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Abstract

This paper introduces and analyses a model of cross-security informa-
tion aggregation in a rational expectations equilibrium (ree). The model
predicts a well-defined lead-lag structure between securities returns as a
result of Bayesian information extraction from realised securities prices.
Both leads and lags will be strongest between securities with highly cor-
related return processes, but only weakly correlated return innovations.
Securities whose prices reveal highly precise signals will tend to lead other
securities.

The model has important implications for empirical testing of lead-lag
effects between financial markets and instruments. As an application of
the model, it is demonstrated that stock option returns will tend to lag
the corresponding stock prices.

Direct empirical tests of the lead-lag effects between individual stocks
on the Paris Bourse provided strong support for the model. In addition
to confirming the predicted pattern of leads and lags, the paper demon-
strates that the cross-security correlation is higher for short-term returns
than for long-term returns for about a third of securities pairs traded on
the Paris Bourse. This result is interpreted as strong cross-security cor-
relation of revealed information, which gives the model strong support
over alternative specifications of multi-asset securities markets, such as
the nonsynchronous trading hypothesis or the Chan (1993) model.
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1 Introduction

Although stocks are traded individually, their returns are strongly correlated.
This implies the existence of an informational link between the different secur-
ities. If the price of one security moves “out of line” relative to other securities,
relative prices are corrected in subsequent trading.

While such a mechanism is highly intuitive, its implications for measured
stock returns are not well understood. In partial remedy, this paper derives and
tests a model of lead-lag effects, or equivalently cross-autocorrelations, between
individual securities that trade simultaneously. In the model, information re-
vealed in the price of one security affects the valuation of all other securit-
ies. The resulting price adjustments generate a well-defined pattern of cross-
autocorrelation in security returns.

The theoretical analysis of the lead-lag relation is basically a study of relative
informativeness. If the price of a security is informative for prices of other
securities, its returns will lead those of other securities. In general, this lead
is reciprocal, so that between closely related securities there will be both leads
and lags. If the information revealed in prices is correlated across securities, the
cross-security informativeness of realised prices is reduced, and consequently,
lead-lag effects are weakened. If the correlation in revealed information is strong,
returns may even become negatively cross-autocorrelated.

The lead-lag relation is normally expected to be bidirectional, but empiric-
ally there are cases where the lead is virtually unidirectional. One example of
such a relation is the case of stocks and stock options. Returns on the under-
lying stock lead option returns but evidence of the reverse influence is weak.
Two reasons for this are discussed in section 4.5. Firstly, an option price is
less informative for a stock price than vice versa. Secondly, the large number
of traded option series results in a one–to–many effect. Each individual option
price has low informativeness for the stock price, while the stock price is highly
informative for all traded options.

Empirically, long-term returns are usually more strongly correlated across
securities than short-term returns. This is also the predicted effect of micro-
structure effects such as nonsynchronous trading and bid-ask bounce effects.
However, as shown in section 5, it is not uncommon that short-term returns
are more strongly correlated than long-term returns. This correlation pattern
is incompatible with existing models of cross-security price formation,1 but,
according to the model presented in this paper, it is the result of strong cross-
security correlation in revealed information.

Most empirical work on lead-lag effects concentrates on the speed of price
adjustment. A security is said to lead other securities if its price adjustment
to a common factor is earlier than that of other securities. This definition is
often used in the literature on lead-lag effects between index futures and their
corresponding cash indices.2 In this paper, the mechanism is different. Trad-
ing reveals information that causes price revisions of securities with correlated
underlying values or information.

Five sections follow this introduction. The next section, section 2, provides

1Including Admati (1985), Amihud and Mendelson (1987), Lo and MacKinlay (1990a),
Chan (1993) and Mech (1993).

2Examples include Lo and MacKinlay (1990b), Badrinath et al. (1995), Chan (1992), Bren-
nan et al. (1993) and McQueen et al. (1996).
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a theoretical background based on the body of rational expectations equilib-
rium models. Section 3 presents a formal model of cross-security information
aggregation and derives implications for cross-autocorrelation of securities re-
turns. Section 4 discusses the interpretation and estimation of the model and
the empirical results are presented in section 5. The conclusion and suggestions
for further development of the model are offered in section 6.

