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1. INTRODUCTION

In a recent paper, Englund, Persson and Svensson (1992), henceforth EPS, considered

Swedish business cycles (‘cyclical comovements between important macroeconomic

variables with periods of around five years’) using nine long Swedish macroeconomic

time series extending from 1861 to 1988. First they defined business cycle variation as

that found in the spectrum of a stationary series between frequencies corresponding to

a cycle length (period) of 3 to 8 years. They filtered the series to achieve stationarity,

estimated the spectral density and applied a band-pass filter (Priestley, 1981, p. 274-

275) to remove all variation at the frequencies other than those of interest. An inverse

transformation was applied to transform the filtered series back to the time domain.

Having done that, the authors computed contemporaneous correlations between the

GDP and the other series and observed that most of them were positive. Real wages

and productivity were contemporaneously uncorrelated with the GDP. Doing the same

for moving subperiods indicated that the correlations were reasonably stable over

time. EPS also computed the standard deviations of the filtered series over time and

noted that the ratios of the standard deviations of the individual series to that of the

GDP had been fairly constant over time. The main conclusion of EPS was that ‘the

Swedish business cycle seems to be uniform across very different epochs of Swedish

economic history’.

Even after the findings of EPS, there are still interesting issues left to be considered

using their macroeconomic data set. First, although EPS concluded that the Swedish
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business cycle has been uniform over time it also appears from the paper that the

estimated spectra of the differenced logarithmic series at ‘business cycle frequencies’

corresponding to 3 to 8 years are not alike. The cyclical comovements appearing in the

definition of business cycles thus do not seem to happen in complete harmony, and we

would like to know more about differences between them. Second, the estimated

spetra in EPS contain another interesting feature: a fairly marked peak at some

frequency corresponding to a period longer than 10 years. EPS did not discuss it in

any detail because it lies outside the band of business cycle frequencies. Nevertheless,

its prominence makes it an interesting object of study. Third, there has been a lot of

discussion of asymmetry of business cycles; see, for example, Mitchell (1927), Neftçi

(1984), Stock (1987), Luukkonen and Teräsvirta (1991), Sichel (1993), and references

therein. Our approach in this paper gives us an opportunity to consider the possible

asymmetry in the Swedish business cycle. Finally, EPS did not consider temporal

dynamic relationships between their variables because such an analysis was beyond

the scope of the paper. Causal links between variables, such as the existence or

otherwise of a driving variable for the cycle, are an interesting object of study. In this

paper we investigate this aspect using Granger-causality as our econometric tool.

Long macroeconomic time series have been rather extensively analysed in the

econometric literature. An interesting question to investigate has been if such long

series have a unit root as opposed to the alternative that the series are stationary

around a linear trend, see Nelson and Plosser (1982). When the alternative has been

generalized to allow a single structural break in the trend at a known or unknown

point (e.g. Perron, 1989, Raj, 1992, Zivot and Andrews, 1992) several unit root results
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have been reversed. For yet another alternative to the unit root hypothesis, see

McCabe and Tremayne (1995).

The Swedish macroeconomic time series EPS considered are almost 130 years long

and extend through a rather turbulent period in history. Allowing just a single break in

a linear trend in 130 years seems a rather restrictive assumption. We therefore follow

Teräsvirta (1995) by assuming that after taking first differences, the series are

stationary and ergodic but may be nonlinear. This extension considerably increases the

flexibility in modelling the series. Furthermore, nonlinearity does not seem an

implausible assumption in view of all the dramatic events that have affected the

Swedish economy such as the two world wars and the Great Depression of the 1930s.

Although Sweden was not a belligerent country in these wars, it was and still is

dependent on foreign trade. These events thus represented major exogenous shocks to

the economy, and the response to those shocks may have been nonlinear. This can be

checked by simply testing linearity against nonlinearity, and that is what we do. In

cases where the null hypothesis is rejected we fit nonlinear models to the series,

interpret the results, and compare the properties of the estimated models with each

other.

The results indicate that most of the nine time series we consider are nonlinear. The

estimated nonlinear models suggest that the dynamic properties of the series vary

considerably from one series to the other. Granger noncausality tests indicate strong

temporal links between many of the series. A detailed discussion follows below.
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The plan of the paper is as follows. Section 2 presents the data set. Section 3 considers

our main econometric tool, the smooth transition autoregressive (STAR) model, and

testing linearity against STAR. In Section 4 we report results of fitting STAR models

to the data, interpret the estimated models and discuss our findings. Section 5 is

devoted to testing Granger noncausality in a nonlinear framework and considering the

results. Section 6 concludes.

2. DATA

The variables under study in this paper are the same as in EPS: gross domestic

product, industrial production (value added in manufacturing and mining), private

consumption, investment, exports, imports, employment (hours worked in

manufacturing and mining), real wages, and productivity (industrial production

divided by hours worked). For most of the variables, data is available for the period

1861-1988. The productivity and employment series start from 1870. Brief definitions

of the variables and a discussion of the quality of the data are provided in EPS,

whereas the raw data, detailed definitions and a description of the primary data

sources can be found in Hassler, Lundvik, Persson and Söderlind (1992).1 The

logarithmic series appear in Figure 2.1 and their first differences in Figure 2.2. All

series have a positive trend, but the trend in employment levels off and starts bending

downwards in the 1960s. Some series like exports and wages contain remarkably large

                                                
1 Most of the series used in this paper have been taken directly from the data set in Hassler, Lundvik,
Persson and Söderlind (1992). Some of the series have been computed by the present authors from the
same raw data in accordance with the definitions provided in EPS and in appendix A in Hassler et al
(1992).
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perturbations as seen from Figure 2.2. In general, the period between 1910 and 1950

has been more turbulent than the remaining parts in most of the series. An exception

to this rule is the investment series in which the largest fluctuations occur in the

beginning, from 1861 to 1875. The industrial production also shows large fluctuations

already in the 1880s.

A brief characterization of the economic development during the period may be

helpful in reading the graphs. The sample contains subperiods characterized by

markedly different economic conditions. The years between 1875 and 1890 constitute

a deflationary period between two cyclical peaks, with extensive layoffs and increased

productivity. The First World War (associated with industrial growth until 1916, when

the war restrained foreign trade) is followed by the 1920-1925 crisis (with a short but

deep fall in employment) and a deep depression in 1929-1933. The expansion of the

late thirties ends with the outbreak of the Second World War. The war leads to

decreased private consumption and foreign trade but, on the other hand, many

industries meet a relatively stable domestic demand. Finally, the stable growth during

the 1950s and 1960s is succeeded by the oil crisis and slow growth in the 1970s. For a

detailed description of the historical developments during the period, see, for example,

Larsson (1993).
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3. THE STAR MODEL AND LINEARITY TESTING

3.1 The model

In this section we shall consider the possibility that the first differences of the

logarithmic series are nonlinear. Furthermore, we assume that if this is the case these

series can be adequately characterized by smooth transition autoregressive models.

Our aim is to obtain a useful characterization of the dynamics of the series. We do not

argue that this is the only way to model nonlinearity. For instance, one could consider

nonparametric alternatives, although the series seem somewhat short for that provided

the strong turbulence they have displayed. But the STAR family of models does have

some useful properties. First, it is suitable for modelling series with asymmetric

cyclical variations and turbulent periods; see for instance Teräsvirta and Anderson

(1992) and Teräsvirta (1995). Second, the estimated, locally linear, models can be

easily interpreted, which is an advantage. Finally, a modelling cycle consisting of the

specification, estimation and evaluation stages already exists (Teräsvirta, 1994;

Eitrheim and Teräsvirta, 1996) and will be applied in this work.

