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Abstract

We suggest a methodology for valuing corporate securities that allows
the straightforward derivation of closed form solutions for complex cap-
ital structure scenarios. The tractability of the approach stems from its
modularity - we provide a number of intuitive building blocks that are
sufficient for valuation in most typical situations. A further advantage
of our approach is that it makes economic interpretation far easier than
what is typically possible with other approaches such as solving partial
differential equations. As examples we consider a corporate coupon bond
with discrete payments and debt subject to strategic debt service.
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1 Introduction

With the Black & Scholes (1973) model, a versatile methodology for the val-
uation of corporate securities was made available. Their insight was that the
payoffs to many instruments on the firm’s balance sheet were analogous to those
of options. Thus the stock option pricing formula they derived could also be
used to price corporate liabilities.

The aim of this paper is to show that some simple ideas related to barrier
contracts can be applied to relatively complex scenarios and that closed form
expressions for the relevant corporate securities can be obtained with consider-
able ease. The framework we suggest is flexible enough to accommodate such
exigencies as bankruptcy costs, corporate taxes and deviations from the abso-
lute priority rule. Besides ease of implementation, an important advantage of
our approach is its transparency. It is more straightforward to interpret com-
ponents of the derived formulae than if, for example, they had been obtained
as solutions to partial differential equations.

The idea of our approach is that many corporate securities can be viewed
as portfolios of three basic claims: a down-and-out call option, a down-and-
out binary option and a unit down-and-in claim. A down-and-out claim is one
that expires worthless if the underlying variable hits a given lower boundary
prior to the expiration date. A binary option is a contract that yields a unit
payoff at the expiration date conditional on the underlying variable exceeding
the exercise price. A unit down-and-in claim pays off one currency unit the first
time the underlying variable reaches a lower boundary. All these claims have
simple valuation formulae.

Using our approach it is straightforward to value finite maturity coupon
debt. Under some reasonable restrictions on the default barrier, we can model
discrete coupon payments as a portfolio of binary options. Our approach is
also readily applicable in situations where there is complex strategic interaction
between a firm’s claimants. We illustrate this by means of an example.

Our paper is organized as follows: in section 2 we discuss the general contin-
gent claims approach to valuing corporate securities and our basic assumptions.
Section 3 provides a synthesis of relevant results from the barrier option pricing
literature and presents a general formula for the valuation of corporate securi-
ties. Section 4 exemplifies with some applications in order to demonstrate the
tractability of our approach. Section 5 provides a concluding discussion.

2 Preliminaries

In the following sections we will discuss the links between the economic assump-
tions and the technical assumptions that we use to model these. In doing so
we believe that the limitations and potential of the framework we suggest will
become clear.



2.1 The state variable, the interest rate and the value of
assets

Throughout this paper, we make the following assumption about the dynamics
of the state variable determining the value of the firm’s assets.

Assumption 1 The variable determining the liquidation value of the firm’s
assets at some date T follows a geometric Brownian motion
dvy = puedt + ovedWy
vt 0
o =2

where Wy with Wy = 0 is a Wiener process under the objective probability
measure.

Note that we do not assume that the assets are continuously traded - we
only need to assume that they are traded at some date in the future following
the maturity of the firm’s debt.! However, to use contingent claims methods
we need at least one traded security issued by the firm in question - e.g. equity.
Furthermore, we need to assume ”frictionless” capital markets.

Assumption 2 Capital markets are frictionless for at least some large in-
vestors® , i.e. there are no transaction costs, assets are perfectly divisible,
arbitrage opportunities are ruled out, there are no restrictions on short
sales, and borrowing and lending takes place at the risk-free rate. At least
one security on the firm’s balance sheet is traded.

The risk-free interest rate is a constant r. Many recent models incorporate
stochastic interest rates.®> This is important to the degree that credit risk is
correlated with interest rate risk. Although from an economic perspective it
appears natural that high interest rates are correlated with harsh conditions for
firms and therewith increased default risks, it is not obvious that this effect is
significant. At least for high-yield debt, non-systematic credit risk might be by
far the most important risk factor.*

As a first step and as a benchmark, we choose to retain the assumption
of a constant interest rate. We discuss how to relax this assumption in the
concluding section.

1For a thorough discussion of this issue see Ericsson & Reneby (1998).

2Merton (1990) (chapter 14) suggests a model in which many investors are unable to
trade without transaction costs. Financial intermediaries, on the other hand, may do so by
definition. He shows that in such a setting, if intermediation is efficient the products offered
by intermediaries will be priced as in an economy without transaction costs.

3E.g. Longstaff & Schwartz (1995), Kim et al. (1993), Sad-Requejo & Santa-Clara (1997)
and Nielsen et al. (1993).

4Indeed, to quote Fridson et al. (1997), “empirical investigations have not identified interest
rates as an important determinant of default rates on high-yield bonds”; examples are Fridson
& Kenney (1994) and Reilly & Wright (1994).



