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Abstract

In this paper I present two new Lagrange multiplier test statistics designed for testing the null
of GARCH(1,1), against the alternative of asymmetric GARCH. For one test the alternative is the
generalized QARCH(1,1) model of Sentana [1995], and for the other the alternative is the logistic
smooth transition GARCH(1,1) model of Hagerud [1996], and Gonzalez-Rivera [1996]. In the study
I present small sample properties for the two statistics. The empirical size is show to be equal to the
theoretical for reasonable sample sizes. Furthermore, I show that the power of both tests is superior
to that of the asymmetry tests proposed by Engle and Ng [1993]. This is true even if the true data
generating process is not the GQARCH or LSTGARCH model, but any of the models, EGARCH,
GJR, TGARCH, A-PARCH, and VS-ARCH. Thus, the two tests are in fact tests for general GARCH

asymmetry.
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1 Introduction

To estimate the unknown parameters of a model in the ARCH/GARCH class, iterative numerical meth-
ods are very often required. These procedures are time consuming. Furthermore, if the model in question
explains the data badly, the estimation might not converge. Therefore, it is essential to have reliable spec-
ification tests. These tests give the econometrician indications of which models can be the data generating
process of a time series. This paper presents two Lagrange multiplier tests designed to detect higher order
GARCH effects. For both tests, the null hypothesis is the GARCH model proposed by Bollerslev [1986].
In the first test, the alternative hypothesis is the generalized quadratic ARCH (GQARCH) model of Sen-
tana [1995], and in the second test, the alterative is the logistic smooth transition GARCH (LSTGARCH)
model presented by Hagerud [1996], and Gonzélez-Rivera [1996]. The models are only considered in their
most simple structure, when the lag lengths are equal to one, but tests for more complex models can
easily be derived, using a similar method.

In both the GQARCH and LSTGARCH model, the conditional variance is asymmetric in the sign of
lagged innovations. Thus, there is a correlation between current conditional variance and lagged returns.
A number of other such asymmetric models have been proposed in the literature. The most common
of these are: the EGARCH models of Nelson [1991], and the GJR model of Glosten, Jagannathan, and
Runkle [1993].

In this paper, results are presented from Monte Carlo simulations performed to investigate the small
sample properties of the two statistics. The empirical size is shown to coincide with the theoretical.
When the power of the tests is examined, it is determined whether the tests can be used to test for the
existence of asymmetry of forms other than those specified in the GQARCH and LSTGARCH models. If
that is the case, this will indicate that the tests cannot distinguish between different forms of asymmetry.
This is naturally a weakness of the tests. However, it might also be an advantage. If a test can detect
other forms of asymmetry, one test can indicate, if the null cannot be rejected, that a large number of
ARCH models can be excluded as the data generating test process of a time series. The other asymmetric
models considered in this experiment are: EGARCH, GJR, TGARCH, A-PARCH, and VS-ARCH. It is
shown that both tests can be used to detect asymmetries generated by these five models.

For plausible parameter values on the data generating process, the empirical power of the tests is
always below 100 percent. Therefore, the relative power of the tests is compared to four other asymmetry
tests proposed by Engle and Ng [1993]. The procedures of Engle and Ng are the most commonly used
tests in the literature. The simulations show that the power properties of the two tests here are superior
to that of Engle and Ng’s tests. The major contribution of this paper, therefore, is the presentation of
two tests for general asymmetry, with superior power properties.

This article is organized as follows. The next section describes the asymmetric ARCH models that
will be considered in the Monte Carlo experiment. Section 3 surveys previous literature on specification
tests in the ARCH environment. Section 4 contains a presentation of the specification tests. Results from

the Monte Carlo experiment are given in Section 5. Finally, Section 6 concludes the paper.



2 Asymmetric GARCH Models

This section presents the GQARCH and the LSTGARCH models, as well as the five other asymmetric
GARCH models that will be considered in the Monte Carlo experiment.! In all the models presented,

and also for the remainder of this article, it is assumed that the return on an asset, r, is generated by
Tt = &t (1)
where ¢; denotes a discrete-time stochastic process with the form
et = zth;/% (2)

where z; ~nid(0,1), and h; will be the conditional variance at time ¢.

2.1 GQARCH

Sentana [1995] introduces the Quadratic ARCH model. The term gquadratic is used since the QARCH
model can be interpreted as a second-order Taylor approximation to the unknown conditional variance

function. The Generalized QARCH(1,1) model is
hy =+ (g1 + aes | + Bhi1, (3)

where v, (, «, and 3 are constant parameters. Positivity of the variance is achieved if a, 8 > 0, and

¢ < 4ary. The model is covariance stationary if a+ 0 < 1. Asymmetry is introduced with the parameter

.

2.2 LSTGARCH

The logistic smooth transition GARCH model is proposed by Hagerud [1996], and Gonzalez-Rivera [1996].
In the LSTGARCH(1,1) model, the conditional variance is assumed to be generated by

he =5+ lan + o F (e-1) €7y + Bhe1, (4)
where F'(.) is a transition function with the form
Feio1) = (1+exp[—feq]) ™" — =, 6> 0. (5)

For positive conditional variance in the LSTGARCH model, it is required that

vy > 0
aq Z 07
/Bi Z 07
1
(e 5] Z §\a2|.

!The EGARCH, GJR and A-PARCH models presented below, are more thoroughly surveyed by Hentschel [1996]. Based
on his Asymmetric Absolute Value ARCH model, Hentschel develops a general GARCH model, which nests a large number

ARCH models. Both symmetric and asymmetric models are nested, but not QARCH and VS-ARCH.



For stationarity of the return process it is required
1
[og — 3 |az| + max(ae,0)] + 8 < 1.

For the smooth transition GARCH process to be defined, it is required that at least one a;; > 0, ¢ =1, 2.
In the LSTGARCH(1,1) model, the level of asymmetry is controlled by the parameters «y and 6.

2.3 EGARCH

The seminal work in the area of asymmetric ARCH is the exponential GARCH model of Nelson [1991].
In the EGARCH(1,1) model, the natural logarithm of the conditional variance follows the process

lnht:’y—&—ﬁlnht_l—kx\zt_l—&—go[|zt_1|—\/2/71'} , (6)

where 7, 0, A, and ¢ are constant parameters, and z; is defined as in (2). For the process &; to be
stationary, it is sufficient that § < 1. Nelson gives three motivations for his model compared to the
standard GARCH model of Bollerslev [1986]: (i) The GARCH model cannot explain the asymmetric
behavior of the conditional variance in asset price returns. (ii) For the conditional variance to be strictly
positive, the parameters of the GARCH models must be non-negative, which is not required in the
EGARCH model.? (iii) In the GARCH model, it is difficult to evaluate whether or no a shock to variance

persists. Persistence of conditional variance in the EGARCH is controlled by the parameter (3.

24 GJR

In the GJR model of Glosten, Jagannathan, and Runkle [1993] the standard GARCH model is augmented
with a term that captures asymmetry. The GJR model is

he =~ + asf_l + wSt__lf:‘f_l + Bhy_1, (7)

where v, a, 3, and w are constant parameters, and S,_; is a variable that takes the value one when
g¢—1 < 0 and zero otherwise. For positive conditional variance, it is sufficient that the parameters v, «,
and (3, and (a+w) are non-negative. For the process ; to be stationary, it is sufficient that a+5+w < 1.

