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Abstract

When testing for cointegration, the asymptotic inference typically in use
can be plagued by size distortion due to an inadequate first order approxi-
mation. Hence, for practical purposes the inference can be completely mis-
leading and result in false conclusions regarding the presence of long-run
relationships in the data. Which, of course, in many applications is a key
issue. We explore the potentials of Bartlett correction of two cointegration
test statistics. The idea is to multiply the test statistic by a correcting factor
derived from an asymptotic expansion of its expectation. As a consequence,
the reference distribution should then provide a closer approximation to the
resulting adjusted statistic in comparison with the unadjusted statistic. In
a simple bivariate framework we derive a likelihood ratio test, as well as a
first order approximation thereof, for testing the null hypothesis of no coin-
tegration. Suitable Bartlett corrections for the two tests are suggested and
using Monte Carlo simulation we evaluate the effectiveness of the proposed
methods.
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1. Introduction

It is probably fair to say that testing for cointegration, along with the related
problem of testing for the presence of unit roots, has been one of the more fre-
quent exercises performed in applied time-series econometrics, or even applied
econometrics for that matter, since the introduction of cointegration analysis in
the early 1980s. In this paper we are concerned with small sample properties
of cointegration tests. Available tests are generally asymptotic in the sense that
they rely on the convergence of the distribution for the test statistic to some
known limit distribution as the sample size goes to infinity. However, Monte
Carlo simulation has demonstrated the inadequacy of such approximations for
finite samples, i.e. considerable size distortion has typically been found, see e.g.
Banerjee, Dolado, Hendry and Smith (1986), Cheung and Lai (1993) and Jacob-
son (1995). Figure 1.1 below provides an illustration of the size problem for the
likelihood ratio cointegration test subsequently considered in the paper. We see
that for a small number of observations the empirical test size is more than twice
the desired nominal size. As the number of observations increase the problem is
gradually reduced. Hence, for practical purposes asymptotic inference in small
samples can be completely misleading and result in false conclusions regarding
the presence of long-run relationships in the data. Which, of course, is a key issue
in many applications.

One could describe the problem as one of lacking coherence between the test
statistic and its reference distribution and there are, in principle, two distinct
routes to alleviate the problem; either for given test statistic correct the reference
distribution, or, for given reference distribution correct the statistic in use. (A
third possibility, somewhat less serious and certainly less appealing, is to postpone
the analysis in wait for a sufficient sample size to accrue!!)

Thus, in the former case we would consider a corrected distribution for the test
statistic at hand, that is replace the critical values of the limit distribution with
such that will generate an actual test size closer to the nominal one. Analytically
this amounts to Edgeworth expansions, or related techniques, of the distribution
function, see Barndorrf-Nielsen and Cox (1989) or Hall (1992) for overviews.
Bootstrap hypothesis testing is a plausible numerical alternative, which in fact

can be expressed and interpreted in terms of Edgeworth expansions as shown



Figure 1.1: Monte Carlo estimated empirical sizes for a 5% nominal sized likeli-
hood ratio cointegration test, 7' = 5,...,50.
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by Hall. Although the consistency of bootstrapping in the unit root context
is still unclear, Harris (1992) has evaluated bootstrapping of Dickey-Fuller unit
root tests and Giersbergen (1996) has recently presented promising results for
the multivariate maximum likelihood trace test for cointegrating rank. Larsson
(1995) uses saddlepoint techniques to approximate small sample corrections of
the lower tails of the distributions for some unit root test statistics.

The second route involves correction of the test statistic so as to make the
known limit distribution an acceptable approximation. This is the route we will
adhere to in the current study and we will, specifically, evaluate what is widely
known as Bartlett correction applied to two tests of the null hypothesis of no
cointegration against a cointegrating alternative: (i) a likelihood ratio test and (ii)
a closely related test which is given by a Taylor expansion of the likelihood ratio
test. However, due to the intricate analysis involved we do not treat the general
case of a p-dimensional system allowing for a cointegrating rank r,1 < r < p,
as suggested by Johansen (1988,1991). Rather, the paper can be seen as an
extension of the univariate analysis in Larsson (1994), where Bartlett corrections
for unit root test statistics are obtained, to a restricted bivariate analysis. Thus,

we derive and analyse the likelihood ratio test in a simple two dimensional data



generating process (DGP) which has been analyzed by i.a. Banerjee et al. (1986),
Kremers, Ericsson, and Dolado (1992) and Campos, Ericsson, and Hendry (1996).
In particular, Kremers et al. (1992) discuss the properties of two approaches to
cointegration testing; the static residual-based test due to Engle and Granger
(1987) and the dynamic error correction model t-test suggested by Banerjee et
al. (1986).

We will close this section by a brief presentation of the idea underlying Bartlett
correction. The next section covers maximum likelihood estimation and testing;
test statistics and asymptotic distributions. In section 3 we present results on
Bartlett corrections for the likelihood ratio and the approximated cointegration
tests. A Monte Carlo experiment is performed in section 4 to evaluate the ef-
fectiveness of correcting the two tests. We will also present numerical results of
the methods proposed in section 3, as well as comparisons with simulation based
estimates of quantiles and expectations for the cointegration test.