2 Rational expectations equilibrium models

2.1 Introduction

The model developed in this paper uses the large literature on asset pricing in
noisy rational expectations equilibria (ree) as a starting point. These models
share a large number of properties that make them useful for analysing in-
formation transmission in financial markets.3 Furthermore, the ree models are
adaptable to various trading environments. This paper focuses on the auction
(order driven) market, but given the similarity of ree models, the model can be
used to analyse a price formation in, for example, a specialist dealer or multiple
dealer market.

In an ree market, profit maximising agents trade risky assets among them-
selves in a usually centralised marketplace. Prices result from equilibrium de-
mand strategies, where agents use private information and take any exogenous
noise, such as liquidity trading or imperfect information, into account.

The rational expectations equilibrium implies that agents’ demand strategies
are optimal with regard to the demand strategies of all other agents. All demand
strategies are thus optimal with regard to the resulting price. Therefore, the ree
prices aggregate all publicly available information about future values. Since
the ree prices are optimal with regard to rational agents’ demand strategies,
the information revealed in a security price cannot affect the valuation of the
security proper. However, the realisation of a price is still an information event,
since it can be used to update estimates of the value of other securities.

In addition to information that is revealed through trading, other sources of
information also influence asset prices. Examples include scheduled announce-
ments or overnight trading in other markets. Such information will affect asset
prices by changing all agents’ valuation of securities, and prices change accord-
ingly without trading.4

The noise in ree securities prices has two separate sources. Firstly, the in-
formation collected by informed speculators may not perfectly reveal the under-
lying value of securities. In an economy with many speculators, this requires that
agents’ measurement (signal) errors are correlated across individuals. Secondly,
liquidity trading (or any trading not based on the expected returns), introduces
additional noise into the price system.

3Seminal papers include Grossman (1976), Grossman and Stiglitz (1980), Hellwig (1980),
Glosten and Milgrom (1985) and Kyle (1985, 1989). The basic similarities between the various
ree models have been demonstrated by several authors, e.g., Krishnan (1992), Paul (1994),
Rochet and Vila (1994), Sarkar (1994), and Vives (1995).

4In practice, an announcement may also trigger information aggregation through prices,
in particular when each agent makes an independent analysis of the news event, or when the
announcement affects individual agents’ demand functions.
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2.2 The competitive REE

The model presented in this paper is based on a competitive ree model. In
such models, prices are martingales and the expected profits of a rational, but
uninformed, speculator is zero. Hellwig (1980) and Kyle (1985) are examples of
competitive ree models.

If the economy is not competitive, individual uninformed speculators have
market power over residual supply. They will use their market power to share
some of the profits that informed speculators make from trading with liquidity
traders. In this kind of equilibrium, returns are negatively autocorrelated (Kyle,
1989).

The market power, and the expected profits, of speculators decrease rap-
idly with the number of speculators active in the market. With as few as
3–4 informed speculators, pricing will be close to the competitive prices.5 The
non-competitive case is consistent with the model of cross-security information
aggregation, but is not discussed in this paper.

2.3 REE in a multi-security market

A multi-security ree model is an analytically complex, but intuitively simple
extension of the single-security ree model. This is evident in Admati’s (1985)
multi-security extension of the Hellwig (1980) model. The main difference is
that demand strategies must be optimal with regard to the whole price vector,
not only the price of a single security.

In the Admati model, agents submit multidimensional demand schedules,
conditioned on the full price vector. Such demand schedules require the calcu-
lation of N2 parameters, where N is the number of securities in the market.
Theoretically, this may be achieved in markets with only a few securities, but
it is obviously an unrealistic assumption for markets where hundreds of secur-
ities are traded. Furthermore, stock exchanges only offer rudimentary types of
cross-security limit orders, such as conditional trades or basket trades.