A STAR model is defined as

( ) ( )y w w F y ut t t t d t= + ′ + + ′ +−π π π π10 1 20 2 , (3.1)

where ( )π π πj j jp j= ′ =1 1 2, , , ,Κ , ( )w y yt t t p= ′
− −1,Κ , ( )ut u~ nid ,0 2σ . The transition
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function ( )F yt d−  is defined to be either a logistic function

( ) ( ){ }( )F y y ct d L t d L L− −

−
= + − − >1 0

1
exp ,γ γ (3.2)

or an exponential function

( ) ( ){ }F y y ct d E t d E E− −= − − − >1 0
2

exp ,γ γ . (3.3)

Model (3.1) with transition function (3.2) will be referred to as a logistic STAR model

of order p, LSTAR(p), whereas (3.1) with (3.3) is called an exponential STAR model

of order p, ESTAR(p). It may be noted that other models, nonlinear as well as linear,

appear as special cases of the STAR specifications. The LSTAR model approaches a

two-regime threshold autoregressive model (see Tong, 1990) when γL→∞, since (3.2)

in the limit is a step function of yt-d the value of which changes from zero to unity at

cL. When γL→0, the LSTAR model approaches a linear AR(p) model. Turning to the

ESTAR model, equation (3.1) approaches a linear model both as γE→0 and (with

probability one) as γE→∞. If cE = π20 = 0, the ESTAR model is identical to the

exponential autoregressive model of Haggan and Ozaki (1981).

The role of the transition function in (3.1) is that it allows the coefficients for lagged

values of yt, ( )[ ]π π1 2+ ′
−F yt d , and the intercept, ( )π π10 20+ −F yt d , to change

smoothly with yt – d. This means that the local dynamics of the model change with yt – d.

This idea works differently for the two STAR models. The LSTAR model allows the
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local dynamics to be different for high and low values of the transition variable, yt – d.

The modelling of local dynamics as a function of a lagged value of y makes it possible

to model nonlinear effects of a shock. For instance, if a negative shock pushes a

realization away from a locally stable regime (F close to unity, say), the subsequent

change in the value of F changes the local dynamics (F now close to zero, say). If this

regime contains a pair of explosive complex roots, y may be returned to the previous

level a lot more quickly than would be the case if it followed a linear AR process.

In contrast to the LSTAR case, the ESTAR transition function is symmetric about cE

in the sense that the local dynamics are the same for high as for low values of yt – d,

whereas the mid-range behaviour of the variable (values close to cE ) is different. (It

should be noted that the mid-regime does not necessarily have to be locally stable.)

For instance, with the exponential transition function, it is possible for y to move

rapidly between very small and very large values for which local dynamics are stable.

We let the data decide which of the types of STAR models we fit to series for which

linearity is rejected. Diagnostic tests will reveal whether a STAR model offers an

adequate characterization of the data or not.

3.2 Testing linearity

The modelling cycle for building STAR models is discussed in Teräsvirta (1994) and

Eitrheim and Teräsvirta (1996). Testing linearity against STAR constitutes the first

step of the model specification stage. In order to do that one first selects a linear

autoregressive model for the series with apparently no autocorrelation in the residuals.
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This can be done by applying an appropriate model selection criterion such as AIC.

The selected model is the null model. For details of the test which has power against

both LSTAR and ESTAR, see Teräsvirta (1994). The test is carried out for different

values of the unknown delay parameter d, and the value of d associated with the test

with the smallest p-value is selected. If none of the p-values is sufficiently small,

linearity is not rejected. Note that if testing linearity were the main point of the whole

investigation we could assume d unknown and carry out the test starting from that

assumption as in Luukkonen, Saikkonen and Teräsvirta (1988). That way we would

control the overall significance level of the test. In this paper model selection,

including the choice of d, is an important part of the work. We therefore test linearity

conditionally on d and also use the results to select the delay.

A summary of the results of the tests can be found in Table 3.1. The table contains the

maximum lag length of the autoregressive model, the smallest p-value of the tests, and

the corresponding delay. It also contains the results of the model selection test

sequence for choosing between ESTAR and LSTAR (see Teräsvirta, 1994) and the

chosen model family. Linearity is usually rejected against STAR, and in many cases

the rejection is extremely strong as the very low p-values indicate. The only exception

is the GDP. The lag length AIC selects is two, and if that is applied in the tests, the

minimum p-value is about 0.02. If the lag length is increased to four, however, the

evidence against linearity is weaker. We did estimate an LSTAR model for the GDP.

In accordance with the test results the improvement in the fit compared to the linear

model was small, and in the following we therefore treat the GDP as a linear process.

The investment series is very turbulent in the beginning of the period. When we

excluded the years 1861-1875 from the sample, the evidence against linearity
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practically vanished. Instead of trying to fit a STAR model just to accommodate those

most distant observations we left them out and treated the remaining part of the series

as linear. The other seven series were deemed nonlinear and STAR models were fitted

to them. If the decision between the ESTAR and LSTAR was not clear-cut, both types

of models were fitted to the data and the final decision was taken at the model

evaluation stage.

4. MODELLING THE SERIES AND INTERPRETING RESULTS

4.1. Evaluation of STAR models

In this section we report results from the estimation of STAR models for five of the

seven nonlinear series and the evaluation of the estimated models. Furthermore, we

consider the dynamic properties of our models. For the two remaining series we just

give a brief outline of the most interesting results. Our aim is to shed light on the

cyclical properties of the series. Every estimated model is evaluated by a series of tests

and we report results of these. (Table 4.1-4.3.) As usual, the assumption of no error

autocorrelation should be tested. We use the Lagrange multiplier test Eitrheim and

Teräsvirta (1996) derived for this purpose. Their paper also contains two other tests.

One is for testing the hypothesis of no remaining nonlinearity. In this test the

alternative hypothesis is that the data-generating process is an additive STAR model

with two ‘STAR components’ instead of a single one as in (3.1). Finally, the

constancy of the parameter vectors (πj0, πj')', j = 1, 2, is tested against the hypothesis
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that the parameters change smoothly over time. Three tests are carried out. The first

one, LM1, assumes that the parameters change monotonically over time, the second

one, LM2, that the change is symmetric with respect to an unknown point in time, and

the third one, LM3, that the change is possibly nonmonotonic but not necessarily

symmetric. All the tests are carried out by auxiliary regressions. For details see

Eitrheim and Teräsvirta (1996).

Each estimated STAR model equation is reported together with a number of statistics:

AIC is the Akaike information criterion, SBIC is the Rissanen-Schwarz information

criterion, s is the estimated standard deviation of the residuals, LJB is the Lomnicki-

Jarque-Bera test of normality, LM is an LM statistic of no ARCH (Engle, 1982) based

on two lags, and V.R. is the variance ratio s sAR
2 2 , where sAR

2 is the estimated variance

of the residuals from the linear autoregressive model used as a basis for linearity

testing. It gives an idea of the relative gain in the fit from applying a STAR model

instead of a linear AR model. Numbers in parentheses following values of test

statistics are p-values, whereas those below the coefficient estimates are asymptotic

standard errors of the estimates.
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4.2 Industrial production

We first consider the industrial production which is an important component of GDP.

The test sequence in Table 3.1 suggests an ESTAR model, and the final estimated

model has the form

( ) ( ) ( ) ( ) ( ) ( )

[
( ) ( ) ( ) ( ) ( ) ( ) ( )

y y y y y y y

y y y y y y y

t t t t t t t

t t t t t t t

= + + + − −

+ − − − − + + −

− − − − − −

− − − − − − −

2 87

144

130

0 62

2 00

138

0 41

0 40

089

0 40

056

0 32

0 073

0 010

2 87

144

130

0 62

2 25

138

0 41

0 40

089

0 40

056

0 32

0 30

0

1 2 3 4 5 6

1 2 3 4 5 6 7

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.( )
]

[ ]
093

1 182

0 63

0 089

0 013
3

2 2× − − + +−exp{ .

( . )

( .

( . )

) / ∃ ( )} ∃y y ut tσ

(4.1)

s = 0.065 skewness = 0.22 excess kurtosis = 3.1

LJB = 50 (1× 10-11) AIC = -5.37 SBIC = -5.11

LM = 0.14 (0.87) V.R. = 0.85 R2 = 0.23 .