Note that the GJR model (7) will obtain as a limiting case of the LSTGARCH(1,1) model (4), when
the logistic transition function (5), is replaced by the Heaviside function minus one half. In the GJR
model, the conditional variance follows one process when the innovations are positive and another process
when the innovations are negative. In the LSTGARCH model, however, the transition between states is

smooth.

2.5 TGARCH

The Threshold GARCH model is introduced in Zakoian [1994]. In the TGARCH model, it is not the con-
ditional variance, but the conditional standard deviation, oy = hi / ?, that is modeled. The TGARCH(1,1)

2Nelson and Cao [1992] show that the non-uegativity constraint for the GARCH model given by Bollerslev [1986] is only

sufficient for strictly positive conditional variance. They demonstrate that weaker conditions can be found.



model is
— P 8
or=7+a e | —ae 4+ PBoi1, (8)
where ¢ = max(g,0),and e = min(e;,0). For strictly positive conditional standard deviation, it is

sufficient that v > 0, a™ >0, o~ >0, and 8 > 0. The return series is stationary if

[(oﬁ’)2 + (of)z] + 32+ [aF +a7] \/g < 1.

Note that (8) can be reparameterized as

N =

o =7+ ale1| +wS,_ 601 + Boy_1.

Thus, in the TGARCH(1,1) model, the conditional standard deviation has the same functional form as
the conditional variance has in the GJR model (7).

2.6 A-PARCH

Ding, Granger, and Engle [1993] introduce the Asymmetric Power ARCH model. In the A-PARCH(1,1)

model, the conditional variance is given by

B2 =yt a(ler ] —me 1)’ + BhS2, ®)

where v, a, 3, n and § > 0 are constant parameters. Asymmetry is introduced via the parameter n
€ (—1,1). For positive conditional variance, it is required that the parameters v, a, and 3, are non-
negative. Conditions for stationarity are relatively complex, and can be found in Ding, Granger, and
Engle [1993].

The A-PARCH model is a generalization of previous GARCH models. The model includes seven other
models as special cases. For example, § = 2 and n = 0 will give the GARCH(1,1) model. Letting 6 = 2
gives the GJR model. When 6 = 1 the dynamics of the model will be similar to that in the TGARCH
model. Since these models are nested in the A-PARCH model, likelihood ratio tests can be performed
to test the significance of the parameters. Thus, the null of a specific model, against the alternative of

A-PARCH, can be tested with relative ease.

2.7 VS-ARCH

The Volatility Switching model is proposed by Fornari and Mele [1996a]. In the VS model the conditional
variance follows

he = v+ 065?71 + Bhi—1 + §St7111?717 (10)
where
S; = 1 ifeg >0
St =0 if & = 0
St = —1if e < 0,



and v? is defined as £2/h;. The parameters of the model are v, «, 3, and £&. With the series {Stuf}z;l,
Fornari and Mele introduce what they call mean reversion in the conditional variance. v? measures how
much a given squared residual deviates from its expected value, h;, and S; indicates the sign of the
residual. The model, for example, is able to generate data where unexpectedly large negative returns
increase hy, large positive returns decrease h;, small negative returns decrease h;, and small positive
returns increase h;. The level of asymmetry in the model will therefore depend on parameter £, and on

the relative size of residuals.?

3 Previous ARCH Specification Tests

This section is included to introduce the reader to the area of specification tests in the ARCH/GARCH
literature. Readers already familiar with this literature can proceed to Section 4.

In the ARCH(q) model of Engle [1982], the conditional variance is given by the process
q
hy :74—20@'5%*1’ (11)
j=1

where v and «; (j = 1..g) are non-negative constants, with at least one o; > 0. To test the presence of
ARCH, i.e. testing Hp : oj = 0(j = 1..q), against H; : at least one o # 0, Engle proposes a Lagrange
multiplier test. Since the conditional variance is constant under the null, a Lagrange multiplier test is
particularly suitable. Engle shows that the LM statistic can be calculated as T - R2, where T is the
number of observations, and R2 is the coefficient of multiple correlation from the regression of €2 on a
constant and 5%_1,...,5%_(1. Under the null, the statistic has an asymptotic x? distribution with ¢ degrees
of freedom. As noted by Granger and Teréisvirta [1993], McLeod and Lee’s [1983] test of linearity in
the conditional mean against unspecified non-linearity is asymptotically equivalent to Engle’s test of no

ARCH.
In the GARCH(q, p) model of Bollerslev [1986] the conditional variance is given by the process

q p
he=y+Y ajer j+> Bl (12)
Jj=1 Jj=1

where v, a; (j = 1..g) and 3; (j = 1..p) are non-negative constants, with at least one a;; > 0. To test
the presence of GARCH, an LM statistic cannot be derived in the way described by Engle. Bollerslev
[1986] notes that under the null of no heteroskedasticity, there is no general test for GARCH(q, p). This
is because the information matrix is singular if both p>0 and ¢>0. Based on Bollerslev’s finding Lee
[1991] derives a modified LM statistic for Hy: o;j = 3; =0 (j = 1..q, i = 1..p), against H; : at least one
a; # 0 or one B; # 0. Lee shows that this test is equivalent to the test of no ARCH(g). Thus, under
the null of homoskedasticity, the GARCH(q, p) effect and the ARCH(q) effects are locally equivalent
alternatives. Lee notes that with his methods for deriving a modified LM statistic for no GARCH, it

3In Fornari and Mele[1996b], the authors proposed a slightly different VS-ARCH model, in which two extra parameters

are needed.



is possible to derive a test of the null of ARCH(q) against the alternative of GARCH(k1,q + k2), where
k1 >0 and ky > 0.

Tests of the null of linear ARCH as in (11), or linear GARCH as in (12), against different forms of non-
linear ARCH/GARCH, has been proposed by, among others, Bera and Higgins [1992], Higgins and Bera
[1992], Engle, and Ng [1993], Rabemananjara, and Zakoian [1993], and Sentana [1995]. Bera and Higgins
[1992] and Higgins and Bera [1992] discuss testing for ARCH against NARCH (Non-linear ARCH). In the
NARCH model, the conditional variance is, as in the ARCH and GARCH models, symmetric in the sign
of &;. Since the GQARCH and the LSTGARCH models are asymmetric, their test is of less importance
in this context. It is still worth noting that the test of no LSTGARCH and the test of no NARCH, have
the common problem of a non-identified parameter under the null. The methods for solving this problem,
however, are quite different.