If traders cannot condition their orders on the full set of prices, even ree
prices will be inefficient across securities. It is this inefficiency that is exploited in
the model presented in this paper. The cross-security information aggregation
is equivalent to the difference between single-security ree prices, derived by
Hellwig (1980), and the multi-security ree prices, derived by Admati (1985).6

It must be pointed out that the resulting lead-lag effects do not present
arbitrage opportunities. Although returns are cross-autocorrelated, and thus
predictable, the price inefficiency cannot be used to make trading profits. Prices
will adjust without trading, since the predictability of price changes is known
by all agents.

2.4 Earlier cross-autocorrelation models

This paper is close in spirit to the paper of Chan (1993), who studies the pricing
problem of a Kyle (1985) style market maker who acts in a market where un-
derlying value innovations are correlated across securities. The market maker is

5See Holden and Subrahmanyam (1992) for a multi-period setting, and Caballé and Krish-
nan (1994) for a multi-security setting.

6With some minor caveats regarding optimal information revelation and optimal informa-
tion acquisition.
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a specialist who only observes order flow in “his own” security. As order flows
in other securities are unobservable, the market maker must deduce the inform-
ation content of these flows by observing the prices of other market makers. As
a result, returns will be positively cross-autocorrelated.

This paper makes two important theoretical extensions to the Chan model.
Firstly, it implements the model for a general ree setup. This is conceptu-
ally important as it is obvious that a specialist market maker has a physical
information monopoly over the incoming order flow. That similar effects per-
sist in an auction market, where order flow is visible to all traders, is far from
obvious. Secondly, the extended model allows signals to be correlated across
securities. This addition is of both theoretical and empirical importance. The-
oretically, it adds the possibility of modelling index arbitrage trading and other
multi-security trading strategies. Empirically, it is necessary in order to model
observed return patterns on the Paris Bourse. The observed high cross-security
correlation in short-term returns is simply not compatible with the basic Chan
model.

In another extension of the Chan (1993) model, Shin and Singh (1996) model
what the authors call “spurious predictability.” Their results are nested by the
results of this paper.7

3 Model

3.1 General model

Assume a Walrasian stock market of the Hellwig (1980) type. There are two
types of traders, namely speculators and liquidity traders. Speculators are ra-
tional and profit maximising agents, some of whom have received or acquired
information, “a signal,” relative to the underlying value of a security. Liquidity
traders trade for some exogenous reason (e.g. hedging, liquidity constraints)
and their demand is independent of the expected value of securities. Liquidity
trading can be correlated across securities, but is assumed to be independent of
past liquidity trading, value innovations and any private signals.

There are N securities that are claims to separate underlying values, ar-
ranged in the vector V. The underlying values are not observable, but before
trading, agents share a prior valuation of securities, denoted P∗−1. The prior
reflects all public information available before demand schedules are submitted.
The valuation error of the prior is normally distributed, with a publicly known
covariance matrix, Π.

P∗
−1 = E [V |F−1] ∼ N(V, Π) , (1)

where F−1 denotes the public information set before trading.
Before trading takes place, some of the speculators receive or acquire a

(private) noisy measurement of the underlying values of one or several securit-
ies. Agents calculate optimal demand schedules using the private signal and the

7The term “spurious predictability” is somewhat misleading. While equilibrium returns are
predictable, the predictability cannot be traded away by arbitrageurs, because of the imposed
informational constraints. The results of Shin and Singh (1996) correspond to establishing
when ωij 6= 0 (equation 23 of this paper).
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Table 1: Sequence of events and information in the model of cross-security informa-
tion aggregation

Event Description

A All agents share a common prior, P∗
−1, which is a normally distrib-

uted measurement of underlying values V with covariance matrix
Π

B Each agent submits N , optimally calculated, linear demand sched-
ules to a Walrasian auctioneer. Submitted demand schedules are
not revealed to other traders.

Trading The Walrasian auctioneer simultaneously sets market clearing
prices, Pi, in all N markets. Orders are executed immediately.