Bartlett’s (1937) pioneering paper conveyed the following idea. Consider a
test statistic Cp that converges to Cs,, with error terms of orders 7!, say, or
smaller. Cy has a known distribution which provides the critical values for the
asymptotic test. Now, we would like to obtain a transformed test statistic C7,
such that C% converges to C, and only with error terms of order 72 or less at
play. In other words, we want a correction of Cp which eliminates the influence of
error terms of orders T, Such a correction could be based on the expectation of
Cr, recognizing that EC—C?T tends to EC#'; as T — oo, and hence Cr = EC’TEC#';.
Since EC7 is not known in general, the method hinges on the existence of a series

expansion under the null hypothesis

R 1
ECT—ECOO—F?—FO(E),

where R is either known or can be consistently estimated. Ignoring the O(T—2)-
term, we get

Cr~ (BCy + ) L

T~ o0 T ECOO ’

and the Bartlett corrected test statistic is

R, -1
c;:cT<1+?°> ,

where Ry = %. Under mild regularity restrictions, Cy is typically x2-distributed

for the likelihood ratio test statistic and in such ”standard” cases the correction



has been shown to correct not only the first, but also higher moments and frac-
tiles (cf. Jensen (1993) and references therein). However, ours is not a ”standard”
case, and in fact, Jensen and Wood (1995) have shown that in the AR(1) case
Bartlett correction only corrects the first moment. It is very likely, judging from
Jensen and Wood, that the optimal correction for higher moments and fractiles
in the cointegration case is not Bartlett but some other. Nevertheless, according
to the Monte Carlo results in Nielsen (1994) for a multivariate cointegrated DGP,
a simulation based Bartlett correction (i.e. ECy above is estimated by use of
simulation) improves the asymptotic approximation considerably. Moreover, the
method is relatively easy to implement, i.e. in relation to other approaches. For

a slightly different application of a similar Bartlett-type idea, cf. Lucas (1996).



2. Maximum likelihood estimation and testing; test statistics and

asymptotic distributions

In this section we will begin by presenting the framework for our analytical and
simulation based results, i.e. a first-order bivariate data generating process. Next
we consider the log likelihood function and the implied maximum likelihood esti-

mators, and, subsequently, likelihood ratio testing for cointegration.

2.1. The data generating process

The DGP in (2.1) has been frequently analyzed in the literature in various, slightly
modified forms. Recently Kremers et al. (1992) have used it for investigation of
the power functions for single-equation cointegration tests, and Campos et al.
(1996) evaluate cointegration tests in presence of structural shifts. In its error

correction representation the process can be written

Ays = alAz + b (ye—1 — Aze—1) + &,
(2.1)
Azt = Uy,
where {&;:} and {u:},t = 1,2,... are independent sequences of independent ran-

2

dom normal variables with mean 0 and variances 02 and o2,

respectively, and
yo = zo = 0. The parameters a and b are unknown with the restrictions 0 < a <1
and —1 < b < 0, whereas X is assumed to be known. Both variables are inte-
grated of order one and when the error correction coefficient b is strictly less than
zero the two are cointegrated with cointegrating vector [I  — A]. As pointed out
by Campos et al. (1996), a and A can be interpreted as short- and long-run

elasticities, with a typically smaller than A.

2.2. The maximum likelihood estimators

Having taken observations up to time 7' and defining z; def yr — Az, Vt, the log

2

likelihood function I (a,b,02,02) can be written

[ (a,b,a?,o’%) = —% log (27) — % (log o2 + log 03) - (2.2)

1
_m Z (Ayt —_ CLAZt — bCEt,l)Q — m Z (AZt)Q 5

u



where the summation, here and henceforth, goes from ¢ = 1 to 1" unless otherwise
is explicit. Differentiating in (2.2), we get the following relations for the maximum

likelihood estimates @, b, 5> and G2, where

~def 20 A2 AY:

a 2.3
STV 2
is the maximum likelihood estimator of a if b = 0:
a = ao —BZLlAf, (2.4)
> (Az)
8 _ thfl (Ayt — aAzt) (2 5)
Sag ’ '

o 1 N ~ 2

o, = ? Z (Ayt - CLAZt — bLEt_l) s (26)
9 1

h=7 S (Az)?. (2.7)
Thus, from (2.4) and (2.5), we find the estimator of the error correction coefficient
b in (2.2) as given by:!
/b\ _ Z LEt_lAyt Z (Azt)Q — Z AZtAyt Z Ilft_lAZt
Y X (Ax)" = (Cae1da)’

(2.8)

2.3. Likelihood ratio testing

Next we consider the likelihood ratio test for cointegration in (2.2), i.e. a test of
the null hypothesis Hy : b = 0 (no cointegration) against the alternative H; : b < 0
(cointegration). For the sake of simplicity and with no loss of generality, we
will from now and onwards assume unit variances for the error processes, i.e.
2 =02 = 1. Let us first define the following three random walks: S ; of S e,
St def St w; and S def St v, where vy def (a—Nug+e,t = 1,...,T,

)

g

and the corresponding Wiener processes W,k = 1,2,3, such that T*1/2,5’,5J€
converges to Wy as T — oo,t’ = t/T. The theory of weak convergence (cf.