Engle, and Ng [1993] present four different LM type tests for linear ARCH/GARCH against asym-
metry. These four statistics will be discussed more thoroughly in Section 5, and a detailed description
of how the tests may be calculated appears in the appendix. In this section, a short introduction to
the four tests is given. The Sign bias test examines the impact of positive and negative shocks on the
conditional variance not predicted by the linear model. This is done by investigating whether, in a linear
regression model, the variable S, ; has any predictive power on squared normalized residuals €2 /hqy,
where hg; is the conditional variance under the null. S;_ is defined as in the GJR model (7). The test
statistic is calculated as a t-ratio in the linear regression model. The other three tests are carried out
using similar methods. The Negative size bias test investigates whether the linear model can explain
the different effects that large and small negative shocks have on the conditional variance. The variable
used for this test is S;_;e;—1. In the Positive size bias test, different effects of large and small positive
shocks are investigated. The variable used for this test is S;' ;e,_;, where S;' | is defined analogously to
S;_1. In the fourth test, the three previous hypotheses are considered simultaneously. In Monte Carlo
experiments, Engle and Ng show that the empirical size and power of the tests are reasonable when the
sample size is 1000.

The TGARCH model (8) is further developed in Rabemananjara, and Zakoian [1993]. They allow o,
to become negative. Thus, o; cannot be considered a conditional standard deviation. The TGARCH(q, p)

model of Rabemananjara, and Zakoian [1993] is

q P q p
o=+ D ajlegl+ Y Bilojl + > i+ B0 (13)
j=1 j=1 j=1 j=1

where e, = min(e;,0) and o; = min(o,0). The null hypothesis for the test of asymmetry in (13) is,
Hyp:aj =8; =0 (j =1.q,i=1.p). To test the null against H, :at least one a; # 0 or one 3;” # 0,
Rabemananjara, and Zakoian derive an LM test statistic. Under the null, the statistic is asymptotically
distributed x? with g + p degrees of freedom. In a Monte Carlo experiment, the authors show that both
the empirical size and power of the test are reasonable for large sample sizes (> 500).

Sentana [1995] presents a number of test procedures that can be used in conjunction with his QARCH

model. To test the null of homoskedasticity against the alternative of QARCH(q), Sentana proposes an



LM test based on the regression model

Et = a0+za1]<€t —j +ZZaQZJEt jEt—i +£t (14)

Jj=11i<j
The hypothesis is: Hy: a1, =a2; =0 (j =1,...,¢,4 = 1,...,q), against H;y : at least one a;; # 0 or one
azij # 0. The statistic is calculated as T - R2 from the regression model (14). Under Hy, the LM statistic
has an asymptotic x? distribution with ¢(g + 3)/2 degrees of freedom.

The tests described in this section are all derived under the assumption that the residuals are distrib-
uted conditionally normal. In practice, this assumption is often not fulfilled. This is particularly the case
when the investigated series contains returns of a traded asset. The problem is carefully investigated in
Wooldridge [1990] and [1991]. Wooldridge points out that when normality does not hold the asymptotic
size of the statistics will be wrong. In the 1990 article, Wooldridge propose a robust version of Engle’s test
of no ARCH(¢g). In the 1991 article, he presents a general procedure for robustifying Lagrange multiplier
tests of the specification of conditional variance. This method is used by Sentana [1995], when he derives
a robust test procedure for the null of ARCH(1), against the alternative of QARCH(1,1). In Wooldridge
[1991], the author also presents a method for performing non-nested hypothesis tests for the conditional
variance.

The two tests presented in this paper are both derived under conditional normality. Furthermore, the
small sample properties are only investigated for normally distributed innovations. However, using the

results of Wooldridge [1991], it would be straightforward to derive robust versions of the tests.

4 Specification Tests for Asymmetry

In this section, the two new test statistics are presented. For both tests, the null is the standard

GARCH(1,1) model, proposed by Bollerslev [1986]
he =~ + el + Bhi_y. (15)
The test of GARCH(1,1), against the alternative of GQARCH(1,1) is formulated
Hy : ¢=0
Hy : ¢(#0.

Given that the residual, &, is distributed conditionally normal, a Lagrange multiplier test statistic for
T / , —1
80 E A A ) RETA[ R
2 | & 2hoe Lo ~— L hot OB | [hot OB
1 6% :| 8ht
X — | =1 = 7, 16
{Z 2hot [hOt oB (16)

oh G S R Lt Y =
i lZB DBy B ha-iy B et_z-],
=1

=1 i=1 i=1

the hypothesis is

where



ho¢ is the conditional variance under the null of GARCH(1,1), 8 is the vector of parameters (v, a, 3, (),
and 3 is the estimated parameter 3 in the GARCH(1,1) model. The derivation of (16) is given in the
appendix. In the appendix, it can also be seen that based on test (16), it is possible to derive the

asymptotically equivalent test T - R? from the regression

on

t—1 571 -1 3L 5 t—1 51 t—1 51
i1 B DB e B ho—i DB e
hot hot ’ hot ’ hot

(17)

Before a complete test procedure is presented, first a problem concerning the estimation of the model
(15) must be considered. Given that the series of conditional variance under the null is estimated with

maximum likelihood, the normalized residuals, vo; = ¢/ h(l){ 27 should be orthogonal to

t—1 3t~ -1 51 o t—1 1
Z¢=1 6 Zi:l B € Zi=1 6 hOt—i
hot hot ' hot

(18)

This should be true independent of whether or not the null is true. However, in practice, exact orthog-
onality cannot always be guaranteed. If orthogonality does not hold, the empirical size of the statistic
might be distorted. To overcome this complication, the customary procedure is to replace vy, with a
quantity that is guaranteed to be orthogonal to (18), (see e.g. Eitrheim and Terésvirta [1996]). The

following procedure will accomplish that:

1. Regress
()
hot
on (18). Let {Et}thl be the series of residuals from the regression. These residuals will by construc-

tion be orthogonal to (18).

2. Regress & on (17). The statistic is set equal T’ - R2 from this regression.

In the Monte Carlo experiments, it was seen that the empirical size of the statistic (16), and its
asymptotically alternative, were slightly above the theoretical significance level. By using the method
described above, it was possible to correct the size. However, it was also found that a slightly simplified

method gave almost the same result. In this method, the vector (17) was replaced by

11
L S B e
’ hot

Base on this conclusion, it is proposed that the null hypothesis of GARCH(1,1), against the alternative
of GQARCH(1,1), should be tested using the following procedure:



1. Estimate a GARCH(1,1) model. Form the vectors

t—1 =1
¢, = {17 Zizl B4 €t—i}

hot
2. Regress
ef
te )
on ¢, and calculate
LM, =T-R? (19)

from the regression.

The test statistic LM, is under the null asymptotically distributed x? with one degree of freedom.
The test of GARCH(1,1), against the alternative of LSTGARCH(1,1) is formulated

HO : 012:0
Hy : a9 #0.

Given that the residual, &, is distributed conditionally normal, a Lagrange multiplier test statistic for

the hypothesis is

/ ~1
1 1 [e? ] Ohy { 1 8ht} [ 1 8ht]’
- I IR B b2 I i
2 {; 2hot |:h0t 80} {; hot O | | hot Ocx
1 E% aht
. {; 2hot [h_ot a ] 804}’ (20)

where

oh, Lt TP el S =1 L
= {Zﬂ DB Y B Flalb)er,
=1
t

—0sy

— t—1
~i—1 ~i—1 e 3
§ B hg 21 B mftz} (21)

hoq is the conditional variance under the null of GARCH(1,1), &/ is the vector of parameters (v, oy, as, 3, 0),
F(g]0) is the value of the transition function at time ¢, and B is the estimated parameter (3 in the
GARCH(1,1) model. The derivation of (20) is done with the same methods used for the derivation of
(16).