Assumption 3 The risk-free interest rate, r, is constant. The money market
account evolves according to

dBt = TBtdt
By =B

Consider now the value w; of a claim that entitles the holder to v at time
T . By standard arguments it follows that

Wy = e—r(T—t)EB [UT] _ Ute(u—)\o—r)(T—t) (2)

where EP [-] denotes the expectation operator under the probability measure
QPB, typically referred to as the risk neutral probability measure.” The param-
eter A may be interpreted as the market price of risk for the operations of the
firm.

The contract w; may be interpreted as the value of a corresponding all-equity
firm or simply the value of assets. The dynamics for w; under the objective
probability measure are

dwi = (r 4+ Ao) wedt + ow: dW;
wWo = W

(3)

The value of assets, that is wy, is the basis for the pricing of all securities issued
by the firm.

If we wish to model a situation where assets generate revenue that is not
reinvested one can assume that a fraction 3 of the value of the assets constitute
such a net operating cash flow. With this assumption the dynamics of w would
be

(4)

The expected growth of the assets is thus the expected return less the generated
“free cash flow”.

dwy = (r+ Ao — B) widt + ocwdW;
wo= w

2.2 Reorganization Trigger

The firm can default in one of two ways: either if the value of the firm’s assets
falls below a constant L (the reorganization barrier) at any time prior to ma-
turity of the firm; or if the value of the assets are less than some constant F' at
debt maturity 7. This parameter would typically be set equal to the principal
P of debt.5 The time of default is denoted 7. Formally,

5The process for v under the probability measure QF is

dvg = (p — o) vedt + avtthB
vo= v

Under this probability measure prices normalized by a unit of B are martingales. Note that
v does not describe the dynamics of a price variable.

6This is the case of Merton (1974) and many subsequent models. However if there is
bargaining about the proceeds at maturity (as in Anderson & Sundaresan (1996)), then this
may not be the case.



Assumption 4 Default occurs if

ws < L, for some s<T
or
wr < F

Naturally if one wishes to model a stationary (perpetual) capital structure,
as in Black & Cox (1976) or Leland (1994), the second condition becomes re-
dundant. This is also the case if L > F.

There are several ways to interpret, and determine, the level of the reorgani-
zation barrier. One is to relate it to the total amount of nominal debt. In many
countries, corporate law states that financial distress occurs when the value of
the firm’s assets reaches some lower level, usually related to the total nominal
value of outstanding debt. Apart from this judicial view, there are several eco-
nomic justifications. One is to view the barrier as the level of asset value that
is necessary for the firm to retain sufficient credibility to continue its operations
or where, due to some covenant, it voluntarily files for bankruptcy.” Another
is to think of the barrier as the asset value at which it is no longer possible to
honour the payments, be it by selling assets or issuing new securities.

A second approach is based on the supposition that equity holders are too
small and scattered to contribute funds to satisfy creditors and avoid a reor-
ganization situation. Thus, assuming that internally generated funds are the
only means to service debt (with continuous coupon C'), the firm is solvent as
long as internally generated funds exceed the current coupon, i.e. as long as
Bwydt > Cdt.® Accordingly, we obtain the reorganization barrier L = &.

A third alternative for the reorganization barrier is the level of asset value
at which equity holders are no longer willing to contribute funds to stave off
financial distress. This choice of barrier is the lowest possible since a lower equity
value is not consistent with limited liability. Using this alternative, the barrier
is endogenously determined within the model. This approach is considered in
section 4.2.

Finally, many authors have suggested that strategic considerations are im-
portant determinants of financial distress. The barrier L could be modelled as
the outcome of a game played between debtors and creditors over the assets
of the reorganized firm as long as this game is set in a time homogeneous set-
ting.® As we will show below one can allow for several barriers defining regime
shifts prior to default. Examples of models that could be accommodated are
Mella-Barral & Perraudin (1997) and the perpetual debt version of Anderson &
Sundaresan (1996) discussed in Anderson et al. (1996).

"See for example Black & Cox (1976) and Leland (1994).
8This approach has been used by Kim et al. (1993) and Anderson & Sundaresan (1996).
9This guarantees that the barrier is a constant or at most an exponential function of time.



2.3 Reorganization Payoff

In reorganization the value of the assets, net of some random reorganization
cost, is distributed to claimants. We allow for violations of absolute priority
and thus equity holders can be expected to extract some value in default. The
term reorganization encompasses such “mild” forms of financial distress as a
write-down of the claims of some securities, a resupply of capital and changes in
priority, but also downright bankruptcies. The costs of reorganization (denoted
k) consist of, for example, losses due to suspended deliveries by cautious sup-
pliers and the ex post costs of over- or under-investment incentives. The payoff
to claimants in reorganization may be in the form of cash or new securities.