Billingsley, 1968) implies that, under Hy,

1 1
1 1 d
T thflAyt =7 Zstfl,S (au; — &) 4 a/Wt,Sth,Q + /W/},3dWQ,17 (2.9)
0 0

!For a different presentation of these results, see Banerjee and Hendry (1992).



%Z(Azt)Q _ % w2 (2.10)
1 1 2 d
T ZAztAyt =7 (aZut + Zstut) Sa (2.11)
1
1 1 d
=i = 3 S / Wy 3dWyo, and finally (2.12)
0
1
1 2 1 2 d 2
T2 th—l T 72 ZSL‘—I,B - /VVt,:adt (2.13)
0

as T — oo, where -5 signifies weak convergence. Hence, equations (2.9)-(2.13)
in conjunction with (2.8) and some simplification give the following convergence

result:?

1
J Wi 3dW; 1
+op(1) Sl as T — oo (2.14)
[ Wisdt
0

Th— =3 S 138

1 2
77 2.5 13

Now, turning to the likelihood ratio test, Qp say, it follows that

p {2 Ylon-man) -2 Yawr)
e

~ - o o ~ -z
0r (03,0) 20, 0 20y, - <030> 2
= N - /\2 )
1 D g e} AT
&
and so )
“2log Qr = —T'log <A"2 > : (2.15)
0-5,0

where 62, = T~ Ay — GpAz)? is the maximum likelihood estimate of o2
€,0 Y €

under the null hypothesis. It follows from (2.4)-(2.6) that

(C @1 (Ay — aAz))?
th{l

2c.f. Billingsley (1968) and the corresponding result for ¢ statistics in Banerjee and Hendry

T52 =3 (Ays —adz)* —

(1992). The notation X; = o, (T%), where {X;} is a sequence of random variables, is taken to
mean that T7*X; tends to zero in probability as T" — oo. Replacing o, with Op changes the

interpretation to: T~ “X; tends to a non-degenerate random variable as T' — oo.



and furthermore, by (2.4) and (2.5),

2
ST (Ay —adzn)* =Y ((Ayt — oAz +E%M> -

=3 (Ayi— aoAzt)2+82—(th‘1AZ;)2,
> (Az)
and so, ,
;20 —1- % (2.16)
where
My =T ( Caea By —802)” 3 (Baiba) ) (2.17)
S (Ay —aodz)? Yoty Y (Ay—d0Az)’ Y (Az)? )

a quantity which we will refer to as the approximated test statistic. By Taylor

expansion (we subsequently show that My = O, (1)), (2.15) and (2.16) yield

_ Mj »
~2log Qr = Mr + - + 0y (172 (2.18)
The lemma below gives representations of the approximated and the likelihood

ratio test statistics.

Lemma 2.1. Under Hy : b= 0 (no cointegration) in (2.1),

1
Mr = Zr + 7 Re +0p (T2, (2.19)
where (75 )2
> Si-138
Zp = 7\ E5185)” 2.20
g 25? > St2—1,3 ( )
and
with
RV 4t > St71,35t22: St-1,3Us Sew  and (2.22)
> Si 13
2 2
Rgg) def (30 St-1,380)" (2 52—1731“) ) (2.23)
(2 5%15)
Furthermore,
2og O = Zn 4 L (R + L2 7! 2.24
—2log Qr = T+T<T+§ T>+Op( ) (2.24)



The quantities ZT7R§}) and Rg) are all Op (1) . O
Remark 1: Tt can be shown that, if a is assumed known, the approximated test
statistic actually equals Zr given in (2.20). a
Remark 2: Rg}) in (2.22) may appear to be of order v/T. However, it can be
shown that 3 ;1 is asymptotically uncorrelated with 3 S;_1 364, > Si—1,3u; and
357 | 3, implying that Rg} ) is of a smaller order (cf. Lemma 4.2 of Larsson (1994)
and Theorem 3.1 below). O
Proof: We have from (2.4) that

(X 1A%)°

r—1 (Aye —alz) = x—1 Ay — ag Te—1Az +Z )
> > > > (Az)?

and since Ay; = auy + &4, (2.3) and (2.9)-(2.12) yield
1 .
T (Z 1Ay — ap Zévt—lAZt) =

1 T (aSuf + Y euw) 1
=T ZSt—m (aug + &) — % S T Z St-1,3ur =
1 1> gu
= T Zsthgst — ?% Zstfl,Sut-
¢
(Note that since Y e;u; has mean 0 and variance T, it follows from (2.10) that
Seuy/ S u? is o, (1) .) Hence, from (2.10), (2.12) and (2.14),

(% th,l (Ay — 6Azt)>2 = (2:25)

2 2
1

1 1 Zstut 1 %Zslf_l 3E¢ (T Z‘S’tfl,?put)
=|= ) Si—138t— = St_1,3us+— 7 (1+o0p, (1))| =
72 S g LS e T gy (T

2
= (% ZSLL_L:;&) + %TT + 0p (T*l) ,

def o2 St—1,36t (1 > Si—136t >, Si—1,3u
o SR (15 ) (- e+ ESe R man ),
(2.26)

10



which is O, (1) . Furthermore, by (2.3),

(X Az Ay,)?