C Agents observe the realised price vector, P.
D Agents use the equilibrium noisiness of prices to deduce a signal,

F, from realised prices, P. The signal has covariance matrix Φ.
E Agents calculate posterior beliefs P∗ of V using Bayesian updating

and the revealed signal F.

Sequence of events: A → B → Trading → C → D → E. All agents know the information
structure of underlying returns, that is, the true value of Φ and Π. They also know the
precision of their own, and other agents’ signals. Transaction costs are zero.

equilibrium covariance structure of signals and returns.8

Each security is traded in a separate, frictionless, competitive call auction.
Before trading, a Walrasian auctioneer collects demand schedules for individual
securities. At a predetermined point in time, the auctioneer sets a price vector,
P, clearing supply and demand for all stocks.

Relying on standard ree results, we know that each price realised in trading
will reveal a signal, Fi, relative to the underlying value of security i.9 In this
paper, the signal is modelled as a noisy measurement of the error in the prior
valuation. For all stocks, we use vectors and matrices to write

F ∼ N
(
V −P∗

−1, Φ
)
. (2)

For an individual stock we write

Fi ∼ N
(
Vi − P ∗

i,−1, Φii

)
, (3)

where Φii is the ith diagonal element of the covariance matrix Φ. Basically,
the signal is a weighted sum of investors’ private information distorted by the
extent of liquidity trading and other price noise.10

Relying on the competitiveness assumption, the price in each of the N separ-
ate markets can be represented by the following equation of Bayesian updating:

Pi =
Φii

Πii + Φii
P ∗

i,−1 +
Πii

Πii + Φii

(
Fi + P ∗

i,−1

)
, (4)

8Under standard assumptions (exponential utility over next period’s wealth and normality)
demand schedules will be linear in the price.

9See, e.g., Hellwig (1980), proposition 5.2. It also follows directly from the martingale
property of prices.

10The properties of its covariance matrix, Φ, are discussed in some more detail in section
4.2.
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where Πii is the ith diagonal element of the covariance matrix Π. Under the
normality assumption, equation 4 holds for all competitive single-security ree
models, i.e., whenever realised prices are unbiased predictors of the underlying
value or future price sequence.

Define κi as the immediate response of an individual price to new informa-
tion, Fi. We have,

Pi = P ∗
i,−1 + κiFi, κi =

Πii

Πii + Φii
. (5)

In vector and matrix notation, the κi:s are arranged in a diagonal matrix, Ω̂.

Ω̂ =




κ1 0 · · · 0
0 κ2 · · · 0
...

...
. . .

...
0 0 · · · κN


 , (6)

to obtain
P = P∗

−1 + Ω̂F. (7)

When prices are observed, they will be used to extract the information re-
vealed in trading using equation 4. Next, a posterior estimate of V, denoted
P∗, is formed using Bayesian updating and the extracted signal F:

P∗ = E [V |F−1, F] = P∗
−1 + ΩF, (8)

where Ω is an updating matrix that efficiently updates all N prices using the
N individual signals. In the case of normally distributed variables, Bayesian
theory provides an explicit solution for Ω:

Ω = Π (Π + Φ)−1 . (9)

Two sets of returns are defined. The first stage returns, r, are calculated as
the difference between recorded prices and the prior,

r = P−P∗
−1 = Ω̂F. (10)

Secondly, define posterior returns, r∗, which take all information in F into ac-
count. Posterior returns are thus simply the difference between posterior and
prior,

r∗ = P∗ −P∗
−1 = ΩF. (11)

It is easy to see that returns will be cross-autocorrelated whenever P∗ 6= P
or, equivalently, when r∗ 6= r. The cross-autocorrelation results because the
price adjustment from the observed price, P, to the posterior valuation, P∗, use
observed returns to extract information about F. We have,

P∗ −P = r∗ − r =
(
Ω− Ω̂

)
F =

(
ΩΩ̂−1−I

)
r, (12)

where I is an N ×N identity matrix.
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Equation 12 summarises the model. Before interpreting equation 12, define
the elements of Ω as:

Ω =




ω11 ω12 · · · ω1N

ω21 ω22 · · · ω2N

...
...

