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Abstract

Asymptotic tests for fractional integration, such as the Geweke-Porter-
Hudak test, the modi…ed rescaled range test and Lagrange multiplier type
tests, exhibit size-distortions in small-samples. This paper investigates a
parametric bootstrap testing procedure, for size-correction, by means of a
computer simulation study. The bootstrap provides a practical method to
eliminate size-distortions in the case of an asymptotic pivotal statistic while
the power, in general, is close to the corresponding size-adjusted asymptotic
test. The results are very encouraging and suggest that a bootstrap testing
procedure does correct for size-distortions.
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1. Introduction

The fractionally integrated autoregressive moving average (ARFIMA) model has
recently received considerable attention in economics, but also in other research
areas. ARFIMA processes generalize linear ARIMA models by allowing for non-
integer di¤erencing powers and do thereby provide a more ‡exible framework
for analyzing time series data. This ‡exibility enables fractional processes to
model stronger data dependence than what is allowed in stationary ARMA models
without resorting to non-stationary unit-root processes. However, estimators of
the fractional model exhibit larger bias and are computationally more demanding.
It is, therefore, bene…cial to discriminate fractionally integrated processes from
ARIMA speci…cations in a …rst modelling step, that is to test the null-hypothesis
of an integer di¤erencing power against a fractional alternative. For this purpose
the literature frequently utilizes the Geweke and Porter-Hudak (1983) test, the
modi…ed rescaled range test of Lo (1991) and Lagrange multiplier tests, see e.g.
Agiakloglou and Newbold (1994). The size and power of these asymptotic tests
are investigated by Cheung (1993) and Agiakloglou and Newbold. One …nding in
their studies is the existence of non-negligible small-sample size-distortions.

To improve inference, classical statistical theory employs expansions to provide
analytical corrections. By numerical means, similar corrections can be given by
bootstrap methods. While analytical corrections modi…es the test statistic to
approach the asymptotic distribution more rapidly, the bootstrap adjusts the
critical values so that the true size of the test converges to its nominal value.
This paper applies a parametric bootstrap testing procedure. The size-distortion
of such a procedure, based on parameter estimates under the null, will according
to Davidson and MacKinnon (1996a) be at least one full order, O(T¡1), smaller
the distortion of the asymptotic test. Thus, the bootstrap is said to provide a
trustworthy technique to perform inference in small samples and yields, under
regularity conditions, exact or close to exact tests. The purpose of this paper is
to examine this claim.

The paper is organized as follows. Section 2 brie‡y describes the tests and
section 3 introduces the bootstrap testing procedure. Section 4 contains the Monte
Carlo simulation study, where size and power of the tests are compared with their
bootstrap analogues. Section 5 concludes.

2. Testing for Fractional Integration

A time series fxtg follows an ARFIMA(p; d; q)1 process if

1The properties of the fractionally integrated ARMA model are presented by Granger and
Joyeux (1980) and Hosking (1981).
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Á (B) (1¡B)d xt = µ (B) at; (2.1)

where fatg is a series of independently and identically distributed disturbances
with mean zero and variance ¾2a < 1, and Á (B) and µ (B) are the autoregres-
sive and moving average polynomials in the backshift operator B. If the roots of
Á (B) and µ (B) are outside the unit circle and d < j0:5j, xt is both stationary
and invertible. When d > 0, xt is persistent in the sense that the autocorrela-
tions are not absolutely summable. Thus, there exists a region (0 < d < 0:5)
where the ARFIMA model is capable of generating stationary series which are
persistent.2 If d 6= 0 the process displays long-memory characteristics, such as a
hyperbolic autocorrelation decay , while the stationary ARMA model exhibits a
faster geometrical decay (given the existence of AR parameters).

If d is integer-valued, the ARFIMA process reduces to an ARIMA process.
The tests are applicable on stationary and invertible series and the series are,
subsequently, di¤erenced or summed until this is satis…ed. d = 0 is thus a natural
null-hypothesis when testing for fractional integration.

2.1. The Periodogram Regression Test of Geweke and Porter-Hudak

Geweke and Porter-Hudak (1983), henceforth GPH, proposed the following non-
parametric periodogram regression,

ln fIx (!j)g = ®¡ d ln
n
4 sin2 (!j=2)

o
+ vj; (2.2)

for the estimation of the fractional di¤erence parameter. Ix (!j) is the peri-
odogram at the harmonic frequencies !j = 2¼j=T; where j = 1; :::; g (T ). Under
a proper choice of g (T ) ; the ordinary least squares (OLS) estimator of d is con-
sistent and the distribution of

³
d̂OLS ¡ d

´
=SE

³
d̂OLS

´
is asymptotically normal.