Ay, — GpAz)? = Ay)? —
> (Ay 0Az)" = (Ay) S (Az)?

7

and so, since
Z (Ay,)? = a? Zu? + QaZstut + Zs?,

(2.10) and (2.11) imply, after simplification

1 ~ 2 1 o 1 (Teaw)?
T Z (Aye — apAzy)” = T Zst - ?—Z uz (2.27)

where it should be observed that
1 2 g
T (Z stut) —1 asT — oo, (2.28)

so by (2.10), the second term in the r.h.s. of (2.27) is T-1 4+ O, (T 2). Thus,
plugging in (2.10), (2.13), (2.14), (2.25), (2.27) and (2.28) into (2.17), we get

My = 122 L
T \r&sTT

(358 132) +drr 1 (BT Scasm) (35S 1au)

~1
X 1 2 1 +op (T77),
77 2 5752—1,3 T (% SS7 3) T S uj ( )
and so by Taylor expansion,
1 _
My = Zr + —Rr +0, (T7"),
with Z7 as in (2.20), which clearly is O, (1) , and
(l >S5 13€t)2 (iZSt 13Ut)2
T ] - L
Ry = Zr+ 4 d a =

- 2 il 2
(% ZE%) (% 25371,3) (% Zs?) (% > 53_173) T 2 Ut
= Zr —2RY + RY,
which is (2.21), with Zp, RY and R as in (2.22) and (2.23), because of (2.10)
and the fact that 7713 & L 1asT — 00, and obviously all these terms are

Op (1) . Finally, (2.24) follows directly from (2.18) and (2.19), which completes
the proof of the lemma. a

11



3. Bartlett corrections

In order to find the Bartlett corrections for the approximated and the likelihood
ratio test statistics it is necessary to calculate the asymptotic expectation of Zp
to the second order, i.e. including a T~ term, as well as first order asymptotic
expectations of Z7, Z%., Rgpl ) and Rg ), Analytical representations of the expecta-

tions of interest are listed in the following theorem.
Theorem 3.1. Using the Laplace transform

()0 (S,u,v,w,r) déf E (e{—szkf_l’g—uz‘e%—’uZSt_l,gst—'wZSt_l’gut—rZEtut}) ,

we may represent the expectations as:

[o elNe o] 2
E (Zy) :T//%go(s,u,v,w,()) dsdu (3.1)
00
E (Z%) = TQ//suﬁcp(s,u,v,w,O) ds du (3.2)
0 0 v
E (R(Tl)) — _/8v8uarg0(s,0,v,w,r) ds (3.3)
0
@y_ [. 0
E (RT ) = /SWSD(S?O?’UJ'U)O) ds (34)

0
where the derivatives are taken at {v =0,w = 0,r = 0} . Furthermore, the

derivatives are given by

9? 1 1 _ 1 C1\2
@%(s,u,v,w,r) = T (Z tr 2 (PO 1H1) +5tr ((PO 1H1> >> . (3.5)

avgiaw (5,0,v,w,7) = 8\/;7;—130 {or (Po Hy ) tr (Py " H) tr Py Hs ) +

+2 (tr (Py 'Hy ) tr (Py " HoPy ' H) + tx (Py “Ha ) tr (Py "y Py ' Hy ) +
+tr (P Ha) tr (Py ' Hi Py ' Hy ) ) + 8tr (Py Hi Py Ha Py Hs) }(3.6)

12



D e (,0,0m,0) = v (B ) e (R e (B )

1241 2 <(P0_1H1)2> +12tr 2 (Py Hy ) o <<P0_1H1)2> + 48tr <(P0_1H1)4>} ,(3.7)

and
&;figwgo(s,o,v,wﬂ) = Wﬁ {tr
+16tr Py Hy ) tr <PO—1H1 (Po_ng)2> +16tr (Py ' Hy) tr <(P0_1H1)2P0_1H2> +
+4tr(<P 'y ) > ((PO ') >+8tr 2 (P H Py ) +
+16tr ((PO LHy Py Hy ) > +2tr 2 (Py 1 Hy ) tr (<P01H2)2> +

(

)) 2(Py 'Hy) +8tr (Py tHy ) tr (Py YHy ) tr (P PHL Py P Ha ) +

2(PytHy) tr 2 (PytHy ) + (3.8)

+2tr( P

+32tr<(P0 1H1) (PO HQ) )}

where the 2T x 2T block matrix

def Py 2s(a—MN) I
PO = )
2s (a— )\) I PQO

where the T x T matrices P1g = (1 + 2u) Py,

Q; -1 0 0
-1 a; -1 :
0 -1 a;
PiO déf : ) (= 1727
a; —1 0
-1 Q; -1
0 .. 0 -1 1
where a1 =2 (14 s/ (1 + 2u)) :2(1+(a—)\)23)
1 0 0
0 1
e
1
0

13



where the 2T x 2T block matrices

. h —\) R [ 0 h [ 0 h
H o Lem ) S s °
(a - )\) hg 0 hIQ (a - )\) hl h3 0

where the T x T matrices are

-2 1 0 0 -1 1 0 0
-2 1 -1 1
0 1 -2 0 -1
M| ey : ,
-2 1 0 -1 1 0
-2 1 ~1 1
0 0 1 O 0 0 O
2 -1 0 0
-1 2 -1
0 -1 2
hs &
2 -1 0
-1 2 -1
0 0 -1 1
O