. . .
...

ωN1 ωN2 · · · ωNN


 . (13)

As Ω̂ is a diagonal matrix, ΩΩ̂−1 can be seen as a normalisation of the
updating matrix Ω:

ΩΩ̂−1 =




ω11/κ1 ω12/κ1 · · · ω1N/κ1

ω21/κ2 ω22/κ2 · · · ω2N/κ2

...
...

. . .
...

ωN1/κN ωN2/κN · · · ωNN/κN


 . (14)

Returns will thus be cross-autocorrelated whenever there are non-zero off-diagonal
elements in the matrix Ω. From the structure of ΩΩ̂−1 we deduce that only the
relative informativeness of signals matters for cross-autocorrelations. First stage
returns are already adjusted for the informativeness of signals via the Ω̂ matrix.
Therefore, the matrix ΩΩ̂−1 is not affected by the absolute informativeness of
revealed information.

It is straightforward, but complicated due to the matrix algebra, to show that
the expected value of P ∗

i −Pi, can be written as a weighted sum of “unexpected”
returns or signals of all other securities.11 Equation 15 formulates this intuitive
result.

P ∗
i − Pi =

N∑
j=1

ωij (Fj − E [Fj |F−1, Fi])

=
N∑

j=1

ωij

κj
(rj − E [rj |F−1, ri]) (15)

In the first part of equation 15, the adjustment is formulated in terms of the
revealed information. The weights ωij measure the relative informativeness of
security j for the pricing of security i. The second part of the same equation
provides the results expressed in returns instead. When using returns, the
informativeness is normalised by κj , security j’s initial response to the revealed
information.

3.2 A one-factor model

Equation 12 provides an explicit solution for cross-autocorrelation. However, in
order to demonstrate the model’s implications, a less general setting is needed.
Therefore, this section develops a “one-factor model,” where priors and signals
have both a market component and an individual stock component.

Assume that the covariance matrix of the prior has the structure

Πij =
{

πm + πs if i = j
πm if i 6= j

∀ i, j, (16)

11This also follows directly from the optimal signal extraction implied by Bayesian updating.
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where πm is the variance of the market level prior and πs is the additional
variance for individual securities. The covariance matrix of the prior can thus
be visualised as

Π
N×N

=




πm + πs πm · · · πm

πm πm + πs · · · πm

...
...

. . .
...

πm πm · · · πm + πs


 . (17)

Similarly, we let the revealed information have a one-factor structure with
the variance of the market signal φm and the additional variance of individual
stock signals, φs:

Φij =
{

φm + φs if i = j
φm if i 6= j

∀ i, j. (18)

Using this simplified structure it is easy to calculate explicit returns and cross-
autocorrelations. The returns in excess of the prior, r, are simply κs, equal for
all stocks, multiplied by the revealed signal, F:

r = κsF, (19)

κs =
πm + πs

πm + πs + φm + φs
. (20)

The posterior returns, r∗, can be interpreted as the sum of a market return and
a security-specific return:

r∗ = ΩF = Ω
1
κs

r, (21)

Ω =
(

πs

πs + φs
I+

πsφs (πm/πs − φm/φs)
(πs + φs + N (πm + φm)) (πs + φs)

11′
)

, (22)

where I is an N ×N identity matrix, 1 is an N × 1 column vector of ones and,
consequently, 11′ is an N ×N matrix of ones. The first term in the definition
of Ω (equation 22) can be interpreted as the Bayesian response to security-
specific information. The second term is the optimal response of individual
stocks to revealed market-wide information. All off-diagonal elements, ωij , in Ω
are equal, which implies that all securities react similarly to information revealed
in all stocks,

ωij =
πsφs (πm/πs − φm/φs)

(πs + φs + N (πm + φm)) (πs + φs)
∀i, j i 6= j. (23)