The known variance of v; ¼2=6; is used to increase the e¢ciency of the test and
g (T ) is commonly selected as T 1=2.

2.2. The Modi…ed Rescaled Range Test

The rescaled range statistic was proposed by Hurst (1951) and has been re…ned
by Mandelbrot (1972) and MacLeod and Hipel (1978). A version of the statistic,
which is robust to short-range dependence in data was suggested by Lo (1991).
This modi…ed rescaled range (MRR) statistic is de…ned by the ratio

2Persistence is commonly found in Economic time series, i.e. real exchange rates and
unemployment.
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~QT =
RT
¾̂T (k)

; (2.3)

where the range and standard error are calculated by

RT = max
0<i·T

iX

t=1

(xt ¡ x)¡ min
0<i·T

iX

t=1

(xt ¡ x) (2.4)

¾̂2T (k) = ¾̂2 + 2
kX

j=1

TX

i=j+1

µ
1¡ j

k + 1

¶
(xi ¡ x) (xi¡j ¡ x) : (2.5)

The truncation lag k depends on the short-term correlation structure of the series
and is set, according to Andrews’ (1991) data dependent formula, to the integer

part of (3T=2)
1
3

n
2½̂=

³
1¡ ½̂2

´o 2
3 , where ½̂ denotes the sample …rst-order autocor-

relation coe¢cient and ¾̂2 the maximum likelihood variance estimate. Asymptotic
critical values of the MRR test is given by Lo (1991).

2.3. A Lagrange Multiplier Test

The LM test, denoted REG, of Agiakloglou and Newbold (1994) is carried out
through the likelihood based auxiliary regression

ât =
pX

i=1

¯iWt¡i+
qX

j=1

°jZt¡j + ±Km + ut; (2.6)

where

Km =
mX

j=1

j¡1ât¡j; µ̂ (B)Wt = xt; µ̂ (B)Zt = ât and ut is iid normal.

ât and µ̂ (B) are the estimated residual and MA polynomial from the ARFIMA
speci…cation (2.1) under the null-hypothesis.

The autoregressive and moving average orders p and q are estimated by the
Bayesian information criterion (BIC) of Schwartz (1978). According to Agiak-
loglou and Newbold a small value of the truncation lag m is preferable, therefore
m is set equal to …ve. The equation (2.6) is …tted by non-linear least squares
(the IMSL routine DNSLSE) over the time period t = m + 1; :::; T . The usual
t-test of the hypothesis ± = 0 together with asymptotically normal critical values
constitutes the LM test.
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2.4. The Size and Power of the GPH, MRR and REG tests

Cheung (1993) presents size and power for the MRR and GPH tests. This is
done for a variety of AR(1), MA(1) and ARFIMA(0,d,0) processes with positive
and negative parameter values. The MRR test is conservative for autoregressions,
that is the empirical size is smaller than the nominal, for almost every parame-
ter value and serial length. For large positive AR parameters, the GPH test is
severely over-sized whereas it is well-sized for the remaining parameter values.
Rejection frequencies of both the MRR and GPH are notably larger than the
nominal signi…cance level when the MA parameter is close to -0.9.

The empirical size of the REG test is similar to the asymptotic size according to
Agiakloglou and Newbold (1994). In contrast to the thorough investigation of the
MRR and GPH test, the size of the REG test is only computed for Á = 0:5 and 0:9,
and T = 100. Under the, unrealistic, assumption of a known AR order the
REG test exhibits high rejection frequencies when the true process is fractionally
integrated. A lower power is expected when the lag-order is unknown. The
MRR test has di¢culties to detect positive fractional integration, especially in
moderate sample sizes. Independently of the serial length, the GPH test displays
a low rejection frequency for weakly persistent processes. Our study con…rms
these conclusions and extend them for the REG test.

3. The Bootstrap Test

The …nite-sample distribution of a test statistic may not always coincide with its
asymptotic distribution. One feasible way to estimate the small-sample distrib-
ution is through a bootstrap procedure, see for instance Horowitz (1995) for an
introduction and overview. The size-distortion of a bootstrap test is of order T¡1=2

smaller than that of the corresponding asymptotic test. A further re…nement of
order T¡1=2 can be obtained in the case of an asymptotically pivotal statistic,
i.e. a statistic whose limiting distribution is independent of unknown nuisance
parameters. This is achieved without the complex derivations of analytical higher
order expansions. If the signi…cance level of a test is calculated using a bootstrap
procedure, an exact or close to exact test is often the result, which enables more
reliable inference in …nite-samples. Following Davidson and MacKinnon (1996a),
such a procedure will be referred to as a bootstrap test.