The standardization of the exponent of F by division by ( )∃σ 2 y , the sample variance

of yt, is introduced to make γ scale-free and thus facilitate the interpretation of its

estimate.

The maximum lag (seven) in (4.1) seems long but it should be pointed out that it is no

different from that of the corresponding linear AR model. Table 4.1 contains results of

the tests of no error autocorrelation. It is seen that the null hypothesis is not rejected.

Table 4.2 has the results on the tests of no remaining nonlinearity. The tests are based

on the third-order Taylor expansion of the second transition function; see Eitrheim

and Teräsvirta (1996). The smallest p-value is 0.034 corresponding to a delay of d = 4.

Given the number of tests this is not very strong evidence against the model. The
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model passes the tests of parameter constancy when the constancy of all parameters is

tested simultaneously. When the null hypothesis only concerns the nonlinear intercept

and the other parameters are assumed constant even under the alternative, the result

suggests that this intercept may not have been constant over time. This may have to do

with the slowdown in the growth rate in the 1970s but it has not been followed up

here.

The estimated equation (4.1) contains a number of parameter restrictions of the type

π1j = – π2j. These restrictions exclude the ‘combined parameter’ π1j + π2jF for F = 1

and are supported by the data. (The restriction π1j = 0 does the same for F = 0.) The

equation has a low location parameter value, ∃ .cE = −0 089 , and Figure 4.3 shows the

shape of the transition function. Every point indicates an observation so that one can

readily see which values the transition function has obtained and how frequently. The

same information ordered over time is found in Figure 4.2. The two figures together

show that the transition function normally has been close to unity. It has moved

further away from unity mainly in the 1880s, from 1910 to early 1920s, in the mid-

1930s, and in the early 1980s. Comparing the fit of the linear AR(7) model and the

ESTAR model (4.1), see Figure 4.1, it is seen that the latter fits much better in the

1880s and early 1920s than the former. It also improves the explanation to the high

growth rates following the depression in the early 1930s. We can conclude that the

nonlinear model describes the most turbulent periods in the data better than the linear

autoregressive model. The fit is not good for the last years of the sample for either of

the two models. In fact, as already indicated, the rejection of the constancy of the

intercept in the ESTAR model may have something to do with this.
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The dynamic behaviour of the model is characterized in two ways. Trying to interpret

individual parameter estimates or the delay d does not give much useful information

( ∃γ and ∃c  are the only exceptions). It is more instructive to compute the roots of the

characteristic polynomial of (4.1) at given values of the transition function F as in

Teräsvirta (1994). The extreme values F = 0 and F = 1 are particularly interesting.

The dominant roots of the characteristic polynomial of (4.1) given F = 0 and F = 1,

respectively, can be found in Table 4.4. For F = 1 (lowest and high values of the

series), all roots are stationary. For F = 0, there exists a real root which is greater than

unity. It is needed to describe the sawtooth movements of the growth rate: it is not

possible to explain this behaviour by a purely linear autoregressive model.

We could consider the situation for other values of F but there exists another, more

economic way of characterizing local dynamics. To this end, we define the ‘local’ or

‘sliced’ spectrum of the STAR model as follows:

( ) ( ) ( ) ( )f y F e F eyy t d j j
ij

j

p

j j
ij

j

p

ω π π π π πω ω; −
−

= =

−

= − +








− +




















∑ ∑1 2 1 11 2
1

1 2
1

1 (4.2)

for − ≤ ≤π ω π , see, for example, Priestley (1981, section 4.12). As is seen from

(4.2), this spectrum is a function of F and thus of yt–d. It is defined for those values of

F for which the roots of the lag polynomial ( )1 1 2
1

− +
=

∑ π πj j
j

j

p

F B  lie outside the unit

circle, i.e., the estimated STAR model is locally stationary. Note that (4.2) is not

standardized; integrated from zero to π, the function does not integrate to one. Thus

the estimated local spectra have to be standardized to be comparable. Figure 4.4
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contains the standardized local spectra of model (4.1). In this figure, each curve

represents a local spectrum and corresponds to a single observation of the transition

variable. Most of these relate to values of F close to unity, as Figures 4.2 and 4.3

already suggest. An interesting fact conveyed by Figure 4.4 is that there exists a local

peak corresponding to a period of about 13-14 years. This peak is not very prominent

for F close to unity. It increases in size, however, when one moves away from F = 1,

and it can thus to a large extent be ascribed to the most turbulent periods in the data.

For values of F close to unity, a conspicuous (local) peak appears at ‘business cycle

frequencies’ corresponding to a period length between 4 and 5 years. The peak is

visible in every local spectrum appearing in the figure, which indicates that the

corresponding cycle is an important underlying characteristic of the process. Another

very distinct feature is the high-frequency tail of the spectrum due to large short-term

swings in the growth rate.

The set of local spectra as defined in (4.2) thus can be used to illustrate the local

dynamics of the estimated STAR model. However, it does not characterize the global

dynamics of the model and should not be interpreted that way. Global dynamics are

better illustrated by a ‘model’ spectrum; see Priestley (1981, pp. 268-9) for the linear

case. Because the spectrum of a STAR model cannot be computed analytically, it is

done by simulation1. The dominant peak in the model spectrum for industrial

production in Figure 4.5 appears at a period of 13-14 years. Keeping in mind the

information in Figure 4.4, this is another indication of the fact that nonlinearity in

(4.1) characterizes the most turbulent periods in the data. Our conclusion thus is that

                                                
1 For every STAR model, 99 realizations of 300 observations are generated using the estimated
coefficients and a sequence of error terms, ut~nid(0, s2). The first 150 observations of each one of the
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there exists a distinct cyclical component in the industrial production series at the

business cycle frequencies. The long ‘cycle’ is more of an artefact, because its

appearance is just due to the most turbulent parts of the series and their timing.

Thus, in this case the traditional nonparametric sample spectrum, the STAR-based

model spectrum, and the local spectra complete each other. In particular, the

inspection of the local spectra together with the estimated transition function sheds

light on the appearance of the 13-14-year cycle visible in the global spectral densities.

                                                                                                                                           
99 series are dropped, the spectral densities for the series are estimated using customary nonparametric
methods. The “model” spectrum is the average of these 99 densities.
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4.3 Exports

We now turn to the exports series which has been strongly affected by events

exogenous to the Swedish economy. As seen from Table 3.1, linearity is rejected very

strongly. The model specification test sequence suggested d = 3 and an LSTAR

model. The estimated model is

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

[
( ) ( ) ( ) ( ) ( )

y y y y y y y y y

y y y y y

t t t t t t t t t

t t t t t

= − − + − − − +

+ − + + − +

− − − − − − − −

− − − − −

0 51

018

0 92

0 23

0 37

014

0 47

015

085

0 22

0 23

0 077

0 42

017

017

0 079

0 05

0 017

051

018

113

0 27

0 27

019

0 47

015

0 85

0

1 2 3 4 5 6 7 9

1 2 3 4 5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.( ) ( ) ( )
]

[ ]
22

0 42

017

0 098

0 075

1 6 79

346

0 047

0 014

7 8

3
1

+ −

× + − + +

− −

−
−

.

.

.

.

exp { .

( . )

( .

( . )

) } / ∃( ) ∃

y y

y y u

t t

t tσ

(4.3)

s = 0.099 skewness = -0.14 excess kurtosis = 3.5

LJB = 61 (6×10-14) AIC = -4.52 SBIC = -4.19

LM = 0.30 (0.74) V.R. = 0.65 R2 = 0.48

The estimated model does not seem to have autocorrelated errors (Table 4.1). On the

other hand, (4.3) does not adequately characterize the nonlinearity in the data (Table

4.2). This may not be surprising given the irregularity of the series and the very strong

rejection of linearity at the outset. The p-values of the tests of no remaining

nonlinearity are at any rate remarkably higher than those of the linearity tests.

Parameter constancy tests do not indicate any nonconstancy (Table 4.3).