We can derive most of the direct implications of the model from equation 22.
First note that cross-autocorrelation between individual stocks will converge to
zero as N , the number of securities, increases. When a large number of secur-
ities contribute to the price discovery, individual lead-lag effects are weakened.
However, it is easily shown that the cross-autocorrelation with the market re-
turn is strengthened as the number of securities grows. The reason is intuitively
simple; if many securities share a market factor, the market factor will be bet-
ter known, but individual securities’ contribution to information revelation is
reduced. Therefore, individual cross–autocorrelations are reduced, while the
cross-autocorrelation with the market return is strengthened.
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The sign of cross-autocorrelation is determined by πm/πs − φm/φs:

sign (ωij) = sign
(

πm

πs
− φm

φs

)
∀i, j i 6= j. (24)

This implies that if priors are more strongly correlated across securities than
signals, cross-autocorrelation will be positive. If signals are more strongly cor-
related than underlying returns, the observed returns will be negatively cross-
autocorrelated. The reason is straightforward; if the prior has strong cross-
security correlation, the market factor is not well known before trading, and
prices will therefore be used to identify the current market factor. If, however,
there is high cross-security correlation in revealed signals, returns provide a bad
measurement of the index level, and the index innovation is more likely to be
caused by signal errors. Therefore, stocks react negatively to innovations in
other stock prices.

3.3 The two securities case

A second intuitive example of the model’s direct effects is the two securities
case. Here, cross-effects can be calculated explicitly. As before, Π measures the
covariance of the prior estimate of the underlying values:

Π =
[

πm + π1 πm

πm πm + π2

]
. (25)

If π1 > π2, the prior of security 1 is relatively more noisy than the prior of
security 2. If πm is big, the errors in prior valuation are strongly correlated.

Similarly, Φ measures the precision of the information revealed in trading:

Φ =
[

φm + φ1 φm

φm φm + φ2

]
. (26)

If φ1 > φ2, information revealed from trading security 1 is more noisy than
information revealed from trading security 2. If φm is big, signal errors are
strongly correlated. Ω can be calculated explicitly from equation 9. The off-
diagonal elements, ω12 and ω21 determine the cross-autocorrelation:

ω12 =
π1φ1

|Π + Φ|
(

πm

π1
− φm

φ1

)
, (27)

ω21 =
π2φ2

|Π + Φ|
(

πm

π2
− φm

φ2

)
, (28)

where |Π + Φ| is the determinant of (Π + Φ). The term ω12 measures how
security 1 reacts to unexpected returns in security 2. Similarly ω21 measures
effect from security 1 to security 2.

From the symmetric nature of the lead-lag relation, simple comparative
static analysis allows the following conclusions to be drawn from equation 27–28.

1. If the prior of the underlying values is highly correlated across securities,
both leads and lags will increase (πm ↑⇒ ω12 ↑ and ω21 ↑).

2. If revealed signals are strongly correlated across stocks, leads and lags will
decrease, and may become negative (φm ↓⇒ ω12 ↓ and ω21 ↓).
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3. A security with higher prior variance will exhibit weaker (or more negative)
leads to other securities (π1 ↑⇒ ω12 ↓).

4. A security with higher prior variance will be less affected by events in other
securities. The absolute value of the positive or negative lag is reduced.
(π1 ↑⇒ |ω21| ↓).

5. A security with noisy revealed signals tends to lag the other securities
(φ1 ↑⇒ ω12 ↑).

6. A security with noisy revealed signals tends not to lead other securities.
Both positive and negative leads are reduced (φ1 ↑⇒ |ω21| ↓).

4 Discussion

The model, as presented in the previous section, is highly stylised, and the ad-
aptation to real world settings may not be altogether intuitive. Therefore, this
section discusses some aspects of the model and its applicability. For simpli-
city, the discussion focuses on the one-factor model and the two securities case.
Implications are equally valid for more general factor specifications.

4.1 The cross-security correlation of the prior

The properties of the common prior are critical for predicted lead-lag effects.
If the cross-security correlation of the prior is high, the first stage response
to common factors is lower than the optimal response after having observed
information revealed in other securities prices. The model thus predicts positive
cross-autocorrelation between individual securities.