The objective of the test is to compute the p-value function,

p (¿̂ ) = p (¿ ¸ ¿̂ jª0; T ) ; (3.1)

where ª0 is the true data generating process (DGP ) under the null hypothesis,
T is the sample size and ¿̂ is a realized value of the test statistic ¿ based on the
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original sample x = [x1; :::; xT ]
0 : The DGP ª0 is characterized by an unknown

ARMA(p; q) speci…cation. Since the null model, and hence ª0, is unknown the
estimated (bootstrap) DGP ª̂0 is employed to create the bootstrap samples. The
basic idea is to create a large number of such samples which all obey the null-
hypothesis and, as far as possible, resembles the original sample.

In this paper we use a parametric bootstrap algorithm3, for which the DGP
ª̂0 is based on parameter estimates under the null, that is retrieving ª̂0 from the
estimated ARMA(p̂; q̂) model,

³
1¡ Á̂1B ¡ :::¡ Á̂p̂B p̂

´
xt =

³
1 + µ̂1B + :::+ µ̂q̂B

q̂
´
ât; (3.2)

where ât is the residual at time t. Alternatively, the re-sampling model may be
estimated by ³

1¡ ~ÁB ¡ :::¡ ~Á~pB
~p
´
xt = ~at; (3.3)

which can be regarded as the estimated AR representation of the bootstrap DGP.
The models (3.2) and (3.3) are estimated, conditional on stationarity and invert-
ibility conditions, by the BIC and non-linear least squares and OLS (the IMSL
routines DNSLSE and DRLSE) respectively. The orders p and q are allowed to
a maximum lag of …ve for the ARMA model, whereas a maximum lag p of 30 is
allowed for the AR speci…cation.4

The bootstrap samples, each denoted x¤r ; r = 1; :::; R, are created recursively
using

x¤r;t = Á
¤ (B)¡1 µ¤ (B) a¤t ; (3.4)

where Á¤ (B) and µ¤ (B) are the estimated polynomials of ª̂0. The a¤t :s are in-
dependent draws from a normal distribution with mean zero and variance s2â or
s2~a.

If R bootstrap re-samples, each of size T; and their respective test statistics
¿ ¤r are generated, the estimated bootstrap p-value function, for a two-sided test,
is de…ned by

p¤ (¿̂ ) = R¡1
RX

r=1

I (j¿ ¤r j ¸ j¿̂ j) ; (3.5)

where I (¢) equals one if the inequality is satis…ed and zero otherwise, and the
number of bootstrap replicates R is chosen as 1000. The null hypothesis is rejected
when the selected signi…cance level exceeds p¤ (¿̂ ).

3The use of a parametric bootstrap is motivated by the assumed normality of the data.
Further resampling procedures are evaluated by Andersson and Gredenho¤ (1997).

4Preliminary results suggest that no signi…cant AR parameters enter the estimated polyno-
mial after the 30th lag when the true process is an MA(1) with µ = 0:9.
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Davidson and MacKinnon (1996b) show that the power of a bootstrap test,
based on a pivotal statistic, is generally close to the size-adjusted asymptotic test.
Even if the statistic is only close to pivotal this is generally true.

4. The Monte Carlo Study

The experiment covers …rst order autoregressions and moving averages, and frac-
tional noise series of lengths T = 50, 100, 300 and 500. We generate T + 100
normally distributed pseudo random numbers, using the IMSL routine DRN-
NOA, and discard the …rst 100 observations to reduce the e¤ect of initial values.
The AR and MA series are then constructed recursively and the fractional noise
series are generated using the algorithm of Diebold and Rudebusch (1991).

The Monte Carlo study involves 1000 replicates (series), where each series is
tested for fractional integration using the tests described in Section 2 and 3.

The bootstrap resamples are created by the ARMA (3.2) and AR (3.3) speci-
…cations. Reported results are based on the AR resampling model, due to its bet-
ter performance. The AR speci…cation works better than a pure MA resampling
model even when the true process is a moving average, regardless of parameter
values.

Estimated size and power of the di¤erent processes in the study are computed
as the rejection frequencies of the non-fractional null hypothesis.

4.1. AR and MA Processes

The empirical size of the tests are examined for the speci…cations

xt = Áxt¡1 + at (4.1)

and
xt = at + µat¡1; (4.2)

where the members of fatg are iid N(0; 1): The AR and MA parameters Á and
µ are set equal to §0:1, §0:5 and §0:9. Table 4.15 presents the sensitivity, at a
nominal 5% level of signi…cance, of the empirical size with respect to AR and MA
parameters.