The statistic (20), however, is not operational, since the vector (21) is dependent on the transition
function (5), which under the null has a non-identified parameter ¢. Following Luukkonen, Saikkonen,
and Terdsvirta [1988], this problem is solved by making a second-order Taylor expansion of the transition

function, around zero.* The obtained approximation of F(.) is then inserted into formula (4), and this

1A test of GARCH(1,1) against LSTGARCH(1,1) has previously been developed by Gonzdles-Rivera [1996]. However,

she solves the problem with the non-identified parameter 6 somewhat differently, using a method proposed by Davies [1977].
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results in an approximate version of the conditional variance equation. Since F(0) = 0, the transition

function (5) can be approximated by

T, = F'(0)x = Z:p (22)

The LSTGARCH(1,1) model can therefore be approximated by

0
—e}_1 + Bhi_1.

77,1; =7+ 04153_1 -+ a24

The hypothesis of GARCH(1,1), against LSTGARCH(1,1) can therefore be written

Ho : 0429/4:0
Hy : ax0/4+#0.

A Lagrange multiplier for this test is equal to
/ ~ ~
S ES AN S RN R EIAY
2 | =2 hot | hot oa | | hgy Oax

T
1 5% 8ht
X{ zﬂa‘]ﬁ} )

oh ¢ 1AZ 1 = 1/\1 1 i—1 t_lAi_l
t[z 3 Q“26§“26h%+

=1

where

hoy is the conditional variance under the null of GARCH(1,1), &' is the vector of parameters (v, oy, a26/4, 3),
and B is the estimated parameter 3 in the GARCH(1,1) model. As in the GQARCH test, to test the null
of GARCH(1,1), against the alternative of LSTGARCH(1,1), the procedure proposed is:

1. Estimate a GARCH(1,1) model. Form the vectors

~1—1

d, — Zf iﬂl E?ﬂ'
.= Li=171 Tt

hot

2. Regress
el
hot
on d;, and calculate
LMy =T R? (24)

from the regression.

LM, is under the null asymptotically distributed x? with one degree of freedom.

11



5 Monte Carlo Experiment

The Monte Carlo experiment for testing the empirical size of the test statistics (19) and (24) is based on
a GARCH(1,1) data generating process

e = &
gt = Zthi/z (25)
ht = + (J(E%_l + ,Bht_l

where z; ~nid(0,1). Four combinations of the constant parameters v, «, and § are studied. These
values are shown in Tables 1 and 2. For each set of parameter values 2,500 samples with 250 and 1000
observations are generated. The test statistics are calculated, and compared to the critical values for one,
five and ten percent confidence levels.

In Table 1, the actual rejection frequencies of the test procedure (19) are reported. The empirical size
of the test is relatively close to the theoretical size, both when the number of observations is 1000 and
250. However, the simulated size seems to be somewhat less accurate for the smaller sample size. Table
2 reports the simulation results for test procedure (24). For the larger sample the empirical size is quite
close to the theoretical size. When the sample size is 250 the empirical size seems to be lower than the
theoretical. It is therefore concluded that for both statistics, the simulated size is fairly accurate for the
larger sample size, and the simulated size is reasonable for a sample of 250 observations.

As noted in the introduction, the two tests’ ability to detect asymmetry will be compared, to that of
Engle and Ng’s [1993] four tests, the Sign bias test (SB), the Negative size bias test (N.SB), the Positive
size bias test (PSB), and the test of the joint hypothesis of SB, NSB, and PSB. Such a comparison
can only be made if it is known that the empirical size properties of Engle and Ng’s tests are similar to
those reported for tests (19) and (24). A number of different alternative formulations of Engle and Ng’s
tests were tried before appropriate size properties were received . The procedures that where found most
promising, and which are used in the remainder of this article, are described in the appendix. Tables 3
to 6 report the actual rejection frequencies for the four alternative tests. Based on the results reported
in Tables 1 to 6, it is concluded that for the larger sample size, the empirical size properties for the six
tests are quite similar. When the number of observations is 250, the empirical size properties fluctuate
more across the different test procedures. The remainder of this study will therefore focus on the results
based on the larger sample size.

To investigate the power of test (19) the data generating process considered is

T = &

zht? (26)

€t

hy 1.25-107% — 1.68 - 107, 1 + 0.0355¢7 ; + 0.952h; 1,

where z;, ~nid(0,1). The parameters of the model (26) have been obtained from an estimation performed
on daily observations for the Financial Times All-share Index. The sample period is January 1991 to July

1996. The estimated power of the test is reported on the rows labeled LM; in Table 7. From the results

12



when the sample size is 250, it can concluded that for such a small sample, the test has very low power.
When the sample size is 1000 the estimated power is increased, but is still low. However, compared to
the estimated power for the four tests of Engle and Ng, also reported in Table 7, the test constitutes a
marked improvement. The result is not surprising, since the test (19) is designed to detect the kind of
asymmetry caused by (26), whereas the tests of Engle and Ng are designed to detect general GARCH
asymmetry. But surprisingly, the test of no LSTGARCH (24) also outperforms the tests of Engle and
Ng.

To investigate the power of test (24) the data generating process considered is

re = &t
g = zthi/z (27)
hy = 52-1077+1[0.295 — 0.258 - F(e;_1)]e?_, +0.70 - hy_y

Feim) = (1+eXp[—200-5t_1])_1—%,

where z; ~nid(0,1). The parameters of the model (27) are in part taken from the paper by Engle and
Ng [1993], when they consider the GJR model (7). If the parameter 6, which has been set to 200, is
allowed to increase towards infinity, the data generating process (27) will coincide with the GJR model
considered in Engle and Ng’s article. By setting 6 to 200, the transition function F(e;—1) will not just
take on its extreme values —1/2 and 1/2. Table 8 reports the power properties of the six statistics when
the true data generating process is (27). The power of the test (24) is reasonable when the sample size is
1000. The power of the test is reduced considerably for the smaller sample size. The test (19) also proves
to have power to detect asymmetry generated by (27), but, as expected, the power is significantly lower
than for the test (24). The tests of Engle and Ng are a clear disappointment. It is important to keep
in mind that the reported power is a function of the parameter values in the data generating process.
One should therefore not compare the figures in Table 7 and 8. The parameters of the data generating
process (27) clearly give rise to more asymmetry than the process (26).

The two statistics will now be further evaluated by investigating the empirical power of the tests for
detecting asymmetry caused by the other five GARCH models presented in Section 2. To investigate the
power of the tests, when the true model is EGARCH, the data generating process considered is

e = &t
e = zh'? (28)
Inh, = —0.7395+0.90 - Inhe_y —0.075 - z_y +0.25 - [\zt_l\ - \/2/77] ,

where z; ~nid(0,1). Except for the value of the parameter 7, the parameters of the model (28) are
those used by Engle and Ng [1993], when they consider the EGARCH model (6). The simulated power
of the six tests are presented in Table 9. The highest power is reported for test (19), followed by test
(24). Among the tests of Engle and Ng, the Negative size bias test perform best, but the power is still
significantly lower than the power for the two tests presented in this paper. The results for the smaller

sample size is again disappointing.
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The power of the tests, when the true model is GJR, is investigated considering the data generating

process

T = &
e = zhy’? (29)
hy = 520-1077+0.166 -7, +0.2576 - S;_ 7, +0.70 - hy_1,

where z; ~nid(0, 1). Except for the value of the parameter v, the parameters of the model (29) are those
used by Engle and Ng [1993], when they consider the GJR model (7). Results of the simulations are in
Table 10. These parameter values appear to generate a very marked asymmetry. For the larger sample
size, the simulated power for tests (19) and (24) are strikingly high , whereas the tests of Engle and Ng
perform less efficiently.