Therefore, whenever the noisiness of the common factor is high relative to
the additional noisiness of individual securities, positive lead-lag relations are
expected. This is one of the reasons why most empirical studies document pos-
itive lead-lag relation, say between the cash index and index futures or between
options and underlying stocks. In both cases the common factor carries most
noise, and positive lead-lag effects should be expected.

In a multi-period setting, the covariance of the prior has two separate com-
ponents, the covariance of the last posterior and the covariance of value innova-
tions since the last transaction.12 In a market with many individual securities,
Bayesian updating ensures that the covariance matrix of the posterior is close to
diagonal since the common factors are known with much higher precision than
individual stock factors. Therefore, the cross-security correlation of the prior
valuation will be determined mostly by the covariance of value innovations.

An examination of securities returns reveals that the correlation structure
of value innovations is relatively constant. It is clear, for instance, that stocks
exhibit consistent and strong cross-security correlation in daily returns. For
practical purposes it can be assumed that the covariance structure of value
innovations is also similar for other choices of return periods, such as close-to-
open or intraday. Therefore, the cross-security correlation in long-term returns

12In addition, it is possible that new public information reduces the uncertainty concerning
the underlying value of securities.

11



(e.g. monthly returns) can be used as a simple proxy for the correlation in the
prior.

During continuous trading, the common factor prior will be known with re-
latively high precision, at least in markets with many traded securities, such as
stock markets. Therefore, lead-lag effects tend to be relatively weak during con-
tinuous trading.13 However, during periods of high return volatility, normally
in early morning trading and before the close, the index level prior can be as-
sumed to be more noisy, relative to the level of uncertainty in individual stocks.
Therefore, lead-lag effects can be expected to be relatively strong around open
and close.

4.2 Cross-security correlation of signals

Modelling information revelation as a signal F gives the model both generality
and simplicity. The formulation is valid for all ree models. However, depending
on the market setting, the interpretation is different. In a market maker frame-
work, the signal will be equal to the realised net order flow facing the market
maker. In an auction market setting, however, the signal is the net demand
facing any agent.

The cross-security correlation of signals plays an important role in the the-
oretical analysis. If signal correlation is high, cross-autocorrelation will be re-
duced. If signal correlation is higher than the cross-security correlation in the
prior, negative cross-autocorrelation will result. Although the cross-security cor-
relation of revealed information cannot be observed, ree models clearly indicate
what to expect.14

In a rational expectations equilibrium, the equilibrium pricing rule is known
by all agents, and prices thus reveal net demand at all price levels. Φ, the
variance of F, is thus also a direct measure of the covariance of net demand.
Net demand is the sum of informed demand and liquidity demand, and the same
is true for the Φ matrix.15 We can thus write,

Φ = ΦI + ΦL, (29)

where ΦI is the covariance of the price effect from informed demand and ΦL

is the covariance from liquidity demand. If the number of informed agents is
relatively large, the covariance of informed trading, ΦL, is primarily caused by a
correlation of errors in private information across individuals and securities. The
covariance of signals across individuals determines the level of aggregate price
noisiness while the level of covariance across securities determines the noisiness
of the index level. Such covariances can be seen as a “market mood,” a signal
shared by all informed investors.

The weight of an individual agent’s private signal is determined by how ag-
gressively the agent trades based on private information. The weight increases
with the precision of the private signal and decreases with the agent’s risk aver-
sion.16

13In addition, they may be impossible to verify using econometric techniques, due to the
effects of nonsynchronous trading.

14Explicit results concerning the correlation structure of revealed information are found in
Admati (1985) and Caballé and Krishnan (1994).

15Liquidity trading is, by assumption, uncorrelated with informed trading.
16See, e.g., Hellwig (1980) and Admati (1985).
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In a real-world trading situation, most traders only trade in a few secur-
ities (relative to the total number traded on the stock exchange). Therefore,
Φ is most easily seen as the correlation of net demand across securities. The
correlation in net demand can originate both from informed trading or liquid-
ity trading. Index arbitrage or basket trading are good examples of trading
strategies that induce positive cross-security correlation in net demand, regard-
less of whether trading is informed or not. Another case is when prices reveal a
universal “market mood” or investor sentiment related to a common factor of
securities prices.