Proof of Theorem 3.1: The proof uses the technique of Larsson (1994, 1997) and
i.a. Evans and Savin (1981), Mikulski and Monsour (1994), Le Breton and Pham
(1989) and Abadir (1993). Indeed, via (2.20), (3.1) and (3.2) follow from (3.5)
and (3.7), respectively, by applying the identity

o o0
(xy) ™ = //s”_lu"_le_sm_“ydsdu, n=1,2,
00

setting x = 3 57 1 5,y = 3 &7, multiplying by e ZSg&ﬁeﬁwz‘g‘*muﬁrzEt“t,
taking expectations and differentiating w.r.t. v. In a similar fashion, (3.3) and
(3.4) follow from (2.22), (2.23), (3.6) and (3.8). Moreover

o (s,u,v,w,r) = /.../(271)7T e Adayy ... depadrys .. depo, (3.9)

14



where

AL 3 (@ + (a—Na12)? —ud (201 — 2-11)* —
—v Z (11 +(@—= N xp12) (T —24-11) —
—w Z (wp—11 + (@ = N) @1 2) (T2 — 1 2) —

—TZ ($t,1 - $t—1,1) ($t,2 - $t—1,2) -

1 1
—5 Z (iEt,l - $t71,1)2 - 5 Z (xt,z - $t71,2)2
1 /
- 2P
2& xZ,
where 2/ def (115,271,212, -.,272) and P is a 2T x 27" block matrix

i P P
Pd:f 1 3 7
P, Py

where Py P> and P3 are T x T matrices

pia pi2 0 ... 0
Pis Pi1 Pi2
0 pi3s pa
RE . i=1,2,3,
pii piz O
Pi3 pPi1 Pi2
0 o 0 pi3 pa

where p11 =2(1+s+2u—v), pr12 =p1s = — (1 +2u—v), piy = 1 + 2u, po; =

2<1+3(G_>‘)2—w(a—>\))7 p2 = pag = —(L—w(a—=N), pua = 1, ps1 =

2s(a—A)—v(a—A)—w+2r,pso=w—r,pzz=v(a—A) —r and pgs =1
Now, from (3.9),

1
s,u,v,w,r = 9 310
o ) Jdet P (3.10)
and it turns out to be convenient to represent the P matrix as
P=PFy+H, (3.11)
where
H=vH; +’UJH2+T‘H3, (312)

15



with Py, H1, Hy and Hs as in the theorem.
Furthermore, (3.10) and (3.11) imply that

o (s,u,v,w,r) = \/Wf fe{_'lem}\/(WPo(Qw)

——X’HX)

I’

1
‘6{72w Hx}d.il,‘Ll . d.CL’TJdLELQ . dLUT72 = mE (6

taking expectation with respect to the 27" dimensional random vector X, which
is normally distributed with covariance matrix Fy 1A Taylor expansion of the

exponential yields

1

1 1 1 1
Jdet By < T gag™2 T gag 8 T gayy e T > ’
(3.13)

where m; = ( (X'HX) Z) i =1,2,... are moments of a Wishart distribution,
(1978). In particular

@ (s,u,v,w,r) =

as calculated by Magnus

my=tr? (P 'H) +2tr ((PolH)2> , (3.14)

mg =t * (P H) +6tr (P H ) tr <(PO_1H)2> +8tr ((Po_lH)3> (3.15)
and
my = ' (P H) +32tr (P H) tr <(P0—1H)3> +12tr? ((Po_lH)2> +
+126r? (B H) tr <(P0_1H)2> +48tr <(P0_1H)4> (3.16)

Since v, w and r enter these expressions only through H = vHy + wH» + rHs,
(3.14)-(3.16) are polynomials in v, w and r, and by inserting these polynomials
into (3.13) it is possible to identify the ¢ derivatives of Theorem 3.2. This is how
(3.5)-(3.8) are obtained, and the proof is completed. O
The results of Theorem 3.1 can be used for numerical computations of the
expectations in (3.1)-(3.4) for a fixed T, and via Lemma 2.1 and Theorem 3.1,
we can obtain approximate expectations of the approximated and the likelihood
ratio test statistics. As an example, consider the calculation of (3.1):
1. Compute (3.5) for a (sufficiently large) grid of s and u values.

2. The mean taken over this grid gives an approximation of the integral. This

16



approximation can be improved by refining the grid and by using numerical ex-
trapolation techniques, see e.g. Dahlqvist et al. (1974).
Handling (3.3) and (3.4) is simpler because we will only need a grid of s values. In
the next section we will present numerical results and a comparison with Monte
Carlo simulation based results.

In order to reduce the dimensionality of the matrices involved in the calcula-
tion of (3.5) (and hence, in the double integral of (3.1)), the following corollary

is useful.

Corollary 3.2.