To investigate the power of the tests, when the true model is TGARCH, the data generating process

considered is

re = &t
Et = Zi0¢ (30)
o = 654-107*+0.111-¢f | —0.192-¢, , +0.833- 04 1,

where z; ~nid(0,1). Except for the value of the parameter v, the parameters of the model (30) have been
obtained from an estimation performed on daily observations for the French CAC 240 Index, reported
by Zakoian [1994]. The sample period is 1976 to 1990. Results from the simulations are shown in Table
11. Tests (19) and (24) perform well once again. The power properties of test (19) must , in these
circumstances, be considered very good. The results for the tests SB, NSB, PSB, and the joint test
are, compared to the results for the other two tests, unsatisfactory.

When the true model is A-PARCH, the situation is investigated considering the data generating

process

T = &t
ee = zh'? (31)
hi®32 = 9.22.1070 +0.083 - (Je;_1| — 0.373 - 5,_1)"*® +0.92 - nj -t/

where z; ~nid(0,1). Except for the value of the parameter v, the parameters of the model (31) have been
obtained from an estimation performed on daily observations for the S&P 500 Index, reported by Ding,
Granger, and Engle [1993]. The sample period is 1928 to 1991. The results of the simulations are shown
in Table 12. It is interesting to note that the parameters of the models, which have be estimated on this
very large sample, apparently give rise to a marked asymmetry. This can be seen from the high power
reported for tests (19) and (24). In this case, the results for the tests of Engle and Ng are even more
disappointing than when the TGARCH model was the true data generating process.

Finally, the power of tests when the true model is VS-ARCH is investigated. In this case, the data
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generating process studied is

Tt = &t
er = zht!? (32)
hy = 39-107%+0.043-¢7 | +0.918h, 1 +2.22-107°- 8, v ,

where z; ~nid(0,1). Except for the value of the parameter -y, the parameters of the model (32) have
been obtained from an estimation performed on daily observations for the S&P 500 Index, reported by
Fornari and Mele [1996a]. The sample period is January 1990 to September 1994. Table 13 reports the
simulation results. The power of test (19) and of test (24) almost coincide, and are at reasonable levels

for the larger sample size. The tests of Engle and Ng prove to have almost no power at all.

6 Summary and Conclusion

In the paper two new Lagrange multiplier test procedures have been presented. The procedures are devel-
oped for testing the null hypothesis that the conditional variance follows a GARCH(1,1) process, against
the alternative that the conditional variance follows an asymmetric GARCH process. In the alternative
hypotheses, well specified parametric models are considered. In test number one, the conditional variance
follows a GQARCH(1,1) process under the alternative. In the second test, the alternative model is the
LSTGARCH(1,1).

Small sample properties for the two tests have also been presented. These have been obtained from
a number of Monte Carlo experiments. In those experiments two sample sizes are considered, 1000 and
250 observations. It is shown that the empirical size of the two tests is quite accurate for the larger
sample size, and reasonable for the smaller. Since asymmetric GARCH specifications are primarily used
for modeling high frequency financial data, a sample size of 1000 observations is not at all unusual.

The power of the tests is naturally a function of the parameters of the data generating process under
the alternative. If the level of asymmetry in the data is low, the power falls considerably. To evaluate
the power properties of the two tests, the power of the tests is compared to those of four other GARCH
asymmetry tests, previously proposed in the literature. The four tests are: the Sign bias test (SB), the
Negative size bias test (NSB), the Positive size bias test (PSB), and the test for the joint hypothesis of
SB, NSB, and PSB. These test are all developed by Engle and Ng [1993]. The Monte Carlo simulations
show that the power of the two tests presented in this paper is much higher than the power of the four
alternative tests. Furthermore, it is shown that the power properties of the two tests are also superior when
the true data generating process is not the GQARCH(1,1) model or the LSTGARCH(1,1) model. The
other data generating processes considered are: EGARCH(1,1), GJR, TGARCH(1,1), A-PARCH(1,1),
and VS-ARCH. The test for which the alternative is the GQARCH(1,1) model generally proves to have
slightly better power properties than the test for which the alternative is the LSTGARCH(1,1) model. Tt
is therefore concluded that the two tests are in fact tests for general GARCH asymmetry, with reasonable

power properties. This finding should be of importance for any econometrician working with GARCH
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models. The disappointing results of the tests of Engle and Ng [1993] are most likely a function of the
fact that the tests have been developed without a well specified parametric alternative.

That the two tests can detect asymmetry caused by many parametric GARCH model is, however,
not only good news. The results show that, using these tests, it is very hard, to actually decide which
asymmetric model might have been the data generation process of a time series. Nevertheless, the tests
will indicate whether any model in the family of asymmetric GARCH models could or could not have been
the data generation process. Since the tests presented above have relatively low power, I am pessimistic
about the possibility of designing powerful LM tests for testing the different models against each other.
This subject still calls for further research.

Both test statistics presented in the paper are derived under conditional normality. The small sample
properties are also investigated when the innovations of the data process are drawn from a Gaussian distri-
bution. Many empirical investigations have shown that the assumption that financial data is distributed
conditionally normal is most likely incorrect. Under such circumstances, the simulated size results are
of less importance. Research in the area of specifications tests under non-normality is therefore strongly

called for.
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Appendix

1. Derivation of the LM statistic (16)
Assume that we have the observed time series g, 1, ...,er. The conditional variance is under the
alternative assumed to be generated by
= w0,
where w, = (1,e7_;, hy—1,61-1), and B'= (v, 0, 3,{). The test is Hy : ( = 0, against Hy : ( # 0. The

Lagrange multiplier statistic has the general form

LM =Tq;(8o) I1(Bo) " 'ar(Bo),

where 3 is the vector of parameters under the null. G, (3) is the average score and I(/3) is the information

matrix. If we assume that the innovations are Gaussian, the log likelihood of one observation is equal to