Although model (4.3) does not account for all nonlinearity in the series we take a look

at its properties. The transition function has varied most widely between 1900 and

1950. Compared with the linear model, the LSTAR model makes a contribution in

explaining the developments during the first world war and the export boom following
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the second world war; see Figure 4.6. It also predicts a drop in the exports at the end

of 1970s which did not occur. To understand the dynamic properties of (4.3) we begin

with the roots of the characteristic polynomial as functions of F. From (4.3) we note

that ∃ .cL = −0 047 , and Figure 4.8 shows that the transition function gets close to zero

roughly for yt–3 < –0.1. When F = 0 there exist two pairs of explosive complex roots

(Table 4.4). The corresponding period lengths are 4.4 and 9.3 years. For F = 1, all

roots are stationary, and the largest pair has the period 2.3 years. When F decreases

this root becomes real and strongly negative.

The model spectrum in Figure 4.10 is dominated by the 4 and 10.5 year peaks.

However, from the local spectra in Figure 4.9, these peaks are seen to be mainly

associated with relatively low values of the transition function, whereas the short-term

dynamics dominate for transition function values close to unity. This information can

be combined with that in Figure 4.7. This figure shows that the estimated transition

function takes values close to unity much more frequently after than before 1950. It

can thus be concluded that the cyclical fluctuations have not been constant over time.

The 4 and 10.5 year peaks mainly characterize the earlier, more turbulent, period of

the series. From 1950 onwards, short-run fluctuations (length of period less than 3

years) have dominated and there has been little business cycle variation to speak of.

This does not necessarily show in the spectrum estimated from the whole sample, and

the local and the global spectra thus again neatly complement each other.
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4.4 Imports

Imports are also greatly affected by exogenous events. Linearity is rejected extremely

strongly against STAR (Table 3.1). The smallest p-value occurs at d = 1, and the

specification test sequence suggests an ESTAR model. The estimated model has the

form

( ) ( ) ( ) ( ) ( ) ( )

[
( ) ( ) ( ) ( ) ( )

]

[

y y y y y y y

y y y y y

y

t t t t t t t

t t t t t
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(4.4)

s = 0.12 skewness = -1.34 excess kurtosis = 3.4

LJB = 94 (5×10-21) AIC = -4.17 SBIC = -3.87

LM = 0.77 (0.47) V.R. = 0.51 R2 = 0.61

There does not seem to be any autocorrelation in the errors (Table 4.1). The

hypothesis of no remaining nonlinearity is rejected (Table 4.2). But, as in the case of

the exports series, the p-values of the tests are a few magnitudes higher than in the

linearity tests. The hypothesis of parameter stability cannot be rejected (Table 4.3).

Thus we proceed to consider the properties of (4.4). However, there is a caveat: this

inference is not valid because the model is not stable. We return to this point shortly.

Figure 4.11 indicates that the two world wars and their aftermaths constitute the most

turbulent periods in the series. That is where the ESTAR model most contributes to

the explanation, see Figure 4.12. In particular, it captures the extremely sharp peak in

the growth rate when the second world war had ended. The roots of the characteristic
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polynomial in Table 4.4 reflect the very large fluctuations in the imports. It is perhaps

not surprising that there exist several explosive roots for F = 1. But there is also an

explosive real root for F = 0; the corresponding value of the transition variable yt–1 is

practically zero. This explosive band about zero is very narrow but enhances the

sharpness of the fluctuations. The local spectra in Figure 4.14 accord well with the

information in the roots. The dominating feature is the ridge representing the period of

4-5 years. As in the case of the industrial output, this 4-5 year cycle seems an

important characteristic of the series. The estimation of the model spectrum failed

because some of the simulated realizations diverged. This implies that (4.4) is not a

stable model, which renders the standard statistical inference invalid. The model may

thus be seen as a local (in time) approximation to the true data-generating process.

Problems in finding a stable representation of imports have their root in the extremely

large fluctuations in the growth rate of the series in connection with the two world

wars.

4.5. Employment

The most distinguished features of this series can be seen from Figure 4.15. There was

a large drop in the employment in the years following the first world war and another

one followed by a rapid recovery in the 1930s. The second world war does not seem to

have affected hours worked in manufacturing much. Linearity of the series is strongly

rejected against STAR, the rejection being strongest when d = 1. The model

specification tests point at the ESTAR family, but an LSTAR model could also be

considered a possibility. The estimated ESTAR model is
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(4.5)

s = 0.038 skewness = -0.62 excess kurtosis = 2.4

LJB = 36 (2×10-8) AIC = -6.49 SBIC = -6.30

LM = 0.22 (0.80) V.R. = 0.56 R2 = 0.50

The estimated coefficients of the longest lags seem insignificant but removing the lags

has an adverse effect on the fit. There does not seem to be any error autocorrelation in

the model (Table 4.1). It appears from Table 4.2 that (4.5) has captured almost all

nonlinearity in the data. Some evidence of parameter instability exists (Table 4.3) but

it is not very strong. An important thing to notice in (4.5) is that ∃ .cE = −017 . Thus

almost all observations belong to the right-hand tail of the transition function as is

seen from Figure 4.17. The LSTAR model would thus do almost the same job as the

ESTAR model (see Teräsvirta, 1994). We estimated such a model as well, but because

the ESTAR model had a slightly better fit, it is reported here. Another special

characteristic of (4.5) is that because of the parameter restrictions π1j = –π2j,

j = 1,…, 4, the model is locally white noise with a positive mean (0.03) when F = 1.

Figure 4.16 shows that values of the transition function have remained close to unity

most of the time. The ESTAR model makes two major contributions. First, it explains

the big decrease in employment in the beginning of the 1920s better than the linear

AR model. Second, it tracks the data well from the mid-1960s onwards where the

linear model fails.
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The characteristic polynomial for F = 0 contains a pair of complex roots with a very

large modulus. These roots remain explosive for considerably large values of F. The

model spectrum (see Figure 4.19) has a broad peak corresponding to cycle length of

3.5 years and another peak at the zero frequency. Figure 4.18 depicting local spectra

allows another view. For F very close to unity the local spectrum is flat because the

process is locally white noise with drift for F = 1. A peak corresponding to the period

of 3.5 years emerges rather quickly when F decreases. Thus when employment has

been growing (see Figure 4.15) at a steady rate, the series has shown little ‘business

cycle’ or other regular cyclical variation. On the other hand, when the employment has

been declining as from the 1960s onwards, very regular cyclical variation has

appeared in the series. By combining the information in Figure 4.15 and in the graph

of the transition function it can be concluded that the cyclical variation has been

asymmetric. The troughs have had a tendency of being sharper than the peaks. The

recovery of the growth rate from a deep trough has always been quick. In conclusion,

whereas the series up to the 1960s displays little or no cyclical movements, roughly

the last quarter of the century is characterized by a prominent asymmetric cycle with a

rather short period. A steady 4-5 year ‘business cycle’ component is not a property of

the employment series.

4.6. Private consumption

Figure 4.20 shows that the growth rate of the logarithmic private consumption

fluctuates most in the 1910s due to the first world war. There is also a drop in the

growth rate in the 1930s and another one followed by a rapid recovery in the early
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1940s. When linearity is tested against STAR it is rejected (Table 3.1). The model

specification procedure indicated a slight preference for an LSTAR model, but it

turned out that an ESTAR model had a somewhat better fit. It has the form

( ) ( ) ( ) ( )
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(4.6)

s = 0.032 skewness = -0.36 excess kurtosis = 0.2

LJB = 3 (0.3) AIC = -6.78 SBIC = -6.50

LM = 2.66 (0.08) V.R. = 0.79 R2 = 0.44

Model (4.6) is the only model whose residuals do not contain outliers (the Lomnicki-

Jarque-Bera test does not reject the normality assumption). There is no error

autocorrelation, but the model does not adequately describe all the nonlinearity.