2
1
%gp (s,u,v,w,0) = (3.17)

\/ det ﬁlo det A2

1 1
. (Z (trCiy +2(a— N (tr Cra + tr C5,))? + 3 tr (0121> + (a — ) tr (C11C12) +

5 (@ = N (O +(a = Nt (€, o)+ a = X)tr (€5, o)+ (a = W (C37))

where the derivative is taken at {v =0,w =0} . Here, C1; def Biihy, Cio def

def def def def 1 def

Bishs, Co1 = Bothy, Cae = Baghg, Cfy = Buhhy, C3; = Bahh, Pyt =
Bi1 Bio

and the By; (i,j = 1,2) matrices are T x T, and given by Bi1 =
B21 B

AT, Biy = —2s(a— NPy I-Ay", By = —2s(a— \) Pig' I_A7", By = A7,
with A} % Prg—4s? (a — \)? [Py I and Ay & Pyy—452 (a — N2 I P,y I. O

Proof: The result follows directly from (3.5) and standard linear algebra. O
Remark 1: By inspection of (3.17), it is seen that the expectations in (3.1) and
(3.4) are symmetric functions of (a — ), (This turns out to be true also for the
expectation in (3.3).). This is an intuitive consequence of the model (2.1), since a
change in the sign of (a — A) corresponds to a change of sign for the {u;} sequence,
and clearly that does not affect the probabilistic properties of the model. Also,
note that for a — A = 0, the results of Theorem 3.1 and Corollary 3.2 specialize
to the results in Larsson (1994, 1997). O
Remark 2: The methods in Larsson (1994, 1997) could possibly be developed fur-
ther in order to obtain more tractable integral expressions in (3.1)-(3.4). An issue

for future work on the subject. a
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Remark 3: As pointed out by Nielsen (1995), the quantities > e? and Zp are

independent if @ — A = 0. Hence, in this special case, we have for n > 1,

((22)) - ((52) Ve - ol

XS5 ™7 (%)

simplifying (3.1) and (3.2) to
E(ZT) = /W@ (S,’LL,U,U),O) ds
0

and

T ot
2\ _
E(ZT) = +2/88v4<p(s,u,v,w,0)ds,
0

respectively.
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4. Numerical evaluation

The purpose of this section is to evaluate the performance of the approach sug-
gested in the previous section. We will, in particular, examine the size distortion
problems for the likelihood ratio cointegration test in (2.15) and the approximated
test in (2.17). Furthermore, we will calculate the expectation of Zy, Z2 Rgpl ), and
Rgg), for sample sizes T'=5,...,50 and a = 1.0 and a = 0.5 using the numerical
method. A comparison of the numerical results with simulated counterparts will
give guidance on the appropriateness of the suggested method. Finally, simula-
tions of the Bartlett corrected tests will show to what extent the size problem
can be alleviated in this particular context. It is useful to disentangle this issue
in two. First, what is the effect of correcting an oversized test by its expecta-
tion, i.e. does the Bartlett idea hold? We evaluate this by using a simulation
estimated expectation as a basis for the Bartlett correction. Second, how does
the Bartlett correction based on the proposed numerical method perform? In ef-
fect, we will, using simulation, estimate empirical sizes for the uncorrected tests,
denoted by —2log Q7 and My, and compare with empirical sizes for simulation
based corrections, —2log Q?C”m and ]V[:,@C”m, as well as numerically corrected
tests, —21log QP and MEC.

All calculations have been carried out on a Digital Venturis 5120 running at
120 MHz. The code is in double precision FORTRAN and the experiments involve
R = 1,000,000 replications throughout, except for the asymptotic distributions
which involve T' = 10, 000 observations and R = 500, 000 replications. The pseudo
N(0,1) variates are generated using the ISML routine DRNNOF. In order to
reduce the Monte Carlo random variability across experiments, a sample of size
T = 50 is generated in each replication and test statistics for all experimental
sample sizes are calculated recursively on that sample.

Monte Carlo simulation estimates of the empirical sizes for the likelihood ratio
test and the approximated test require asymptotic critical values, and hence, we
must first simulate the asymptotic distributions. Tables Ala and Alb, show
that the asymptotic distribution is not invariant to a. Moreover, as predicted by

Lemma 2.1, the asymptotic distributions of —2log Qr, Z7, and M7 are indeed
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equivalent. The numerical method gives an asymptotic £Zp of 1.142 when a = 1,
and is hence in agreement with the simulation result in Table Ala.

Tables A2a and A2b confirm the accuracy of the numerical representations
(3.1)-(3.4) in Theorem 3.1. When comparing with the simulated moments, the
standard errors of the latter imply confidence intervals that in general will cover
the numerical expectations. It is only for the cases of EZZ and larger sample
sizes that a slight divergence occurs.

Now, to the heart of the matter. Tables A3a and A3b, Ada and A4b, and
Figures A1-A8 provide partly overlapping evidence on the size behaviour of the
unadjusted and adjusted tests. Apparently the parameter a makes little difference
and we can hence concentrate on the results for a = 0.5 in Figures A1-A4. The two
unadjusted tests are both distorted in size, but in opposite directions. Whereas
the likelihood ratio test is oversized for small T, and severely so for a 1% nominal
size, the approximated test is undersized, in particular for a 1% nominal size
where the null remains unrejected throughout 1,000,000 samples for the very
small T'. The effectiveness of Bartlett correction is also different for the two tests.
In the case of the likelihood ratio test we find that the numerical correction is
at best of no value, whereas the simulated correction is almost perfect. In the
case of the approximated test the roles are reversed, the simulated correction only
marginally reduces the distortion problem while the numerical correction has an
effect for the 1% nominal size.