1 1 1e?
lt = —5111271' — §lnht - Eh—t
Assuming that hy is fixed such that 0hy /08 = 0, it can be shown that the average score is equal to
2
IS 8ht
E — —1| = 33
(Bo) = 7 < 2ho, {hm } B’ (33)

where

8ht S S e S
-wzp SIAEES SRS 3 QJ. e
% i=1

i=1
In (33) hog is the estimated conditional variance under the null of GARCH, and £ in (34) is estimated
under the null. The information matrix is the negative expectation of the Hessian averaged over all

observations

1 T

1 0%,

T = 0Bop' |
The Hessian for one observation can be shown to be equal to

82lt o |:1 6%- |:]. 8ht_ |:]. 8ht:|

008" |2 he] |he O8] |he OB

which implies that the information matrix becomes
T ¢ - /
1
- -3E 1 Ohu ] 11 0he]”
= | 0B | | h: 08
The information matrix under the null is consistently estimated by
Z 1 8h0t i ah[)t !
P0) =57 2 o 08 | [hoi 08 |
The Lagrange multiplier test of GARCH against GQARCH can therefore be written
/ -1
lilFL@% iFﬁﬂL%y
2 | = 2hot L hot B — | hot 9B | [ hot OB
1 E% :| aht
X — —1| — 7,
(ot -1] 5
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1(8) =




which corresponds to formula (16). B

2. Derivation of asymptotically equivalent statistic T - R?

Consider the statistic (16). The equation can be rewritten as

(-] [l (S ) ]}
sl

Define y'= (y1,...,yr) and X'= (x,, ..., x7), where

and
o o Lo
YT he 08
1 ~iel 1 ~iel 4 i1 1 ~iel
_ JZoB Y8 g T8 e Y8
hot hot ' hoy ’ hoy

Then, it is straightforward to rewrite (35) as

1 _
SV X(X'X) X'y

Note, that given that e; ~ N(0, ho) then
LA 2
plim y'y = plim ) <—t - > =2.T.
T—o0 T—o0 =1 hOt
This suggests that an asymptotically equivalent statistic is

X (X'X) X!
y'y

LM, =TY Y 7. R?

where R2 is the squared multiple correlation between y and X. Thus, the statistic is equal to T - R2

from the regression y; on x,.H

3. Test procedure used for the Sign bias test
The sign bias test statistic is defined as the t-ratio for the coefficient b in the regression equation

1 ohy

vi=a+b- S, +1'—
¢ -t hOtaﬁo

+ ey (36)
where v? = €2 /ho;, ho: is the conditional variance under the null, T is a constant parameter vector, 3,

are the parameters under the null, and e, is the residual. When the null is the GARCH(1,1) model, the

test procedure used is:
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1. Estimate a GARCH(1,1) model. Form the vectors

2
02 = €t

t )
hot

1

and

_1 ~t—1 _1t— o ~i—1
1 Oh _ Zf:iﬁ Zgz1ﬂ 5%—1 Z’E:iﬂ hi—;

hot 3—,36 hog hot hot

2. Run the regression (36), and calculate the statistic SB, which is equal to t-ratio for the estimate of

the parameter b.

The test statistic SB is under the null asymptotically distributed standard normal.

4. Test procedure used for the Negative size bias test
The negative size bias test statistic is defined as the t-ratio for the coefficient b in the regression

equation

1 Ohy .
= e,
hot 9B,
where v? = €7 /hot, hot is the conditional variance under the null, T is a constant parameter vector, 3,

are the parameters under the null, and e; is the residual. When the null is the GARCH(1,1) model, the

vi=a+b-S g1+ T (37)

test procedure used is:

1. Estimate a GARCH(1,1) model. Form the vectors
2
2 €t
vi =4 —¢,
! { hot }

_1 ~i—1 _1~i—1 _1 ~i—1
L oh |XL B YiB e YiniB b
hot 0835 hot hot ’ hot

and

2. Run the regression (37), and calculate the statistic NSB, which is equal to t-ratio for the estimate

of the parameter b.

The test statistic NSB is under the null asymptotically distributed standard normal.

5. Test procedure used for the Positive size bias test
The positive size bias test statistic is defined as the t-ratio for the coefficient b in the regression
equation
U?—a+b~5j15t1+7’himg—g;+et (38)
where v? = &7 /hot, ho: is the conditional variance under the null, T is a constant parameter vector, 3,
are the parameters under the null, and e; is the residual. When the null is the GARCH(1,1) model, we

used the test procedure:

21



1. Estimate a GARCH(1,1) model. Form the vectors

2
02 = €t

t )
hot

1

and .
4 ~i—1 1 1= 1 ~1—1
1 oh | XiLB Yiah e Y8 he
hot 083 hot hot ’ hot

2. Run the regression (38), and calculate the statistic PSB, which is equal to t-ratio for the estimate

of the parameter b.

The test statistic PSB is under the null asymptotically distributed standard normal.

6. Test procedure used for the Joint test
The test for the joint hypothesis of SB, NSB, and PSB is formulated as

H() . b1:b2:b3:07
Hy : b#0, i=1,23,

in the regression

1 0h
U? =a+b -S| +by-5,_ 1 +b3- 5';;151&4 + /Ec{?—,ﬁt + et
t 0

where v? = €7 /hot, hot is the conditional variance under the null, T is a constant parameter vector, 3,

are the parameters under the null, and e; is the residual. Since dh;/93, should be orthogonal to v?, the
test statistic could be calculated as T - R2 from the regression. However, the simulations showed that the
empirical size of such a statistic is severely distorted. To achieve an appropriate size, v? was adjusted,

and 0h; /0B, was replaced with a slightly simplified vector. When the null is the GARCH(1,1) model,

the test procedure used was:
1. Estimate a GARCH(1,1) model. Form the vector
ﬁ_{i}
¢ hot
Run the regression v7 on {1, e ., hOt—l}, and calculate the series of residuals 5? .

2. Calculate the statistic as T - R2 from the regression 07 on

1 52 ; ht_'
1,87 ,,8 e0-1,8F je0_1, —, 2, }
{ = P S he T ho

The test statistic should be compared to a x? distribution with three degrees of freedom.
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Table 1. Simulated Size for the Test of no GQARCH

The table shows results from a Monte Carlo experiment where the size of test statistic (19) is investigated. In
the experiment, the data generating process is model (25), with the four different parameter combinations shown
in column one. The column labeled Actual Rejection Frequencies report the simulated empirical size at the three

different theoretical significance levels of one, five, and ten percent. The figures are based on 2,500 samples, thus

a 95 % confidence interval is given by @ + 2 - y/a(1 — &) /2500, where @ is the empirical size.

Nominal Significance Level

Sample 1% 5% 10%

Parameter Values Size Actual Rejection Frequencies
v=5.0-10"5a=0.258=0.70 1000 1.36 4.88 9.92
250 1.16 6.04 12.04

¥=1.0-10"%a =0.05,8 = 0.85 1000 0.88 4.76 9.64
250 0.76 5.16 10.12

v=5.0-10"%a=0.05,6=090 1000 1.20 5.44 10.20
250 0.88 5.00 11.32

¥=1.0-10"%a = 0.09, 3 = 0.90 1000 1.12 5.64 11.96
250 0.84 5.96 12.20

Table 2. Simulated Size for the Test of no LSTGARCH

The table shows results from a Monte Carlo experiment where the size of test statistic (24), is investigated. In
the experiment, the data generating process is model (25), with the four different parameter combinations shown
in column one. The columns labeled Actual Rejection Frequencies report the simulated empirical size at the three
different theoretical significance levels of one, five, and ten percent. The figures are based on 2,500 samples, thus

a 95 % confidence interval is given by & + 2 - y/a(1 — @) /2500, where @ is the empirical size.