The estimated size of the MRR test for both AR and MA processes di¤ers, in
general signi…cantly at the 5% level, from the nominal size. Signi…cant di¤erences,
based on a 95% con…dence interval, are obtained when the rejection frequencies
lie outside (3:6; 6:4). The MRR test is, in general, for AR as well as MA processes

5All results are approximately valid for the 1% and 10% nominal signi…cance level and for
T=300 and 500.
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Table 4.1: Rejection percentage of the nominal 5 percent fractional integration
test when the data follows an AR(1) or MA(1) process of length T.

MRR GPH REG
Á=µ Orig. Boot. Orig. Boot. Orig. Boot.
T=50 AR(1) Processes

-0.9 18.9 2.2 4.7 5.4 6.9 4.7
-0.5 0.9 3.1 4.7 5.3 6.2 4.1
-0.1 6.7 4.5 5.3 5.1 5.8 3.9
0.1 5.0 3.8 5.5 4.8 5.7 4.1
0.5 2.5 3.1 8.2 5.1 6.8 4.7
0.9 1.2 4.1 63.6 3.6 7.8 4.8
T=100
-0.9 6.4 2.1 6.4 5.6 5.6 4.8
-0.5 0.8 5.0 5.7 5.0 5.1 4.6
-0.1 6.6 4.8 4.9 4.5 6.2 3.6
0.1 6.6 5.9 4.9 4.5 6.2 4.6
0.5 2.5 4.8 8.3 4.4 6.5 4.4
0.9 0.9 3.6 71.8 2.7 5.2 5.2
T=50 MA(1) Processes

-0.9 4.8 5.4 41.2 25.8 9.3 9.5
-0.5 5.5 5.0 7.7 5.0 3.3 1.6
-0.1 7.3 4.5 5.0 4.5 6.6 5.4
0.1 6.7 4.9 4.3 4.0 7.4 5.3
0.5 3.7 4.3 4.4 4.8 4.0 4.4
0.9 2.0 3.2 5.2 3.7 10.0 6.3
T=100
-0.9 9.9 10.5 50.1 36.3 8.0 7.2
-0.5 4.2 4.8 7.9 5.6 2.8 2.8
-0.1 6.6 5.1 4.9 5.5 5.6 4.3
0.1 5.4 4.7 5.0 5.4 5.2 4.1
0.5 3.2 5.7 5.4 5.7 2.7 4.0
0.9 2.3 4.8 6.0 4.4 6.8 4.4
The number reported in the table is the rejection percentage of
the two-sided 5% test. Numbers in bold face denote signi…cant
deviations from the nominal size. Under the null hypothesis
of no fractional integration, the 95% con…dence interval of
the rejection percentage equals (3.6, 6.4). In the table head,
Orig. denotes the original test and Boot. the corresponding
bootstrap test.
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over-sized for large negative and conservative for large positive parameters. Ex-
actly as in Cheung (1993), AR series with parameter Á = ¡0:5 leads to very low
rejection frequencies. The MRR test is always conservative for autoregressions
near the unit circle for larger sample sizes (T = 300 and 500), whereas the rejec-
tion frequencies increase with T for moving averages with µ = ¡0:9: The GPH
test is well-sized, except for highly short-term AR/MA dependent series with pos-
itive roots6. Agiakloglou et al. (1993) show that large positive AR and MA roots
biases the periodogram (2.2), resulting in biased estimates of d and hence large
test statistics. These results are close to those of Cheung.

Extending the results of Agiakloglou and Newbold (1994), we …nd the REG
test well-sized, compared with the other tests, for the entire AR parameter space
when T = 100. However, the test is over-sized for T = 50 and jÁj close to unity.
This over-sizing tendency, close to the unit circle, is enhanced for moving average
processes. This is most pronounced for series of length T = 50, where large
empirical sizes also occur for small parameters. The performance of the REG test
improves with the serial length (considering also T = 300 and 500).

The simulation results suggest, in general, that the bootstrap testing proce-
dure is able to improve the tests. Moreover, every bootstrap test has better size
properties than any of the original test. In more detail, the bootstrap MRR test
is found conservative when Á = ¡0:9, whereas µ = ¡0:9 leads to higher rejection
frequencies than the nominal signi…cance level. Over the parameter space, the
dispersion of the sizes for each test is smaller than that of the original tests. The
bootstrap procedure improves the MRR test, that is only two out of twelve (AR
and MA) empirical sizes di¤er signi…cantly from the nominal size at sample size
100, compared to nine for the original test.