However, the p-values of the tests are a few magnitudes higher than those of the

linearity tests, and the residual variance is just 4/5 of that of the linear model. No

stability test rejects parameter constancy. The model is also different from the

preceding ones in the sense that while it fits better than the linear one, the fit of (4.6)

is not vastly superior to that of the AR model anywhere in the sample. This can be

seen from Figure 4.20. Figure 4.21 indicates that the transition function fluctuates

between zero and one during the whole sample period. Thus, unlike all the other series

considered here the consumption series seems inherently nonlinear. Model (4.6) is

locally stationary everywhere. There is a complex pair of roots with modulus 0.99 and
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period 2.7 years and another one with modulus 0.91 and period 9.8 years at F = 0 (for

this value, ∃ .cE = 0 06 ).

The model spectrum in Figure 4.24 has a large and flat peak at a frequency

corresponding to a period of 3 to 4 years, but there is also a very distinct 10-year peak.

The local spectra in Figure 4.23 are interesting. At values of F close to unity there

exists a strong peak at the cycle length of about 4 years. When F decreases this peak

moves to the right. This indicates a certain asymmetry: at high rates of growth (around

6 per cent) the cyclical fluctuations tend to be more peaked than at lower rates of

growth. This asymmetry accords well with the flat peak of the model spectrum. A

univariate analysis does not provide an explanation to asymmetric cyclical behaviour

of consumption: it merely establishes the fact.

When F approaches zero, a 10-year peak visible for all values of F grows stronger.

This peak seems mainly due to the distance between the end of the World War I

turbulence and the Great Depression on the one hand, and that between this recession

and the effects of World War II on consumption on the other. Its emergence can also

be expected from the roots of the characteristic polynomial for F = 0 discussed above.

Again, the same peak appeared in the model spectrum. Thus, also for this apparently

inherently nonlinear series, the information in the model spectrum can be usefully

completed by the set of estimated sliced spectra.
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4.7. Other series

The other two series modelled by STAR models are productivity and wages. The

productivity series is industrial production divided by employment, and the estimated

model shares characteristics of the employment model. For this series, the rejection of

linearity is not overwhelming (pmin = 0.0248). We do not report the estimated model,

but Figure 4.26 shows local spectra. The local spectrum is completely flat for F = 1,

and a peak at the cycle length 4 years emerges as F decreases. Figure 4.25 shows that

the model fit is not good everywhere. The substantial productivity increases after the

first world war remain unexplained. This was mainly due to a rapid fall in

employment. On the other hand, the turbulence of the 1880s due to large fluctuations

in the industrial production is captured reasonably well. Furthermore, the test of no

additive nonlinearity indicates that the model does pick up all nonlinearity there is in

the data.

Linearity is rejected very strongly for the wages series. The estimated LSTAR model

explains a part of the turbulence due to the first world war, see Figures 4.27 and 4.28.

The transition function differs from unity only on two occasions. However, the test of

no remaining nonlinearity reveals that the STAR model gives a far from adequate

description of the data. We have thus not pursued this model any further. Detailed

modelling results for the wages series are available from the authors upon request.



26

4.8. Linear series

As seen from Table 3.1, there is not much evidence against linearity in the GDP

series. The same is true for the investment series after omitting the first 15

observations. We have nevertheless computed model spectra for both series, see

Figures 4.29 and 4.30. Because of linearity, this can be done by assuming F ≡ 0 and

applying (4.2). It is seen that the cyclical variation parametrized by an AR(4) model is

not strong. The spectrum has a rather broad peak at a frequency corresponding to the

period of about 3 years. The AR model for investment suggests that the most

prominent feature in the data, ignoring the years 1861-1875, is a cycle with a period of

about 6 years.

4.9 Business cycle fluctuations, asymmetries, and the adequacy of the STAR

models

One of the purposes of this paper has been to complete the findings of EPS on the

characteristics of the Swedish business cycle. Our results indicate that two of the

series we investigated, industrial production and imports, contain fluctuations at

business cycle frequencies corresponding to a period of 4-5 years. Consumption, the

only inherently nonlinear process among the ones considered, also shows fluctuations

within the 3-8 year band, but their frequency is higher (period 3-4 years). For exports

and employment, the business cycle is a somewhat elusive concept. The exports series

shows cyclical variation before 1950 but since then, short-term variation has been

dominant in the series. Early in the period, employment has shown strong steady
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growth interrupted by occasional collapses of the growth rate. Regular ‘business cycle

variation’ (period 3.5 years) has appeared only in the descending part of the series,

from 1960s onwards. Of the linear series, investment seems to have a six-year cyclical

component. For the GDP, the evidence of a regular cyclical component is weak. The

techniques we have applied thus yield a somewhat more detailed picture of the

cyclical variation in long Swedish macroeconomic series than that of EPS.

As noted above, linearity is strongly rejected for many of the series. This does not,

however, automatically imply asymmetry. In fact, our considerations suggest that

observed nonlinearity is mainly due to the large exogenous shocks the Swedish

economy has been subjected to during the last 130 years. Consumption appears to be

one variable whose growth rate is inherently nonlinear and whose cyclical fluctuations

show signs of asymmetry. In this case, troughs on the average are sharper than peaks,

except for some very extreme peaks. Another one is employment. While the cyclical

frequency is constant over values of F, the peak in the spectrum grows in importance

for descending values of F. This indicates that troughs even in this case are sharper

than peaks.

As a summary, STAR models offer a reasonable explanation to fluctuations in three

series out of seven: industrial production, employment, and productivity. They explain

some but not all of the movements in the most turbulent periods in consumption,

exports, and imports. At least for exports and imports, which have been directly

subject to a few very large shocks, one might consider an outlier approach as in Balke

and Fomby (1994) or van Dijk, Franses and Lucas (1996). The same consideration
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applies to the wages series whose dynamic behaviour a STAR model has not been

able to capture.

5. TESTING THE NONCAUSALITY HYPOTHESIS

5.1 General

So far the focus has been on cyclical properties of the univariate series. It would also

be interesting to consider temporal relationships between them. For instance, it would

be interesting to know whether or not there is a driving variable behind the cyclical

variation and what kind of dynamic interactions there may have existed between the

variables. In this study, the number of variables is relatively large (nine) whereas the

sample size is only moderate (less than 130 observations). This fact combined with

strong observed nonlinearities make a system approach to these problems a less

feasible alternative. A more modest beginning may be made by investigating pairwise

causal relationships between variables. This is normally done by testing the null

hypothesis of Granger noncausality (Granger, 1969) between two variables. There is a

large literature on this topic; see Geweke (1984) for a survey. However, most of the

testing is carried out in a completely linear framework. More recently, Baek and Brock

(1992), Hiemstra and Jones (1994), and Bell, Kay and Malley (1996), proposed

nonparametric tests of noncausality.
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The linear framework is not applicable in our case because most of our Swedish

macroenonomic series are nonlinear. On the other hand, because we have already

constructed parametric nonlinear STAR models for our variables it appears natural to

continue using parametric tests. Such tests do not seem to exist for nonlinear series

but below we are going to propose one based on smooth transition regression (STR)

and apply it to our series. This also gives us an opportunity to compare the results with

what one obtains by ignoring nonlinearity and applying corresponding tests based on

linear equations to the same series.

5.2 An STR-based test of Granger-noncausality

A simple way of testing the null hypothesis that an observed series xt does not

(linearly) Granger cause another series, yt, in a single-equation framework is to test the

null hypothesis β1 = … = βq* = 0 in

y y y x xt t p t p t q t q t= + + + + + + +− − − −θ α α β β ε1 1 1 1Κ Κ* * * * (5.1)

where ( )ε σεt ~ iid ,0 2  under H0. Analogously when yt (under the null hypothesis of

noncausality) is generated by the STAR model (3.1), we may perform a noncausality

test by testing a null hypothesis of non-existent predictive power of lagged values of

another variable, xt. The sequence {xt} is assumed to be stationary and ergodic. The

nonlinear impact of x on y is characterized by an additive smooth transition
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component. Consider the following additive smooth transition regression model

( ) ( ) ( ) ( )y w w F y v v G x ut t t t d t t t e t= + ′ + + ′ + ′ + + ′ +− −π π π π δ δ δ10 1 20 2 1 20 2
(5.2)

where ( )δ δ δj j jq j= ′ =1 1 2, , , , ,Κ  ( )v x xt t t q= ′
− −1,Κ , ( )G ⋅  is a transition function

similar to the ones defined in (3.2-3.3), and e is an unknown delay. The noncausality

hypothesis is H0: G ≡ 0  and δ1 0 1i i q= =, ,Κ . Furthermore, we assume that under H0,

( )ut u~ nid ,0 2σ , and that the parameters of (5.2) can be consistently estimated by

nonlinear least squares under this null hypothesis.