Nominal Significance Level

Sample 1% 5% 10%

Parameter Values Size Actual Rejection Frequencies
¥=5.0-10"%a=0.258=0.70 1000 0.88 5.16 10.84
250 0.72 3.56 8.12

v=1.0-10"%a =0.05,8 = 0.85 1000 0.88 4.40 9.16
250 0.40 3.04 6.64

¥=5.0-10"%a = 0.05,8 = 0.90 1000 0.92 5.16 10.20
250 0.68 4.24 8.80

v=1.0-10"5a = 0.09, 8 = 0.90 1000 1.20 5.28 10.16
250 0.76 5.20 11.24
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Table 3. Simulated Size for the Sign Bias Test

The table shows results from a Monte Carlo experiment where the size of the Sign bias test, is investigated. In
the experiment, the data generating process is model (25), with the four different parameter combinations shown
in column one. The columns labeled Actual Rejection Frequencies report the simulated empirical size at the three
different theoretical significance levels of one, five, and ten percent. The figures are based on 2,500 samples, thus

a 95 % confidence interval is given by & + 2 - y/a(1 — @) /2500, where @ is the empirical size.

Nominal Significance Level

Sample 1% 5% 10%

Parameter Values Size Actual Rejection Frequencies
¥=5.0-10"%a=0.258=0.70 1000 0.96 4.80 9.44
250 0.84 5.08 10.68

v=1.0-10"%a =0.05,8 = 0.85 1000 0.84 5.28 10.60
250 0.72 5.24 10.84

¥=5.0-10"%a = 0.05,8 = 0.90 1000 1.44 6.04 10.96
250 1.00 5.64 11.12

v=1.0-10"5a = 0.09, 8 = 0.90 1000 1.04 5.40 9.72
250 0.76 5.20 11.24

Table 4. Simulated Size for the Negative Size Bias Test

The table shows results from a Monte Carlo experiment where the size of the Negative size bias test, is
investigated. In the experiment, the data generating process is model (25), with the four different parameter
combinations shown in column one. The columns labeled Actual Rejection Frequencies report the simulated
empirical size at the three different theoretical significance levels of one, five, and ten percent. The figures are

based on 2,500 samples, thus a 95 % confidence interval is given by & + 2 - y/a(1 — &)/2500, where & is the

empirical size.

Nominal Significance Level

Sample 1% 5% 10%

Parameter Values Size Actual Rejection Frequencies
v=5.0-10"5a=0.258=0.70 1000 1.08 4.24 8.96
250 0.60 4.28 8.00

7¥=1.0-10"%a =0.05,3 = 0.85 1000 0.92 5.12 9.76
250 0.60 4.28 9.20

v=15.0-10"5a =0.05,8 = 0.90 1000 0.88 5.88 11.44
250 0.72 3.68 8.80

¥=1.0-10"%a = 0.09, 3 = 0.90 1000 0.72 4.68 9.60
250 1.04 4.88 9.08
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Table 5. Simulated Size for the Positive Size Bias Test

The table shows results from a Monte Carlo experiment where the size of the Positive size bias test, is
investigated. In the experiment, the data generating process is model (25), with the four different parameter
combinations shown in column one. The columns labeled Actual Rejection Frequencies report the simulated
empirical size at the three different theoretical significance levels of one, five, and ten percent. The figures are

based on 2,500 samples, thus a 95 % confidence interval is given by & + 2 - y/a(1 — @) /2500, where & is the

empirical size.

Nominal Significance Level

Sample 1% 5% 10%

Parameter Values Size Actual Rejection Frequencies
v=5.0-10"5a=0.258=0.70 1000 0.80 4.20 9.28
250 0.72 4.32 8.60

7y=1.0-10"%a =0.05,8 = 0.85 1000 0.96 4.36 9.56
250 0.84 4.64 9.32

v=5.0-10"%a=0.05,6=090 1000 1.20 5.24 9.84
250 0.56 4.20 8.64

v=1.0-10"%a = 0.09, 3 = 0.90 1000 1.12 5.68 10.92
250 0.80 4.28 8.72

Table 6. Simulated Size for Engle and Ng’s Joint Test

The table shows results from a Monte Carlo experiments, where the size of the Joint test of Engle and Ng[1993],
is investigated. In the experiment, the data generating process is model (25), with the four different parameter
combinations shown in column one. The columns labeled Actual Rejection Frequencies report the simulated
empirical size at the three different theoretical significance levels of one, five, and ten percent. The figures are

based on 2,500 samples, thus a 95 % confidence interval is given by & + 2 - y/a(1 — &)/2500, where & is the

empirical size.

Nominal Significance Level

Sample 1% 5% 10%

Parameter Values Size Actual Rejection Frequencies
¥=5.0-10"%a=0.258=0.70 1000 1.44 4.80 8.76
250 0.80 3.64 7.64

v=1.0-10"%a =0.05,8 = 0.85 1000 1.12 5.08 9.72
250 0.88 4.16 8.48

7=5.0-10"°%a=0053=090 1000 1.36 5.44 11.20
250 0.76 4.00 8.92

v=1.0-10"5a = 0.09, 8 = 0.90 1000 1.44 5.04 9.88
250 1.00 4.24 9.12
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Table 7. Actual Rejection Frequencies when the True Model is GQARCH(1,1)

The table shows results from a Monte Carlo experiment where the empirical power of six specification tests are
investigated. In the experiment, the data generating process is model (26). The columns labeled Actual Rejection
Frequencies report the simulated empirical power at the three different theoretical significance levels of one, five,
and ten percent. The figures are based on 2,500 samples, which give an estimated standard error of the estimated
power, D, equal to \/Zm The abbreviations are: LM refers to the test of no GQARCH, LM> to the
test of no LSTGARCH, SB to the Sign bias test, NSB to the Negative size bias test, PSB to the Positive size bias
test, and Joint refers to the test of the joint hypothesis of SB, NSB, and PSB.

Nominal Significance Level

1% 5 % 10%

Test  Sample Size Actual Rejection Frequencies (%)
LM, 1000 6.28 20.72 32.56
250 1.44 6.48 13.80

LM, 1000 3.92 13.20 22.56
250 0.84 4.60 11.36

SB 1000 1.28 5.52 10.92

250 0.88 5.28 9.92

NSB 1000 1.60 6.00 10.92
250 0.96 4.28 8.88

PSB 1000 1.00 4.88 10.76
250 0.48 4.44 9.68

Joint 1000 1.24 4.92 10.48
250 1.00 4.12 8.00
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Table 8. Actual Rejection Frequencies when the True Model is LSTGARCH(1,1)

The table shows results from a Monte Carlo experiment where the empirical power of six specification tests is
investigated. In the experiment, the data generating process is model (27). The columns labeled Actual Rejection
Frequencies report the simulated empirical power at the three different theoretical significance levels of one, five,
and ten percent. The figures are based on 2,500 samples, which give an estimated standard error of the estimated
power, P, equal to 1/p(1 — P)/2500. The abbreviations are: LM refers to the test of no GQARCH, LMs to the
test of no LSTGARCH, SB to the Sign bias test, NSB to the Negative size bias test, PSB to the Positive size bias
test, and Joint refers to the test of the joint hypothesis of SB, NSB, and PSB.