We use ¢, to denote the random fraction of asset value net of default costs
(wr — k,) paid out to a particular set of claimants.!® If the security is a debt con-
tract, the fraction M measures the recovery rate. The fmctiomQP—E";E(PLD
quantifies violations of the absolute priority rule. We assume that the distri-
butions of these payoff fractions are independent of time. This hypothesis is
supported by Altman & Kishore (1996), who find that the time to default from
a bond’s original date of issuance is unrelated with the recovery rate.

Assumption 5 The random fractions of the value of assets distributed to claimants
in reorganization are independent of time and the level of asset value.

3 Valuation

3.1 Basic Claims

The valuation method exploits the fact that contracted payoffs to most of the
company’s securities can be expressed as combinations of three building blocks:
the down-and-out call option, the down-and-out heaviside and a down-and-in
claim. Assuming the absence of arbitrage, two claims with identical payoff
structures must have the same price. Hence, to value a corporate security, one
simply mimics the contracted payoffs of that security with those of the three
building blocks.

To formalize the idea of pricing by replicating payoffs, we first need to define
the payoff functions, ®, of the building blocks. Recall that 7 denotes the time
of default.

Definition 1 The payoff to a call, down-and-out at a barrier L, written on the
asset value, with exercise price F' and expiration at T is

wr —Fifwr>F and 7t £T

@{CL{WT,T;RT}}E{ Oifwr <For7<T

10The variable ¢, can be thought of, or even modelled as, the outcome of a bargaining
game involving the firm’s claimants. We assume that ¢, has support [0,1].



Generally, a subscript ; denotes that a claim is down-and-out — i.e. that the
payoff is contingent on the barrier L not being hit (7 £ T'). A corresponding
ordinary call would thus be denoted C {ws,t; F, T}. We will also denote with a
superscript © that a claim is down-and-in — i.e. that the payoff is contingent on
the barrier being hit (7 < T).

Definition 2 The payoff to a heaviside, down-and-out at a barrier L, written
on the asset value, with exercise price F' and expiration at T is

lifwr>Fandt £T

(I){HL{CUt,T;FyT}}E{ Oifwpr<Fort<T

Definition 3 The payoff to a unit down-and-in claim with expiration T, is

CI){GL{WT,T|T<T}}E{ ég:;g

In the typical situation where L represents a default barrier this claim can
be thought of as one that pays off a dollar in the event of default - a "dollar in
default” claim. Thus it gives us a quantitative measure of investors’ appreciation
of the risk of default.

The price formulae for these claims are given in Lemmas 5-7 below.!! They
all contain probabilities (under different measures) of the asset value (wr) ex-
ceeding the exercise price (F') at maturity without having hit the barrier prior
to that date (7 £ T') — in other words the in-the-money probabilities. To clarify
this common structure, we first state those probabilities in the following lemma.

We use Q™ {A} to denote the probability under a general probability mea-
sure Q™ of event A occurring. In particular, we consider three measures: QZ,
Q¥ and Q€. These are characterized by having the money market account,
the value of assets and a perpetual unit down-and-in claim respectively, as
numeraires.'? In the following lemma, ¢ {-} denotes the standard normal cu-
mulative distribution function.

Lemma 4 The probabilities of the event
A={r < T,wr > F}

(the in-the-money event) under the probability measures Q™ : m € {B,w,G}
are
_2.,m 2
m _ m ﬂ _ ﬂ o Hx m L
oty =o{a {2} (7)ol {57

Inz
dr{x}::Jr/&L'\/Z

7

HFormulae for the prices of the down-and-out call and heaviside in Lemmas 5 and 6 are
not new to the literature (see Merton (1973) and for example Bjork (1998)).

12See ElKaroui et al. (1995) for a discussion on the links between numeraires and probability
measures.

where




r—B8—50o
Pk = —2*=
pg =px to
u§ = ny —bo

o \/(u§)2+2r+u§

o
If F < L set F = L in the above expression.'3

and

Using this lemma, the pricing equations for the building blocks Cp, Hy and
G{-|T < T} can be written down in a convenient form.

Lemma 5 . The price of a down-and-out call (with payoff as in Definition 1)
is given by

Cr{wn t; F,TY = we T .Q¥ {1 £ T,wr > F}

—e TR . QB {1 £ T,wp > F}
with probabilities given by Lemma 4.

The formula is similar in structure to the ordinary Black-Scholes call option
formula. When there is no barrier (implying that the condition 7 £ T' becomes
redundant), the formula simplifies to the Black-Scholes formula. The price of a
down-and-out call option was first derived by Merton (1973).

Lemma 6 The price of a down-and-out heaviside (with payoff given by Defini-
tion 2) is
H{w t; F, T} =00 QP {1 £ T,wr > F}

with probability given by Lemma 4.
Thus, a heaviside is merely the “second half” of a call option.

Lemma 7 The price of a unit down-and-in claim (with payoff given by Defini-
tion 3) is

GH{wntlr <T} = G'{w|r<oo} - (1-Q°{r £ T,wr > L})
with

()"

with probability QF {-} as in Lemma 4.