The test is a modification of the test of no additive nonlinearity in Eitrheim and

Teräsvirta (1996). The identification problem due to the fact that (5.2) is not identified

under H0 is again circumvented by approximating the second transition function G by

its Taylor approximation. However, in this case we want to control the overall

significance level of the test while retaining the assumption that the delay e is

unknown. This can be achieved by proceeding as in Luukkonen, Saikkonen and

Teräsvirta (1988). Doing that and choosing the ‘economy version’ (S3) of their test,

the relevant approximation to (5.2) has the form

( ) ( )y w w F y v x x x rt t t t d t ij t i t j
j i

q

i

q

i t i
i

q

t= + ′ + + ′ + ′ + + +− − −
==

−
=

∑∑ ∑~π π π π κ φ ψ10 1 20 2
1

3

1

(5.3)

where ( )κ κ κ= ′
1,Κ q . The null hypothesis is H0: κi = 0, φij = 0, ψi = 0, i = 1,…,q,

j = i,…,q. Under H0, rt = ut and the resulting test statistic has an asymptotic χ2-
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distribution with ( )q q q+ +1 2 2  degrees of freedom, assuming that all necessary

moments and cross-moments exist. The test may be carried out by regressing the

residuals from (5.2) estimated under the null hypothesis on the gradient vector of the

null model, xt–i, i = 1,…, q,  xt–i xt–j, i = 1,…, q,  j = i,…, q, and xt i−
3 , i = 1,…, q. The

degrees of freedom in the numerator of the F-variant of the test are ( )q q q+ +1 2 2

and in the denominator ( )T n q q q− − + −1 2 2  where n is the dimension of the

gradient vector. The test may be carried out in the same way even if {yt} is a linear

sequence. The only modification is that F ≡ 0 in (5.2).

The size of the test in samples like ours may be a cause of worry. Because of rather

long lags, the number of degrees of freedom in the numerator in some of our tests is

rather large relative to that in the denominator of the statistic which might cause size

distortion. We carried out a small simulation study (details available from the authors)

to check this possibility but did not find any cause for concern.

One may feel that the assumption that the second additive component in (5.2) is of

STR type is unduly restrictive. The more general approach, not assuming a particular

functional form for this component as discussed in Eitrheim and Teräsvirta (1996),

can be adapted to this situation without problems. For large q, however, the dimension

of the null hypothesis may be so large that in small samples it often leads to a

substantial loss of power.
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5.3 Results

Table 5.1 contains the results from the nonlinear tests of Granger-noncausality. The

tests are based on the STAR models of section 4 for all variables except GDP and

investments. To obtain an idea of the effect of the lag length on the results, the tests

were performed for q = 5,…,10 in (5.2). Interpreting the results requires care because

a rejection of the null hypothesis does not imply a direct causal link between a pair of

variables. The tests are bivariate, and changing the information set may change

conclusions. Nevertheless, the STR-based tests suggest a large number of interactions

between the variables. In particular, employment and productivity are strongly linked

with a majority of the other variables. The results may not directly point out a driving

variable although industrial production is much more often a causing than a caused

variable. Another conspicuous observation is that the variables representing links

between the Swedish economy and the rest of the world, exports and imports, appear

clearly more often as causing than caused variables. (Between the two, exports seem

to Granger-cause imports rather than the other way round. Also note that the model of

imports was not stable so that the p-values are just indicative.) In particular, causality

running from these variables (but also from consumption) to wages is very strong.

This is in accord with Sweden being a small open economy dependent on foreign

trade. On the other hand, industrial production has a role similar to imports and

exports. Finally, one should note that the analysis focuses on short-run connections

between the series. Possible long-run relationships between the Swedish

macroeconomic variables are not discussed here.
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For comparison, the noncausality hypothesis was also tested linearly using (5.1). The

results can be found in Table 5.2. Comparing them with those in Table 5.1, the

outcomes of the two forms of noncausality tests are seen to differ in a number of

ways. In some cases, the nonlinear test indicates two-way causality between variables

where the linear test finds no causality in any direction or one-way causality. In other

cases, the direction of causality may differ between the two tests.

A general observation is that the linear tests find much less causal links between the

series than the nonlinear tests do. The employment and productivity series serve as

illustrative examples. According to the STR-based test they are linked with almost all

the other series. The linear tests suggest both fewer and weaker links. The industrial

production also is remarkably weakly linked together with the other variables. A

general conclusion is that assumptions concerning the functional form play an

important role in testing the null hypothesis of Granger noncausality.

7. CONCLUSIONS

The results of the paper show that behind the uniform business cycle EPS found by

analysing long Swedish macroeconomic time series there is plenty of individual

behaviour in the series. Some series such as GDP show only weak cyclical behaviour.

In some other ones cyclical variation is elusive, sometimes it may be present,

sometimes not. For series with relatively strong cyclical components the ‘business

cycle frequencies’ with peaks in the spectra are not necessarily the same. In some
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series, cyclical variation seems asymmetric, in others it does not. It seems that the

sometimes strong peaks in the spectra of these series at low frequencies can be

ascribed to rather few exceptional observations or periods in the series.

Our study also indicates that there are plenty of temporal links between the variables.

There may not exist a clear driving variable among the ones considered, industrial

production being the closest candidate. On the other hand we are able to demonstrate

the fact that the functional form strongly affects the results of Granger noncausality

tests. That this may be the case is well known, see, for example, the discussion in

Hendry (1995, p. 175-176), but empirical examples of this phenomenon have not been

many.

Finally, we may conclude that STAR models are useful alternatives to linear models

as research tools in this work. Although we have not been able to find an adequate

STAR representation for every nonlinear series, the STAR models we have fitted to

the data give us plenty of insight into characteristic features of the long Swedish

macroeconomic time series we consider. With their help, we have been able to

complete and enrich the analysis and conclusions of EPS on the many properties of

Swedish business cycles from 1860s to late 1980s.
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TABLES

Table 3.1
Results of linearity tests: number of lags in the linear AR model (p), minimum p-value (min[pFL

]) over
delays d = 1,...,p; corresponding delay (d), p-values of the tests in the model selection sequence (pF4

,
pF3

, pF2
), the selected model family (E = ESTAR, L = LSTAR).

Variable p min[pFL
] d pF4

pF3
pF2

STAR

Industrial production 7 0.031 3 0.070 0.028 0.63 E
Imports 7 2.1×10-13 1 0.026 7.7×10-10 6.74×10-6 E
Exports 9 2.1×10-8 3 0.00025 0.0039 0.00013 L
Productivity 2 0.025 1 0.045 0.036 0.47 E
Real wage 4 2.7×10-10 1 1.4×10-6 6.9×10-5 0.013 L
Investments 4 1.8×10-7 1 0.0061 0.00027 0.00062 L
Consumption 9 4.2×10-5 1 0.0030 0.0048 0.054 E
GDP 2 0.019 2 0.0017 0.64 0.54 L

4 0.065
Employment 4 3.2×10-10 1 0.0050 6.26×10-6 2.8×10-5 E

Note: For details of the test sequence for choosing between ESTAR and LSTAR models see Teräsvirta
(1994).

Table 4.1
p-values of LM tests of no error autocorrelation.