The size problems encountered by the GPH test for autoregressions are ad-
justed by the bootstrap procedure. In particular, the bootstrap correction is
remarkable for Á = 0:9 processes. The bootstrap is also able to correct for size-
distortions due to intermediate positive MA roots and partly adjust the size for
large positive roots. The empirical size for µ = ¡0:9 is unfortunately still very
large for the bootstrap GPH test. One might think that this is due to the AR
resampling, but the size-adjustment is even smaller when using a pure MA resam-
pling. Furthermore, the bootstrap procedure does not impose distortions where
the original GPH test is well-sized. In general, the bootstrap GPH test works
considerably better than the original test.

The bootstrap procedure corrects the size distortions of the REG test for au-
toregressive processes, that is the rejection frequencies of the bootstrap REG test
are always within the con…dence bounds. The bootstrap also corrects when the

6Due to the de…nition of the AR and MA polynomials, positive Á0s imply positive roots and
positive µ0s negative roots.
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Table 4.2: Rejection percentage of the nominal 5 percent fractional integration
test when the data follows an ARFIMA(0,d,0) process of length T=100.

MRR GPH REG
d Orig. Boot. Orig. Boot. Orig. Boot.

-0.45 14.6 16.5 21.8 21.0 31.0 31.3
-0.25 11.3 13.6 8.3 11.1 14.1 18.7
-0.05 3.7 6.1 3.9 5.3 4.6 5.6

0 5.0 5.3 5.0 4.4 5.0 3.5
0.05 5.8 6.9 4.4 5.3 10.1 6.6
0.25 14.7 14.3 17.0 16.5 26.1 27.1
0.45 4.0 18.6 40.9 11.8 17.2 21.5
See note to Table 4.1. The original tests are size-adjusted.

process is an MA with µ > ¡0:5, whereas µ · ¡0:5 processes leads to signi…cant
size distortions for all serial lengths. Except for these cases, the bootstrap REG
test is correctly (on the 95% level) sized and more robust than its original version,
in particular for MA series.

4.2. Fractional Processes

The power of the tests against ARFIMA(0; d; 0) are studied using data constructed
by

(1¡B)d xt = at; (4.3)

where the fractional di¤erencing parameter, d, is set equal to §0:05, §0:25 and
§0:45. Table 4.2 presents the power, as a function of d, of the tests.The simulation
results verify that the power of the bootstrap tests are close to the power of the
size-adjusted asymptotic tests. We …nd the dispersion of the di¤erent power
functions least pronounced for the REG test, which relates to the small size-
improvements of the bootstrap. The REG tests and the original MRR test reduce
in power when the true d is close to 0.5 compared to a slightly lower d value,
which is not the case of the bootstrap MRR.

When specifying the auxiliary regression (2.6), for the REG test, a large true
fractional di¤erencing power is interpreted as a large autoregressive order, yielding
decreased rejection frequencies for the test. For the MRR test, the truncation lag
k in (2.3) increases with d, i.e. too many autocorrelations are included in the
variance correction term (2.5), resulting in a negatively biased estimate of the d
parameter which lower the power of the original test.

A substantially lower power is found for the bootstrap GPH compared its
original version when d = 0:45. A large di¤erencing power results in a rich para-

10



meter structure of the ARMA resampling model in the bootstrap procedure. The
rich parametrization implies that the resample periodograms resemble the peri-
odogram of the original, highly persistent process. Thus, the bootstrap GPH test
will have di¢culties to distinguish fractional processes from ARMA speci…cation,
which can be seen in Table 4.2.

The power properties suggest that the REG test is superior when testing for
fractional integration in small samples. In larger samples the MRR test is more
powerful when d < 0 and the GPH test when d > 0.

5. Conclusions

The bootstrap testing procedure has better size properties than the original tests,
that is the bootstrap corrects existing size-distortions without introducing new
ones. All bootstrap tests are close to exact on the 95% con…dence level, with an
exception for MA(1) processes with a large positive root.

In general, the power of the bootstrap tests are close to the power of the
corresponding size-adjusted asymptotic tests. The REG test is the most powerful
test in small samples and by using the bootstrap version we get a test which is
robust to ARMA components and has power properties similar to the original
test. In larger samples the bootstrap MRR and GPH have higher power, when
the alternative hypothesis is one-sided.

We conclude that a bootstrap testing procedure provides a practical and ef-
fective method to improve existing tests for fractional integration.
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