GF {wi |1 < 0}

13The term u% is equal to the drift of the process X; = %ln‘% under the probability

measure Q™. It is also equal to the Girsanov kernel used to go from probability measure Q¥
where the X-process is a Wiener process, to the measure Q™.



The claim G¥ {w;,t|r < T} gives us the value of receiving one dollar con-
ditional on hitting the barrier L prior to 1" and thus takes on a value between
zero and one. The claim G¥ {w;|r < 0o}, which appears as a component of
the formula, is the perpetual counterpart of G {w;,t|r < T'}. Intuitively, the
value of the finite claim is reduced by the (Q©-) probability that the barrier is
reached after T. As w; approaches the barrier, G¥ {w;,t|r < T} tends to one.
As the underlying variable tends to infinity the value of this claim approaches
zero. This can be seen by noting that 6 > 0.

Recall that we have assumed that the recovery fraction ¢, of a claim in
default is random but time independent. Let

p=FElp,]

Then the expected recovery in default of a claim is worth - (L — k)-G* (w, t|7 < T).

The sum of the values of the corporate securities is equal to the value of the
firm, V. Note that this value does not in general equal the value of assets, w. V'
will depend on the tax deductibility of interest payments and the costliness and
likelihood of financial distress; tax deductibility adds to, and financial distress
subtracts from firm value so that we may have both w < V and w > V. In the
literature, V' is often referred to as the value of the levered firm and w the value
of the unlevered firm.

Having defined the payoff functions and pricing formulae for the building
blocks, we can formalize the idea described at the beginning of this section, i.e.
that securities can be valued by replicating their payoffs with those of the above
basic securities. We let C'S {wy, t;-} denote the value of a general basic security
as a function of asset value and time.

Proposition 8 A corporate security C'S with contracted payments

30D @ (Cp {wy, t; Fy, 1))
D{CS{ws,t;-}} = +
S 0D @ (Hp {wy, t; Fy, ti})

and an expected recovery fraction ©©°, can be valued as

Zi a(i)CL {wbt;Fiyti}
+
CS{CUt,t,} = Zi b(Z)HL {Cdt,t;Fi,ti}

_|_
WS (L —k)-GH {w, t|T < T}

where i is used to index heavisides and options of different exercise prices and

maturities and a and b are constants. The summation operator . should
be understood to encompass integrals when applicable.

The tractability of the analysis thus stems from the ease with which one can
obtain closed form expressions for the values of (European) claims on the firm’s
assets, such as different classes of debt, by simply matching payoffs of standard
claims.



3.2 Some useful expressions

When payments to securities occur on a continuous basis, the sums in Propo-
sition 8 become integrals. These integrals can in certain situations be solved
analytically. We consider the case when the exercise price is zero, as when
modelling for example coupons and dividends

The first claim we consider will be needed when pricing a continuous coupon
stream: i.e. a down-and-out continuous stream of unit payments subject to
credit risk.

Definition 9 The payoff to a unit stream, down-and-out at a barrier L, is

®{Up {wn, 7|7 < T}} = A ®{Hy {wr, £:0,5)} ds

The value of the unit stream, derived in the appendix, is given in the follow-
ing lemma.

Lemma 10 The value of a unit stream (with payoff as in Definition 9) is given
by
1
UL {wbt;T} = ; (1 - GL {wbt;T < T} - HL {wbt;O?T})
As the maturity becomes infinite, the expression simplifies to
1
U {wy; 00} = - (1- G* {wy;00})

We see that the value of a risky, finite stream is equal to the value of a risk
free, infinite stream (%) less two terms: the first, G¥, reflecting the discount due
to the risk of default, and the second, Hp, reflecting the discount attributable
to the finite maturity.

The second claim is relevant when we are interested in a continuous dividend
stream: i.e. a down-and-out continuous stream of asset payments subject to
credit risk.

Definition 11 The payoff to an asset stream, down-and-out at a barrier L, is

{0 {ws,T|T<T}} = A @ {CL {w,1;0,s}}ds

The value of the asset stream, derived in the appendix, is given in the fol-
lowing lemma.
Lemma 12 The value of a asset stream (with payoff as in Definition 11) is
given by

Op{w, t;T} = % (wt —L-Gl{w,t;7<TY—Cy {wt,t;O,T})

As the maturity becomes infinite, the expression simplifies to

Or {wi; o0} = % (w—L- G* {wy; 00})

10



4 Examples

We will now exemplify the proposed framework by studying some concrete mod-
els of corporate liabilities. The examples are chosen so as to illustrate the two
main advantages of our approach - tractability and transparence.

First we examine the case of a straight non-callable corporate coupon bond.
The reason for this choice is not only that it is an important security in its own
right but also one for which it has proved hard to find a closed form expression.

We then proceed to show that our methods can be applied in a model where
strategic interaction between claimants plays an important role. We have chosen
to study the capital structure model of Mella-Barral & Perraudin (1997) which
not only features endogenous default but also multiple regions in which debt
service is carried out strategically. This example demonstrates that our method
greatly simplifies the interpretation of the components of a formula. This feature
is particularly valuable when contingent claims methods are used in an applied
corporate finance setting.

