction

is not accompanied by an increased relative bias, nor by increasing MSE. Both

these effects are conceivable provided the bias reduction is not too great,

because the standard error of the bias-reduced estimate may or may not exceed

the original bias (depending on the correlation between estimate and

approximation based on estimates). However, as the figures to follow will

make clear, the bias effect dominates the standard error effect in most cases,

hence bias reduction can be expected to lead to smaller t ratios as well as

smaller mean square errors.

Starting with the relative biases, it is furthermore interesting to determine for

which eigenvalue combinations the bias-reduced estimates can be expected to

be insignificant and whether or not bias reduction has a qualitative impact in

terms of inference, i.e. if insignificant bias obtains in the same cases as before

bias.

When computing relative biases before bias reduction, each bias is simply

divided by its standard error, using sample variances over the 10,000 replicates

rather than the (biased) average least-squares variance estimates. When

computing relative biases for the bias-reduced estimates, standard errors will

differ since the variance of a bias-reduced estimate will then be the sum of the
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original variance and the variance of the approximation based on estimates,

less the covariance between the two. Since the variance of the approximation

tends to be of a smaller order of magnitude than the sample variance of the

estimate and the two will often be positively correlated, standard errors will

sometimes be smaller for bias-reduced estimates than for the original

estimates. In case of zero or negative correlation though, standard errors will

of course increase following bias reduction.

<<<  FIGURES 81 to 116 ABOUT HERE  >>>

As the above figures demonstrate for sample sizes 25 and 200, relative biases

can be huge without bias reduction, in particular in small samples and for

autoregressive estimates (â1, â4, â11, â13, â22 and â24). In fact, it appears that

autoregressive parameters are likely to be estimated without significant bias (at

the 5 per cent significance level, meaning values absolutely smaller than 1.96)

only in a very small region where the bias plane crosses the zero plane, i.e. as

one eigenvalue is around – 0.3 in the case of â1 and â4 and for intermediate

eigenvalue sums in the case of â11. Reducing the bias adds a number of interior

eigenvalue combinations for which no significant bias is likely to remain, but

around the four corners and in particular as eigenvalues tend to unity, highly

significant bias is likely to persist even in a sample of 200 observations.

The situation looks brighter for cross-term estimates. Even before bias

reduction they are insignificantly biased for a number of eigenvalue

combinations along the main diagonal connecting the (1,1) with the (– 0.9,–

0.9) corner. The number of such combinations also increases as the sample

size grows larger. After bias reduction the region of no significant bias is

expanded along the main diagonal, in particular if the second-order

approximation is used to reduce the bias. Significant bias is still likely to

remain at the (1,1) corner in the case â2 and â3 and for the rear CI(2,1) and

CI(2,2) combinations in the case of â14 though.

The effects of bias reduction on mean square errors can be found in the figures

to follow, again only for sample sizes 25 and 200. Each figure depicts the

difference between the MSE of the original estimate and the MSE of the bias-

reduced estimate, so that positive graph segments indicate greater MSE before

than after bias reduction, while negative segments indicate that the mean
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square error of the bias-reduced estimate exceeds the mean square error of the

unadjusted estimate.

However as the figures demonstrate, MSE differences are mainly non-negative

for all six estimates and for both sample sizes, indicating that bias reduction

does not add to mean square error but may in fact reduce it. Owing to the large

number of replicates, the bias component dominates MSE before as well as

after bias reduction, causing the MSE difference plots to (basically) reflect bias

reduction effects. Where bias reduction has little effect (i.e. for intermediate

negative eigenvalues in the case of autoregressive estimates and for equal

eigenvalues for cross terms) there is virtually no mean square error difference,

but where bias reduction is really effective it also appears to reduce MSE.  It

should also be noted that the slightly higher MSE differences for (3.2) than for

the first-order approximations (of which only (2.4) is displayed in the case of

â11 and â14) are due to its superior performance as eigenvalues tend to unity.

<<<  FIGURES 117 to 140 ABOUT HERE >>>

5. Conclusions

It appears to be possible, and is certainly desirable in several interesting cases,

to improve the performance of first-order bias approximations such as (2.3)

and (2.4) by adding second-order terms. In this paper two such terms have

been derived and added to (2.4) to form the second-order approximation (3.2).

Though probably not a complete second-order approximation, it turned out to

work well where the first-order approximations fail, for instance as

eigenvalues approach unity and for the smallest sample sizes. As for the

simple regressions in Tables 1 and 4, adding second-order terms to the

approximations based on true parameters did not improve estimates or

correlations in the VAR(1) case since the fit was already excellent there, but in

the VAR(2) case it raised correlations, reduced the general underadjustment

and changed the results completely for the two cross-terms â12 and â21. The

improved results for these two parameter estimates alone should merit the use

of second-order rather than first-order bias approximations, since the
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performance of (2.3) and (2.4) is not satisfactory in those two cases (cf.

Brännström 1994b).

The virtues of (3.2) appear even more evident when it is based on estimates

and for eigenvalues close to unity. Even though all three approximations

perform worse when based on estimates, generally understating the bias, the

second-order approximation leaves less bias unadjusted, in absolute as well as

relative terms. In integrated and ”near-integrated” cases in particular, it handles

the very sizeable resulting bias much better than the first-order

approximations. On the other hand, in the very same cases (3.2) occasionally

tends to explode, making it useless for bias reduction.

Bias reduction appears to reduce relative biases as well, but leads to few

qualitative changes in terms of inference; at least for the smallest sample size,

basically the same eigenvalue combinations will hold insignificant biases

before and after bias reduction. As the sample size increases though, more

insignificant biases are added.

Bias reduction also appears to reduce mean square errors for most eigenvalue

combinations but never causes MSE increases.
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