Variable Number of lags
1 2 3 4 5 6 7 8

Industrial production 0.70 0.91 0.98 0.94 0.97 0.49 0.23 0.28
Imports 0.22 0.49 0.44 0.32 0.11 0.12 0.10 0.091
Exports 0.66 0.56 0.68 0.75 0.47 0.49 0.61 0.68
Productivity 0.77 0.93 0.96 0.99 0.92 0.96 0.68 0.37
Real wage 0.23 0.32 0.46 0.59 0.72 0.82 0.88 0.61
Consumption 0.40 0.54 0.69 0.82 0.93 0.95 0.93 0.96
Employment 0.22 0.069 0.091 0.069 0.084 0.18 0.38 0.37
Note: For details of the test see Eitrheim and Teräsvirta (1996).
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Table 4.2
p-values of tests of no remaining nonlinearity.

Variable Delay
1 2 3 4 5 6 7 8 9

Ind. prod. 0.10 0.33 0.22 0.034 0.84 0.14 0.15

Imports 0.0057 0.0027 0.0021 0.030 0.14 0.72 0.11

Exports 0.00094 0.00053 0.028 6.1×10
-5 0.0052 0.0031 0.0038 0.0055 0.026

Productivity 0.15 0.76

Real wage 7.7×10
-9 0.00032 9.0×10

-5 0.024

Consumption 0.0083 0.019 0.057 0.082 0.053 0.087 0.53 0.092 0.24

Employment 0.40 0.035 0.30 0.072

Note: The tests are based on the third-order Taylor expansion of the second transition function; for
details see Eitrheim and Teräsvirta (1996).

Table 4.3
p-values of LM tests of parameter constancy: LM1, LM2, LM3 (F tests).

Variable Parameters LM1 LM2 LM3

Industrial production Intercepts and lags 0.41 0.41 0.82
production Intercepts only 0.016 0.033 0.066
Imports Intercepts and lags 0.58 0.44 0.47
Exports Intercepts and lags 0.94 0.61 0.28

Intercepts only 0.72 0.92 0.98
Productivity Intercepts and lags 0.049 0.13 0.31

Intercepts only 0.80 0.26 0.50
Consumption Intercepts and lags 0.23 0.34 0.45

Intercepts only 0.47 0.81 0.59
Employment Intercepts and lags 0.31 0.029 0.049

Intercepts only 0.28 0.10 0.15
Note: For details of the test see Eitrheim and Teräsvirta (1996).
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Table 4.4
Roots of characteristic polynomials for various values of the transition function F.
Only roots with modulus ≥ 0.90 are displayed.

Industrial
production

Mid-regime (F = 0) Outer regime (F = 1)

(ESTAR) Root Modulus
(half-life)

Period Root Modulus
(half-life)

Period

3.42 3.42 -0.90 0.90
-0.10 ± 0.91i 0.92 (8.9) 3.7

Imports Mid-regime (F = 0) Outer regime (F = 1)
(ESTAR) Root Modulus

(half-life)
Period Root Modulus

(half-life)
Period

0.38 ± 0.811i 0.90 (7.2) 5.5 0.89 ± 0.64i 1.09 10.0
1.04 1.04 -0.05 ± 1.19i 1.19 3.9

-1.29 1.29
Exports Lower regime (F = 0) Upper regime (F = 1)
(LSTAR) Root Modulus

(half-life)
Period Root Modulus

(half-life)
Period

0.17 ± 1.142i 1.16 4.4 -0.86 ± 0.33i 0.92 (9.4) 2.3
0.79 ± 0.632i 1.01 9.3
-0.90 0.90

Productivity Mid-regime (F = 0)
(ESTAR) Root Modulus Period

0 ± 1.69i 1.69 4

Consumption Mid-regime (F = 0) Outer regime (F = 1)
(ESTAR) Root Modulus

(half-life)
Period Root Modulus

(half-life)
Period

0.75 ± 0.53i 0.91 (8.6) 10.3 0.03 ± 0.94i 0.94 (12.4) 4.1
-0.70 ± 0.70i 0.99 (69.4) 2.7

Employment Mid- regime (F = 0)
(ESTAR) Root Modulus Period

-1.98 ± 2.78i 3.41 2.9

Regime F = 0.7 Regime F = 0.95
Root Modulus Period Root Modulus Period
-0.72 ± 1.792i 1.93 3.2 -0.22 ± 0.88i 0.90 (7.7) 3.5
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Table 5.1
Nonlinear Granger noncausality tests.
The numbers denote the lag orders of the polynomial in the causing variable (q = 5,..,(1)0).
Asterisks indicate p-values: *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001; ****, p ≤ 0.0001.

Caused variable Causing variable

Ind.
prod

GDP Imp. Exp. Prod. Real
wages

Inv. Cons. Empl.

Industrial
production

5 
6 
7 
8 **
9 
0

5 
6 
7 
8 
9 
0

5 
6 
7 
8 
9 
0

5 *
6 **
7 ****
8 ****
9 ****
0 ****

5 
6 
7 
8 
9 
0

5 *
6 
7 *
8 *
9 
0 *

5 
6 
7 
8 
9 
0

5 *
6 *
7 
8 *
9 
0 ***

GDP 5 
6 
7 
8 
9 **
0 **

5 *
6 *
7 
8 
9 
0 *

5 *
6 *
7 
8 
9 *
0 

5 *
6 
7 
8 **
9 ***
0 ***

5 **
6 **
7 *
8 *
9 
0 **

5 
6 
7 
8 
9 
0 

5 
6 
7 
8 
9 
0 

5 
6 
7 *
8 **
9 **
0 **

Imports 5 
6 
7 
8 
9 **
0 ***

5 
6 
7 
8 
9 
0

5 ***
6 ***
7 ***
8 **
9 ****
0 ****

5 
6 
7 
8 
9 **
0 **

5 *
6 
7 *
8 *
9 **
0 *

5 
6 
7 *
8 *
9 **
0 *

5 *
6 *
7 *
8 *
9 *
0

5 
6 **
7 *
8 *
9 ***
0 **

Exports 5 
6 
7 
8 *
9 *
0 ***

5 **
6 *
7 
8 
9 *
0

5 *
6 *
7 *
8 
9 
0

5 
6 
7 
8 *
9 **
0 *

5 
6 
7 
8 
9 
0

5 
6 
7 
8 
9 *
0 **

5 **
6 ***
7 ***
8 **
9 **
0

5 
6 **
7 **
8 **
9 ***
0 ***

Productivity 5 *
6 *
7 ***
8 **
9 ***
0 ****

5 ***
6 **
7 *
8 *
9 *
0 **

5 **
6 **
7 *
8 *
9 **
0 **

5 *
6 **
7 *
8 ***
9 ***
0 **

5 **
6 *
7 *
8 
9 *
0 **

5 
6 *
7 
8 **
9 **
0 **

5 ***
6 ***
7 **
8 **
9 ****
0 **

5 ***
6 ***
7 ***
8 **
9 *
0 ****

Real wages 5 
6 
7 
8 
9 
0

5 *
6 *
7 *
8 *
9 *
0 *

5 ****
6 ****
7 ****
8 ***
9 ***
0 ***

5 ****
6 ****
7 ****
8 ****
9 ****
0 ***

5 
6 
7 
8 
9 ***
0 *

5 
6 
7 
8 
9 
0

5 ****
6 ****
7 ****
8 ***
9 ***
0 **

5 
6 **
7 **
8 **
9 
0

Investment† 5 **
6 **
7 **
8 **
9 ***
0 **

5 
6 
7 
8 
9 
0 

5 
6 
7 *
8 
9 
0 

5 
6 
7 
8 
9 
0 

5 **
6 **
7 *
8 *
9 *
0 ***

5 
6 
7 
8 
9 
0 

5 
6 
7 
8 
9 
0 

5 
6 
7 
8 
9 *
0 ***

Consumption 5 
6 
7 *
8 *
9 ***
0 ****

5 **
6 ***
7 **
8 **
9 *
0 **

5 **
6 **
7 **
8 **
9 *
0

5 **
6 ****
7 ****
8 ***
9 **
0 *

5 
6 
7 *
8 *
9 
0

5 
6 
7 *
8 **
9 **
0 **

5 
6 
7 *
8 
9 
0

5 
6 
7 
8 
9 
0

Employment 5 
6 *
7 **
8 ***
9 ****
0 ****

5 ***
6 ***
7 **
8 *
9 
0

5 ***
6 ***
7 **
8 **
9 *
0 **

5 
6 **
7 **
8 ***
9 **
0 *

5 *
6 ***
7 *
8 **
9 **
0

5 
6 
7 
8 
9 
0

5 
6 
7 
8 
9 
0 **

5 
6 
7 
8 
9 
0

†Computed from observations for 1876-1988
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Table 5.2
Linear Granger noncausality tests.
The numbers denote the lag orders of the polynomial in the causing variable (q = 5,..,(1)0).
Asterisks indicate p-values: *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001; ****, p ≤ 0.0001.