4.1 A Corporate Coupon Bond

Consider a firm financed with equity and a single issue of corporate coupon debt
with principal P, maturity T and constant coupon payments of cP due at dates
ti:i=1,...,N. Let k denote the expected direct and indirect costs of financial
distress. We further assume that o > 0,i.e. that the absolute priority rule is
violated in financial distress.

Denote the value of equity with E and the value of debt with D. The market
values of the securities add up to the market value of the company: V = D+ FE.

The values of equity and debt will be the sums of the value of their payoffs
at maturity (denoted with ) and the value of their payoffs in the event of a
reorganization prior to maturity (denoted with ™), and the value of intermediate
payments in solvency (denoted with ©). This can be written

D=DM+ D"+ D% (5)

E=EM+F" +E° (6)

We start by deriving the value of the individual maturity payments. To
facilitate notation we only consider the case P > L > k.

4.1.1 Value of Payments at Maturity

Figure 1 illustrates the payoffs at maturity to debt and equity. The solid line
delineates the value of equity at maturity as a function of asset value and the
dashed line that of debt.

Formally, the payoff to debt at maturity is

L P if wp > P
e (DY) = {@D-(wT—k’) ifP>wpr>1L

11



Debt
— — — Equity

Figure 1: EQUIiTY AND DEBT. Payoffs to debt and equity at maturity. The
solid line represents debt and the dashed line equity. Debt principal is denoted
by P and expected default costs by k.

= o7 @{C(5k D)} — " -2 {C(;PT)}
+ (Pk+ (1—¢”)P) - @{H(-;P,T)}
Or, verbally, to mimic the payoff to debt you need ¢® long calls with exercise
price k, ¢ short calls with exercise price P and (@D k+ (1 — P ) P) long

heavisides with exercise price P. The value of debt’s maturity payoffs is therefore
simply the sum of these components.

DM(5) = ©”-(CL(k,T) = CL( P, T))
+(¢Pk+ (1 — ") P)-Hy(5P,T) (7)

Now consider the payoff to equity at maturity:

12



M o wr — P if wT 2 P
®{EY} {@E-(wT—k) it P>wp>1L
= 9" {C(kD}+ (1-¢") - 2{C(sPT)}
—¢" (P~ k) @ {H(;P,T)}
The payoff to equity in this case is equal to the payoff from ¥ calls with

exercise price k and (1 —pF ) calls with exercise price equal to the debt principal.
Therefore, the value of equity can be expressed as

EM(PT) = oF - Co(sk,T)+ (1—¢") - Co(5 P.T)
—o" (P —k)-H(;P,T) (8)

4.1.2 Value of Payments in Case of Reorganization Prior to Maturity

When the firm defaults we know that w, = L. The payoffs to debt and equity
are

o{D7} = @P-(L—k)
O{ET} = ©F . (L—k)
and can be valued as
D7(sT) = E[@{D7}]-G"{wt|r <T} (9)

= @D-(L—k)-GL{wt,t|7'<T}

E"(5T) = E[@{ET}] G"{wyt|r <T} (10)
= ¥ (L —k) -GF{w,t|r < T}

4.1.3 Value of Coupons

As explained in section 2.2 Reorganization trigger we assume that default is
driven by a barrier or a failure to honour the principal repayment. Limited
liability places restrictions on the possible default triggers. We require that the
value of equity is positive for all asset values above the barrier. Formally

E(w,t;e,P,L,)>0,Vt, w>1L

A particular coupon cP is paid out to bondholders given no reorganization
prior to the payment date ¢;. Hence, each coupon payment is equivalent to cP

13



down-and-out heavisides of maturity ¢;. The exercise price equals the barrier L.
The value of the coupons is consequently

N
DS(5) = cPY  Hp(;Lt;) (11)
i=1
The coupon payments decrease the value of equity. But since coupons are

tax deductible, only a fraction 1 — s of the payments (where > denotes the tax
rate) is borne by equity holders. Hence,

E®() = _(1_%)'0PiHL(';L>ti) (12)

4.1.4 Summary: value of a single straight coupon bond

Inserting (7), (9) and (11) into (5) yields the value of debt, while inserting (8),
(10) and (12) into (6) gives us the value of equity. We thus obtain the following
result:

Example 13 Consider a firm with a capital structure consisting of equity and
debt with coupon payment cP at dates t; fori = 1...N and principal repayment
of PatT > ty. The values of debt, equity, reorganization costs and tax shield
are then given by

@P - (Cr(sk,T) = C(5 P,T)) + k- Hp(; P,T)
D(w,t;+) = +oP (L —k) - GE{w, t|T < T}

+eP YN Hy(w,t; Lt;)

E(w,t;) =" - Cp(k,T)+ (1—¢¥) - CL(sP,T) — 9" (P —k)- H (P, T)
+of (L — k) - G{w, t|T < T}