Summarizing the numerical evidence we find that the idea of Bartlett correc-
tion, i.e. adjusting by using the expectation of the test statistic, functions very
well for the likelihood ratio test but not for the approximated test. Unfortunately,
the numerical approach suggested in section 3 proves to be ineffective, whereas
basing the correction on a simulated expectation yields a remarkably accurate
likelihood ratio test, even for as few observations as 5. The failure of the nu-
merical method can be attributed to the relative impacts of the second and third
terms in (2.18), that is, the first order correction given by the second term does

not overcome the effects from the O (T’Q) error term.
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Appendix: Tables and Figures

Table Ala: Expectation and associated standard error, variance,
and percentiles of the asymptotic distributions of —2log Qr, Zr,
and Mp. T = 10,000, R = 500,000, a = 1.0.

E s.e. \4 50th  80th  90th  95th  99th

—2log@r 1.1395 .0015 1.1765 .604 1.887 2977 4.109 6.822
Zpy 11392 0015 1.1743 .603 1.888 2.980 4.108 6.825
Mr 11393 .0015 1.1752 .604 1.887 2977 4.108 6.820

Table Alb: Expectation and associated standard error, variance,
and percentiles of the asymptotic distributions of —2log Q7, Zr,
and Mr. T' = 10,000, R = 500, 000, ¢ = 0.5.

E s.e. V 50th  80th  90th  95th  99th

—2logQr 1.1125 .0016 1.2108 .550 1.856 2.961 4.121 6.887
Zp 11122 .0016 1.2097 .551 1.855 2.961 4.117 6.888
My 11124 .0016 1.2095 .550 1.856 2.960 4.120 6.884

Table A2a: Small sample expectation for Zr and Z2 evaluated by way
of Monte Carlo simulation (sim) and the numerical method (num).

EZr EZ%
T a num sim s.e. num sim s.e.
10 1] 0.9991 0.9994 .0016 | 2.2909 2.2893 .0070
.51 0.9991  1.0010 .0017 | 2.3873 2.3899 .0075
20 1] 1.0609 1.0582 .0018 | 2.7862 2.7581 .0097
.5 | 1.0469 1.0460 .0019 | 2.8251 2.8099 .0101
30 1| 1.0837 1.0819 .0019 | 3.0039 2.9700 .0110
.5 | 1.0642 1.0661 .0019 | 3.0189 2.9981 .0114
40 1| 1.0944 1.0962 .0019 | 3.1287 3.1009 .0120
.5 | 1.0715  1.0769 .0020 | 3.1316 3.0978 .0121
50 1] 1.0996 1.1039 .0020 | 3.2116 3.1825 .0125
.5 | 1.0740  1.0825 .0020 | 3.2071 3.1640 .0126

Table A2b: Small sample expectation for Rg} ) and Rg? ) evaluated by way
of Monte Carlo simulation (sim) and the numerical method (num).

ERY ERY
T a num sim s.e. num sim s.e.
10 1] 0.9996 0.9994 .0057 | 0.9996 0.9951 .0038
51 0.9971  1.0027  .0057 | 0.9599 0.9632 .0038
20 1] 1.0622 1.0583 .0075 | 1.0623 1.0559 .0040
5| 1.0423  1.0323 .0074 | 1.0124 1.0077 .0039
30 1| 1.0866 1.0743 .0089 | 1.0869 1.0792 .0041
.5 | 1.0586 1.0509 .0087 | 1.0349 1.0333 .0040
40 1| 1.0995 1.0998 .0101 | 1.0998 1.0968 .0041
.5 | 1.0676  1.0692 .0099 | 1.0474 1.0485 .0040
50 1] 1.1075 1.1024 .0112 | 1.1079 1.1038 .0041
.5 | 1.0730 1.0657 .0109 | 1.0554 1.0487 .0040

23



Table A3a: Percentiles associated with the simulation based Bartlett corrected and

the numerically Bartlett corrected likelihood ratio test, in comparison with the
simulated asymptotic and small sample percentiles.

T
10

20

30

40

50

asymp
4.109
4.121
4.109
4.121
4.109
4.121
4.109
4.121
4.109
4.121

95:th percentile

simul
4.816
4.891
4.376
4.436
4.270
4.305
4.270
4.234
4.235
4.208

sim.BC
4.768
4.901
4.341
4.426
4.244
4.303
4.205
4.250
4.190
4.223

num.BC
4.016
4.128
4.077
4.135
4.088
4.127
4.087
4.113
4.081
4.097

asymp
6.822
6.887
6.822
6.887
6.822
6.887
6.822
6.887
6.822
6.887

99:th percentile
simul.

8.186
8.352
7.372
7.457
7.211
7.284
7.152
7.142
7.069
7.095

sim.BC
7.916
8.191
7.209
7.396
7.046
7.191
6.981
7.103
6.956
7.058

num.BC
6.667
6.899
6.768
6.911
6.788
6.897
6.786
6.874
6.775
6.847

Table A3b: Percentiles associated with the simulation based Bartlett corrected and
the numerically Bartlett corrected approximated test, in comparison with the simulated

asymptotic and small sample percentiles.