Caused variable Causing variable

Ind.
prod

GDP Imp. Exp. Prod. Real
wages

Inv. Cons. Empl.

Industrial
production

5 
6 
7 
8 
9 
0

5 
6 
7 
8 
9 
0

5 
6 
7 
8 
9 
0

5 
6 
7 
8 
9 
0 *

5 
6 
7 
8 
9 
0

5 
6 
7 
8 
9 
0 

5 
6 
7 
8 
9 
0

5 
6 
7 
8 
9 
0 *

GDP 5 
6 
7 
8 
9 
0

5 
6 
7 
8 
9 
0

5 **
6 **
7 **
8 *
9 *
0

5 *
6 
7 
8 
9 
0

5 **
6 **
7 *
8 **
9 *
0 **

5 
6 
7 
8 
9 
0

5 
6 
7 
8 
9 
0

5 
6 
7 
8 
9 
0

Imports 5 
6 
7 
8 
9 
0

5 
6 
7 
8 
9 
0

5 ***
6 ***
7 ***
8 *
9 *
0 *

5 
6 
7 
8 
9 
0

5 *
6 *
7 **
8 **
9 **
0 **

5 
6 
7 
8 
9 
0

5 *
6 
7 
8 
9 
0

5 
6 
7 
8 
9 
0

Exports 5 
6 
7 
8 
9 
0

5 *
6 
7 
8 
9 
0

5 
6 
7 
8 
9 
0

5 *
6 **
7 *
8 *
9 *
0 *

5 ***
6 ***
7 ****
8 ***
9 ***
0 **

5 
6 
7 
8 
9 
0

5 
6 
7 
8 
9 *
0 *

5 
6 **
7 **
8 **
9 *
0 *

Productivity 5 *
6 *
7 *
8 **
9 *
0 *

5 
6 
7 
8 
9 
0

5 
6 
7 
8 
9 
0

5 
6 
7 
8 
9 
0

5 ***
6 ***
7 ***
8 **
9 **
0 **

5 
6 
7 
8 
9 
0

5 *
6 *
7 
8 
9 
0

5 *
6 *
7 *
8 **
9 *
0 *

Real wages 5 
6 
7 
8 
9 
0

5 *
6 *
7 *
8 *
9 
0

5 
6 **
7 ***
8 ****
9 ****
0 ***

5 
6 
7 
8 
9 
0

5 
6 
7 
8 
9 
0

5 
6 
7 
8 
9 
0

5 *
6 
7 *
8 **
9 *
0 *

5 
6 
7 
8 
9 
0

Investment† 5 *
6 ***
7 ***
8 ***
9 ***
0 ***

5 
6 
7 
8 
9 
0

5 *
6 
7 
8 
9 
0

5 *
6 *
7 *
8 *
9 *
0 *

5 *
6 *
7 *
8 *
9 *
0 *

5 
6 
7 
8 
9 
0

5 
6 *
7 
8 **
9 **
0 *

5 
6 
7 
8 
9 
0

Consumption 5 
6 
7 
8 
9 
0

5 
6 
7 
8 
9 
0

5 *
6 
7 
8 
9 
0

5 **
6 ****
7 ***
8 ***
9 ***
0 ***

5 
6 
7 
8 
9 
0

5 *
6 *
7 *
8 *
9 
0

5 
6 
7 
8 
9 
0

5 
6 
7 *
8 
9 *
0 *

Employment 5 
6 
7 
8 
9 
0

5 **
6 **
7 *
8 *
9 *
0

5 
6 
7 
8 
9 
0

5 
6 *
7 
8 *
9 *
0

5 
6 
7 
8 
9 
0

5 **
6 **
7 **
8 **
9 *
0 *

5 
6 
7 
8 
9 
0

5 **
6 *
7 *
8 *
9 *
0 *

†Computed from observations for 1876-1988
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FIGURES

Industrial production GDP

Investment Consumption

Imports Exports

Figure 2.1 Logarithms of the series
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(Figure 2.1, continued)

Employment Real wages

Productivity
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Industrial production GDP

Investment Consumption

Imports Exports

Figure 2.2 First differences of the logarithms of the series



45

(Figure 2.2, continued)
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Productivity
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Fig. 4.1. Industrial production (first difference of logarithm). Observed values, predictions from STAR
model, and predictions from AR model.

Fig. 4.2. Industrial production (first difference of logarithm). Estimated transition function over time.

Fig. 4.3. Industrial production (first difference of logarithm). Estimated transition function vs the
transition variable.
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Fig. 4.4. Industrial production (first difference of logarithm). ‘Sliced’ spectra.

Fig. 4.5. Industrial production (first difference of logarithm). Model spectrum.
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Fig. 4.6. Exports (first difference of logarithm). Observed values, predictions from STAR model, and
predictions from AR model.

Fig. 4.7. Exports (first difference of logarithm). Estimated transition function over time.

Fig. 4.8. Exports (first difference of logarithm). Estimated transition function vs the transition variable.
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Fig. 4.9. Exports (first difference of logarithm). ‘Sliced’ spectra.

Fig. 4.10. Exports (first difference of logarithm). Model spectrum.
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Fig. 4.11. Imports (first difference of logarithm). Observed values, predictions from STAR model, and
predictions from AR model.

Fig. 4.12. Imports (first difference of logarithm). Estimated transition function over time.

Fig. 4.13. Imports (first difference of logarithm). Estimated transition function vs the transition
variable.
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Fig. 4.14. Imports (first difference of logarithm). ‘Sliced’ spectra.
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Fig. 4.15. Employment (first difference of logarithm). Observed values, predictions from STAR model,
and predictions from AR model.

Fig. 4.16. Employment (first difference of logarithm). Estimated transition function over time.

Fig. 4.17. Employment (first difference of logarithm). Estimated transition function vs the transition
variable.
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Fig. 4.18. Employment (first difference of logarithm). ‘Sliced’ spectra.

Fig. 4.19. Employment (first difference of logarithm). Model spectrum.
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Fig. 4.20. Consumption (first difference of logarithm). Observed values, predictions from STAR model,
and predictions from AR model.

Fig. 4.21. Consumption (first difference of logarithm). Estimated transition function over time.

Fig. 4.22. Consumption (first difference of logarithm). Estimated transition function vs the transition
variable.
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Fig. 4.23. Consumption (first difference of logarithm). ‘Sliced’ spectra.

Fig. 4.24. Consumption (first difference of logarithm). Model spectrum.
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Fig. 4.25. Productivity (first difference of logarithm). Observed values, predictions from STAR model,
and predictions from AR model.

Fig. 4.26. Productivity (first difference of logarithm). ‘Sliced’ spectra.
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Fig. 4.27. Real wage (first difference of logarithm). Observed values, predictions from STAR model,
and predictions from AR model.

Fig. 4.28. Real wage (first difference of logarithm). Estimated transition function over time.
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Fig. 4.29. GDP (first difference of logarithm). Model spectrum, AR(4) model.

Fig. 4.30. Investments (first difference of logarithm). Model spectrum, AR(4) model.