N
—(1=»)- CPZHL(w,t;L,ti)
i=1

This formula constitutes an alternative to the compound option approach
suggested by Geske (1977). It involves nothing more complicated than one-
dimensional normal distribution functions. In contrast the Geske (1977) model
requires solving high dimensional integrals numerically which is likely to be both
time consuming and problematic in terms of precision.'* Corporate coupon
bond can have up to 30 years to maturity with semiannual coupons, requiring

14 One important situation where computation time and (perhaps more importantly) preci-
sion are critical issues is when one uses time series of stock prices to extract information about

14



the computation of an integral with at least 30 dimensions, which may not be
practically implementable.!®

Whether the compound or barrier option approach is the more suitable and
realistic is also an economic issue. If the firm is financed solely by a single
issue of debt and if default can occur only when relatively large coupons are
due, then Geske’s model may be appropriate. If, as would seem more likely, the
firm is financed by numerous issues of debt with different maturities and timing
of payments, a more reasonable hypothesis may be that the firm on aggregate
services debt on a continuous basis. Then the default trigger would be more
likely to resemble a constant barrier.

4.1.5 Different classes of debt

Incorporating additional layers of debt, for example junior debt, requires only
an alteration of the maturity payoff function. Denote the principals of senior
and junior debt by Ps and P; respectively and by P = Ps + P; the total
nominal amount due at maturity. Suppose that Ps > P; > L > k. Then the
modified payoff functions are

®{D}'}
®{Ds"}

{C(;Ps+k,T)} —®{C(;P,T)} + k- ®{H(;P,T)}
e{COG;k, T)} = ®{C(5 Ps + K, T)}

4.1.6 Complex capital structures

The assumption of one or two issues of debt constituting the total amount of in-
debtedness is clearly simplistic in many situations. Suppose we are interested in
pricing a particular issue which constitutes a relatively small part of total debt.
One approach would be to construct a two step model in which the aggregate
debt in the capital structure of the firm is summarized as one perpetual issue of
coupon debt. A reasonable assumption in such a time homogeneous setting is
that default is triggered only by a barrier. One could then value the particular

bond issue as
P-Hp(w,t; L,T)

D(w,t;-) =4 +¢P GE{w, t|r <T}

+CP Zf\il HL(CU, t, L, tz)

the underlying state variable process (using for example the Maximum likelihood method sug-
gested by Duan (1994) and studied by Ericsson & Reneby (1997)). Such a task requires the
(typically numerical) inversion of the implicit equity formula several times for each observation
of the stock price. If the price of equity itself has to be solved for numerically then this will
add considerably to the computational complexity.

15 Geske (1977) discusses a dimensionality reduction technique which may halve the number
of dimensions if payments are equally spaced. However Genz (1992) shows that commonly
used algorithms are unlikely to be practical for dimensions greater than 6 and suggests an
alternative approach for dimensions up to 10.
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The difference between this expression and the one derived above is the
absence of any option feature at maturity. As the principal of the debt contract
is small relative to total nominal debt it is unlikely to trigger default.

4.2 Strategic debt service

We now turn to the strategic debt service model of Mella-Barral & Perraudin
(1997). Consider a firm in a risk neutral economy whose output price p;, is
assumed to follow a geometric Brownian motion.

dpy = ppedt + opdWy

The wage associated with producing one unit is a constant w.

The firm is financed with equity and one issue of perpetual debt with coupon
c. In some instances, when the price is lower than ps, equity holders will find it
optimal to service debt strategically; i.e. not to pay the full coupon. Debtholders
will accept the lower-than-contracted coupon if they would gain even less by
exercising their right of taking over the firm — either for purposes of running the
firm themselves or selling the assets for their scrap value, v. Eventually, if the
price drops sufficiently, equity holders will find it optimal to liquidate the firm.
This happens at price level p. (for closure). Both ps (for strategic) and p. are
determined endogenously.

The intuition for the debt service chosen by equity holders is the following:
when the output price is sufficiently high there is no strategic debt service as
it would be profitable for creditors to take over the now prosperous firm. For
lower prices (less than p;), strategic debt service begins: debtholders are offered
a coupon which leaves them slightly better off than if they were to claim their
right to take over the firm and run it themselves. The reason is that debtholders
are less able managers than the incumbents. This is formalized by letting the
(effective) output price fall (to {p; : € < 1). The coupon that leaves debtholders
indifferent between taking over the firm and accepting the lower coupon must
be equal to £p; — w since that is the operating income they would get each
instant if they ran the firm themselves. Moreover, if debtholders were to run
the firm, they would choose to liquidate the firm if the output price were to drop
below p,.'® This means that when the price is lower then p,, debtholders no
longer have the outside option to run the firm themselves. Consequently, equity
holders do not need to feed debtholders {p; —w when the price is lower than p,;
a continuous flow of r~ will suffice to dissuade them from forcing bankruptcy.'”