Nominal Significance Level

1% 5% 10%

Test  Sample Size Actual Rejection Frequencies (%)
LM, 1000 15.36 34.72 47.36
250 5.12 15.36 25.12

LM, 1000 36.12 64.40 75.60
250 7.12 21.64 32.92

SB 1000 5.40 15.00 24.04

250 1.64 7.76 14.48

NSB 1000 6.36 16.68 26.48
250 1.72 7.12 12.20

PSB 1000 6.44 21.20 34.40
250 1.00 7.40 18.08

Joint 1000 6.08 17.08 27.44
250 2.40 6.96 12.72
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Table 9. Actual Rejection Frequencies when the True Model is EGARCH(1,1)

The table shows results from a Monte Carlo experiment where the empirical power of six specification tests is
investigated. In the experiment, the data generating process is model (28). The columns labeled Actual Rejection
Frequencies report the simulated empirical power at the three different theoretical significance levels of one, five,
and ten percent. The figures are based on 2,500 samples, which give an estimated standard error of the estimated
power, P, equal to 1/p(1 — P)/2500. The abbreviations are: LM refers to the test of no GQARCH, LMs to the
test of no LSTGARCH, SB to the Sign bias test, NSB to the Negative size bias test, PSB to the Positive size bias
test, and Joint refers to the test of the joint hypothesis of SB, NSB, and PSB.

Nominal Significance Level

1% 5% 10%

Test  Sample Size Actual Rejection Frequencies (%)
LM, 1000 51.08 74.00 82.80
250 7.72 22.08 33.44

LM, 1000 31.32 57.00 70.56
250 4.08 15.52 24.56

SB 1000 9.16 24.44 36.80

250 2.08 9.20 16.40

NSB 1000 12.44 29.56 41.08
250 1.88 8.32 14.96

PSB 1000 9.52 27.84 40.68
250 2.20 9.92 18.36

Joint 1000 7.32 20.84 32.12
250 1.16 6.12 11.88
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Table 10. Actual Rejection Frequencies when the True Model is GJR

The table shows results from a Monte Carlo experiment where the empirical power of six specification tests is
investigated. In the experiment, the data generating process is model (29). The columns labeled Actual Rejection
Frequencies report the simulated empirical power at the three different theoretical significance levels of one, five,
and ten percent. The figures are based on 2,500 samples, which give an estimated standard error of the estimated
power, P, equal to 1/p(1 — P)/2500. The abbreviations are: LM refers to the test of no GQARCH, LMs to the
test of no LSTGARCH, SB to the Sign bias test, NSB to the Negative size bias test, PSB to the Positive size bias
test, and Joint refers to the test of the joint hypothesis of SB, NSB, and PSB.

Nominal Significance Level

1% 5% 10%

Test  Sample Size Actual Rejection Frequencies (%)
LM, 1000 84.16 95.00 97.44
250 19.08 43.00 56.92

LM, 1000 73.56 90.52 95.12
250 14.68 37.04 51.12

SB 1000 26.68 49.76 62.20

250 5.12 15.16 24.08

NSB 1000 18.72 39.40 51.28
250 4.00 11.72 19.20

PSB 1000 22.16 49.08 62.96
250 3.28 14.68 25.40

Joint 1000 20.24 44.36 58.20
250 3.16 10.96 18.48
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Table 11. Actual Rejection Frequencies when the True Model is TGARCH

The table shows results from a Monte Carlo experiment where the empirical power of six specification tests is
investigated. In the experiment, the data generating process is model (30). The columns labeled Actual Rejection
Frequencies report the simulated empirical power at the three different theoretical significance levels of one, five,
and ten percent. The figures are based on 2,500 samples, which give an estimated standard error of the estimated
power, P, equal to 1/p(1 — P)/2500. The abbreviations are: LM refers to the test of no GQARCH, LMs to the
test of no LSTGARCH, SB to the Sign bias test, NSB to the Negative size bias test, PSB to the Positive size bias
test, and Joint refers to the test of the joint hypothesis of SB, NSB, and PSB.

Nominal Significance Level

1% 5% 10%

Test  Sample Size Actual Rejection Frequencies (%)
LM, 1000 56.76 79.28 86.00
250 10.24 26.60 38.16

LM, 1000 32.72 58.80 71.64
250 5.44 17.48 27.24

SB 1000 11.00 27.12 37.60

250 2.28 8.48 15.36

NSB 1000 10.48 25.76 36.36
250 2.76 7.80 14.52

PSB 1000 9.00 26.48 39.04
250 2.16 8.36 16.16

Joint 1000 7.24 21.44 32.92
250 1.32 5.68 11.44
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Table 12. Actual Rejection Frequencies when the True Model is A-PARCH

The table shows results from a Monte Carlo experiment where the empirical power of six specification tests is
investigated. In the experiment, the data generating process is model (31). The columns labeled Actual Rejection
Frequencies report the simulated empirical power at the three different theoretical significance levels of one, five,
and ten percent. The figures are based on 2,500 samples, which give an estimated standard error of the estimated
power, P, equal to 1/p(1 — P)/2500. The abbreviations are: LM refers to the test of no GQARCH, LMs to the
test of no LSTGARCH, SB to the Sign bias test, NSB to the Negative size bias test, PSB to the Positive size bias
test, and Joint refers to the test of the joint hypothesis of SB, NSB, and PSB.

Nominal Significance Level

1% 5% 10%

Test  Sample Size Actual Rejection Frequencies (%)
LM, 1000 76.28 91.56 95.40
250 12.76 32.40 45.84

LM, 1000 64.16 85.36 91.32
250 8.92 27.12 41.08

SB 1000 6.72 17.40 26.88

250 1.48 7.36 13.16

NSB 1000 8.32 18.92 27.60
250 2.12 8.16 14.08

PSB 1000 5.72 18.72 30.60
250 1.20 6.88 14.00

Joint 1000 5.80 16.36 25.84
250 1.12 5.76 11.56
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Table 13. Actual Rejection Frequencies when the True Model is VS-ARCH

The table shows results from a Monte Carlo experiment where the empirical power of six specification tests is
investigated. In the experiment, the data generating process is model (32). The columns labeled Actual Rejection
Frequencies report the simulated empirical power at the three different theoretical significance levels of one, five,
and ten percent. The figures are based on 2,500 samples, which give an estimated standard error of the estimated
power, P, equal to 1/p(1 — P)/2500. The abbreviations are: LM refers to the test of no GQARCH, LMs to the
test of no LSTGARCH, SB to the Sign bias test, NSB to the Negative size bias test, PSB to the Positive size bias
test, and Joint refers to the test of the joint hypothesis of SB, NSB, and PSB.

Nominal Significance Level

1% 5% 10%

Test  Sample Size Actual Rejection Frequencies (%)
LM, 1000 20.96 43.32 55.92
250 3.00 12.04 20.52

LM, 1000 19.56 42.08 56.04
250 1.96 10.04 17.20

SB 1000 1.60 7.52 13.68

250 1.04 5.56 11.60

NSB 1000 2.12 9.48 17.48
250 0.88 6.08 12.84

PSB 1000 2.52 9.64 16.96
250 1.12 5.44 10.80

Joint 1000 1.40 7.80 15.24
250 0.84 4.88 10.76
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