T
10

20

30

40

50

asymp
4.108
4.120
4.108
4.120
4.108
4.120
4.108
4.120
4.108
4.120

95:th percentile

simul
3.822
3.868
3.930
3.978
3.980
4.010
4.050
4.018
4.061
4.035

sim.BC
4.041
4.138
4.014
4.084
4.030
4.081
4.045
4.086
4.061
4.092

num.BC
3.603
3.686
3.825
3.873
3.908
3.940
3.946
3.968
3.965
3.977
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asymp
6.820
6.884
6.820
6.884
6.820
6.884
6.820
6.884
6.820
6.884

99:th percentile
simul.

5.589
5.662
6.166
6.224
6.410
6.467
6.549
6.541
6.590
6.615

sim.BC
6.709
6.915
6.665
6.824
6.690
6.819
6.715
6.827
6.742
6.838

num.BC
5.981
6.158
6.351
6.472
6.487
6.583
6.551
6.630
6.582
6.646




Table A4a: Estimated sizes for the uncorrected likelihood ratio test, —2log Qr, the
numerically Bartlett corrected likelihood ratio test, —2log QEC, and the simulation
wise Bartlett corrected likelihood ratio test, —2log QE“*"™. Nominal test sizes are

5% and 1%.

—2logQr  —2logQBCsim  _2]og QBC

T a 5% 1% 5% 1% 5% 1%
10 1 |.0723 .0191 | .0518 .0114 | .0757 .0206
b5 [ .0734 .0194 | .0501  .0107 | .0732 .0193
20 1] .0582 .0133 | .0511 .0107 | .0593 .0137
5[ .0590 .0136 | .0501 .0104 | .0586 .0134
30 1] .0551 .0122 | .0510 .0107 | .0557 .0124
b5 .0553 .0123 | .0499 .0105 | .0551 .0122
40 1 .0537 .01v7 | .0508 .0107 | .0544 .0119
5[ .0536  .0155 | .0497 .0102 | .0538 .0116
50 1] .0530 .0155 | .0505 .0106 | .0539 .0118
b5 .0531 .0112 | .0499 .0102 | .0538 .0115

Table A4b: Estimated sizes for the uncorrected approximated test, My, the numerically
Bartlett corrected approximated test, ]V[QEC, and the simulation wise Bartlett corrected
approximated test, ]V[IECS””. Nominal test sizes are 5% and 1%.

—]\/-[T N[j]?C’sim ]\/[,JEC'
T a 5% 1% 5% 1% 5% 1%
10 1| .0400 .0022 | .0423 .0026 | .0602 .0065
5| .0411  .0024 | .0404 .0023 | .0581 .0058
20 1| .0444 .0059 | .0473 .0067 | .0540 .0086
b | .0451 .0061 | .0462 .0063 | .0535 .0084
30 1] .0463 .0074 [ .0487 .0081 | .0527 .0093
5| .0465 .0075 | .0477 .0078 | .0522 .0092
40 1| .0471 .0081 | .0491 .0087 | .0523 .0097
5| .0471 0080 | .0481 .0083 | .0519 .0094
50 1| .0478 .0087 | .0492 .0091 | .0523 .0101
b | .0478  .0085 | .0486 .0087 | .0524 .0099
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Figure Al: Monte Carlo estimated empirical sizes for —2log Qr, —2log QZC*" and
—2log QEC. The nominal size is 5%, a = 0.5, T =5, ..., 50, and the number of replica-
tions is 1, 000, 000.
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Figure A2: Monte Carlo estimated empirical sizes for —2log Q7, —2log QZC*" and
—2log QEC. The nominal size is 1%, a = 0.5, T =5, ..., 50, and the number of replica-
tions is 1, 000, 000.
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Figure A3: Monte Carlo estimated empirical sizes for Mr, M
nominal size is 5%, a = 0.5, T = 5,...,50, and the number of replications is 1,000, 000.
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Figure A4: Monte Carlo estimated empirical sizes for My, MECs™ and MEBC. The
nominal size is 1%, a = 0.5, T =5, ..., 50, and the number of replications is 1,000, 000.
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tions is 1,000, 000.

Figure A5: Monte Carlo estimated empirical sizes for —2log Qr, —2log
—2log QEC. The nominal size is 5%, a = 1.0, T =5, ..., 50, and the number of replica-
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Figure A6: Monte Carlo estimated empirical sizes for —2log Q7r, —2log QZC*" and
—2log QEC. The nominal size is 1%, a = 1.0, T =5, ..., 50, and the number of replica-
tions is 1,000, 000.
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Figure A7: Monte Carlo estimated empirical sizes for My, MECsim and MEC. The
nominal size is 5%, a = 1.0, T =5, ..., 50, and the number of replications is 1,000, 000.
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Figure A8: Monte Carlo estima
nominal size is 1%, a = 1.0, T =

ted empirical sizes for My, MEBC*™ and MEC. The
5,...,50, and the number of replications is 1,000, 000.
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