The question at hand is to find an expression for the value of debt, D {p}.
There are (at least) two approaches to this task. Mella-Barral & Perraudin

16This level is higher than the corresponding level when equity holders manage the firm
(pe) since the debt holders selling price is lower. The relation between the different price level
triggers are thus the following: ps > Pz > Pe-

17 A continuous flow of 7+ is worth ~ in a risk neutral world.

16



(1997) specify and solve partial differential equations with appropriate bound-
ary conditions. A drawback of this approach is that it can be difficult to eco-
nomically interpret the various components of the obtained formula. This in
turn may hamper error-trapping and reduce the amount of information that
can be extracted from the model.

Consider instead tackling the described valuation problem with the approach
suggested in this paper.

4.2.1 The value of the firm

Assuming for now that p. is fixed, the value of the firm (V) is equal to the
value of the output price stream less the wages paid, as long as the firm is
operational, plus the scrap value conditional on closure. Applying lemmas 5-7
and their extensions in section 3.2 we immediately find that the value of the
firm is equal to

V{p;;pey = Op, {ps; o0} (13)
—w - Up, {pt; 00}

+7 - GP* {pe|T < 00}

This is the value of an infinite income stream (p;) less the cost of an infinite wage
cost stream (w) (both conditional on no liquidation), plus value of receiving the
value of the assets () in the event of a liquidation.

4.2.2 The value of debt

Next we turn to the value of debt (the price level at which strategic debt service
is initiated (ps) is determined later'® - for the time being, consider it fixed).
When the price is high enough for strategic debt service not to be profitable
creditors receive a coupon stream c. This stream is worth

¢ Up, {pt;oo}zg-(l_gﬁs {pelr < oo}

At the point where management decide to begin to service debt strategically,
debt is worth V {£ps; p.. } as shareholders keep creditors indifferent between tak-
ing over the firm and accepting the reduced coupon. Since GP= {p;|r < oo}
captures the value of receiving one dollar when strategic debt begins, the value
of this component is simply

V{fpwﬁa:} ' Gﬁs {pt |7— < OO}

18The price barriers Ps, P, and D, are determined by maximizing the value of equity, debt
and the firm with respect to the particular barrier.
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The intuition is that debtholders receive ¢ as long as p; > ps and gets W {£p;}
when p; hits p;. In summary, the value of debt in the different output price
regions is simply given by

£ (1=GP {p T <00 }) + V{Eps; Pa} - GPo {pe [T <00} o > s

D{p:} = V {&pe; o} Ds 2 Pt > Pa
v ﬁa: 2 Dt 2 ]30
(14)

The interpretations of the above three lines are the following.

e When the price is high, the value of debt is equal to a weighted average
of risk free debt (f) and the value of debt in case the lower boundary is
hit (V {£Ds; Pr}). The weight is the value of a claim yielding unit payoff if
the lower boundary is hit (remember this claim takes on a value between
zero and one).

e When the price is in the intermediate range, the value of debt is equal to
the debtholders’ outside option — running the firm themselves.

e When the price is very low, the value of debt is equal to the debtholders’
outside option in this case — taking over the firm and selling the assets.

4.2.3 Comparison

Consider now the formula for debt in Mella-Barral & Perraudin (1997).19 It is

A

D{p} = { S (X -9) (B) mon (15)
X {pt} ]35 > bt

with A "the negative root of the quadratic equation A (A — 1) "72 + A =17r" and

the value of the firm under equity and debt management, respectively, is given
by20

_ A
Wip} = {—&—%Jr(v——&Jr%)-(ﬂf) =

X{p:}

_ A
{ﬁ&—%Jr(v—er%)-(%) Pr > Py
Y ]33:2]%

The trigger levels (P, D.,Ps) are obtained together with the above formulae
when solving the partial differential equations.

In our opinion equations (13) and (14) are likely to provide more intuition
than (15) and (16). The former equations express the value of securities as a sum

190f course, the two formulae are identical. They are just expressed differently as a result
of the solution techniques.

20Note that the firm value formulae can not be expressed as a single formula, dependent on
the price and the barrier only, in this case.
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of easily identifiable sub-claims. For example, it is not immediately apparent

from (15) that the term (%) corresponds to a ”dollar-in-boundary” claim

(note that A = —0) and thus quantifies the risk of strategic debt service. Note
also that deriving the formulae by replicating payoffs requires little more than
a basic knowledge of differentiation.

5 Concluding Remarks

In this paper we have suggested a flexible approach to derive closed form pricing
formulae for corporate securities using a limited number of intuitive building
blocks. We argue that our framework not only simplifies the pricing of corporate
capital structures but also renders the obtained expressions particularly easy to
interpret.

Incorporating e.g. interest rate risk or a non-constant asset volatility can be
done without altering the main idea of the presented framework. The structure
of the pricing formulae in section 3 would be retained. Without restrictive
assumptions in other respects, the main consequence would be the likely loss of
a closed form solution for the probabilities.?!

21For example Nielsen et al. (1993) obtain an analytic solution incorporating stochastic
interest rates for the special case where default is triggered only by the barrier, i.e. they
derive the probability Q™ (7 £ T') . Moreover they need to assume that the barrier is random
and equal to a fraction of a credit risk free bond. An alternative approach would be to use
the numerical scheme used by Longstaff & Schwartz (1995) in a similar setting.
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6 Appendix
We use the following additional notation:

e Define the default process
1. w
X = p In ft

taking the value zero in default.

o Define ¢} as the drift of the default process under the general probability
measure Q™. It is also equal to the Girsanov kernel used to go from
probability measure QX , where the X-process is a Wiener process, to the
measure Q™.

Thus
dX; = p'gdt +dwW™

The term p¢ is equal to the drift of the process X; = %ln “L under the proba-
bility measure Q™.

e The first passage time density at s of the default process to zero under
the probability measure Q™ is (see e.g. Harrison (1985))

X 1 Xi+n'g(s—t)
om (s —t)°

e The indicator function I;g} has the value unity if the event £ is true, and
zero otherwise.

Below, we will frequently need to integrate the density function over time
and the following lemmas will be useful in that respect.

Lemma 14 The solution to

T
/ e P L (X s) ds
t
8
(WX —1%)Xo o (1-Q™{r jé T})
where

m n 2
px =/ (%)™ +2p

This result follows from first completing the square for e=?(*=% . f (X,; s)

which yields a new density function f (X,; s) characterized by p'¢ = 4/ (u’}()2 + 2p.
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Then remember that the point mass for the first passage time is given by (see
e.g. Bjork (1998))

T
A M (Xe;8) ds

N{_XO_MQ(T_t)}+e—2u$’X0N{_XO+M§(T_t)}
T—t VI —t

Q" {r <T}

Lemma 15 The following expressions are equivalent:
(X —1x)Xo o (1-Qm{r £T})

and ,
L )Xo (1 g £ 7))
with

’

By = —px

6.1 The finite dollar-in-boundary claim

This claim pays off one unit of currency if the boundary is hit prior to 7T'. Thus

GHwntiT ST} = BB [0 1 ]

T
= / e T L B (X s) ds (17)
t
Using Lemmas 14 and 15 this is found to be
G fwn,ty7 T} = WE)X0 5 (12 Q% {r £ T})

where

2

u§ ==\ (u§) +2r

Noting that u§ — u& = —0o yields the desired result.

6.2 The credit risky unit stream

Receiving one unit of currency per year for T' years as a continuous stream is
equivalent to a portfolio of heaviside contracts whose maturities span the period
[t,T].

T
UL {wbt;T} = / HL {wbt;O?S}dS
t

T
/ eTTTIQB {1 £ s} ds

t
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Integrating by parts

T e—r s—t) T
/ eGP {r £ s} ds = [ QP {1 £ s}
t t
—/ e—r(s—t) P {ws, s} ds
t

r

The first term is

|: e—r(s t) T —T(T t) —rt t)

QB{Tfs}]t = — QB{TfT}—l-

QB {rtt}

= % (1 — e "I B {r£ T})

where e "(T=9Q5 {7 £ T} is a heaviside. The second term is equal to % dollar-
in-default claims (see previous subsection). Thus

UL {wbt?T} - (l_HL {wbt?T} GL {wbt?T <T})

The result for the perpetual claim follows as a limiting case.

6.3 The credit risky asset value stream

Receiving the asset value each year for T years as a continuous stream is equiv-
alent to a portfolio of call option contracts, with zero exercise price, whose
maturities span the period [t, T'.

T
OL {wbt;T} / CL {wbt;O?S} ds
t

' (s—t)
ISR | ds
/ {rts} 1
’ (s—t) pB
= e "CTYEP (w1 ds
/ s ez

T
A e~ T(s—t) B [ws] - E¥ [I{T;gs}] ds
= /T e PE=D Q¥ {r £ s} ds
t

EB

Integrating by parts

Op{wy, t;T} = E®B

’ (s—t)
e "y T ds
/ {rts} 1

—B(s—t) T T —B(s—t)
Wy [_e 3 (1—Q°’(7’<s))] _th ¢ 3 - fY(Xy;8) ds
t
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The first term is

o—B(s—1)

@ £ 5}

T e—B(T—t) 0“1 % ) e—B(t—t)
—w———QY {7 +w
: o o

= % (1 — e AT-Qw {7 % T})

Wt | —

Q{r £t}

where e AT, Qv {1 & T} is the expression for a call with zero exercise price.
To solve for the second term, first note that by square completion it can be shown
that

T T
wt/ e Pt L f@ (X s) ds = L/ e T L B (X, s) ds

t t

The right hand side is equal to L dollar-in-default claims of maturity 7' (see
equation (17)). Hence

Op{w, t;T} = % (wt — Cp{wi, 0, T} — L - G {ws, t;7 < T})

The result for the perpetual claim follows from taking the limit.
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