4.3 Cross-security correlation in short-term returns

The cross-security correlation in short-term returns will be approximately equal
to the average of cross-security correlation in the prior and the revealed inform-
ation. This easily seen by examining the covariance matrix of first stage returns.
Standard algebra gives us,

Var (r) = Var
(
Ω̂F

)
= Ω̂ (Π+Φ) Ω̂. (30)

As Ω̂ is diagonal, it is clear that the cross-security correlation of one-period
returns is approximately equal to the average of Π and Φ.

As discussed above, the covariance matrix of the prior can be assumed to
be “close” to the covariance matrix of long-term returns. When observed one-
period returns are more strongly correlated than corresponding long-term re-
turns, the revealed signals must be more strongly correlated across securities
than the value innovations. Equivalently, the correlation in Φ must be larger
than the correlation in Π.

4.4 Empirical implications

The empirical implications of the model are mostly straightforward. Prices
that are informative for other prices will tend to lead other prices. Empirical
testing thus primarily requires a theoretical analysis of which prices are most
informative for other prices.

As argued above, securities with highly correlated return processes will have
relatively stronger correlation of their prior valuations. Therefore, lead-lag ef-
fects will be stronger between strongly correlated securities. This is easily ap-
plicable to lead-lag effects between stocks. There are several ways of identifying
closely related stocks, some of which are trivial. Stocks of companies that share
characteristics such as geographic location, industry, size range, volatility or
market factor loading, will tend to be more strongly cross-autocorrelated than
other stocks.

In particular, this approach can be used when testing lead-lag effects within
various financial markets, including option markets, bond markets and commod-
ity markets. For example, lead-lag effects can be expected to be strong between
bonds in the same maturity range and between options on the same stock. The
argument can be extended to lead-lag effects between different markets, such as
the lead-lag effect between stocks and stock options. Using the Black-Scholes
formula, it is evident that the value of out-of-the-money options is less correlated
with the value of the underlying stocks than in-the-money options. Therefore,
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the strongest lead-lag effects can be expected between stocks and in-the-money
options.

Cross-autocorrelation decreases in the correlation of revealed signals. The
revealed signals are, however, not observable. Therefore, signal correlation must
be identified theoretically or econometrically. Testable hypotheses are mainly
generated by models of investor behaviour. When traders are more prone to
cross-security trading strategies, cross-autocorrelation would tend to be weaker.
For example, index arbitrage trading will tend to reduce cross-autocorrelation
while pure liquidity trading will tend to increase cross-autocorrelation. Theoret-
ical models of the trading strategies can thus be tested using cross-autocorrelation
data.

Using econometric methods it is possible to identify when the return disper-
sion is high. One way is to estimate the cross-sectional return dispersion across
all traded securities. However, this method must be used with care, especially if
the estimation of return dispersion is performed in-sample. The risk of spurious
effects is high, since low return dispersion automatically implies weak lead-lag
effects if the cross-security correlation in long-term returns is kept constant.

Another implication of the model is that stocks that reveal highly informative
signals tend to lead other securities. An obvious problem of this proposition is
that the informativeness of stock prices and signals is not observable. However,
since trading reveals information, we expect the most heavily traded securities
to be less noisy estimates of the corresponding true value. Returns on liquid
securities should thus tend to lead returns on less liquid securities.

4.5 Application: The lead-lag relation between stocks and
stock options17

As the leverage effect of options (especially of deep out-of-the-money options)
should make these attractive to informed investors, Chan et al. (1993) conjec-
ture that option returns should lead stock returns. However, several empirical
studies, including Stephan and Whaley (1990), Easley et al. (1993) and Chan
et al. (1993), report that returns in the stock market lead returns in the options
market. Although there is a feedback from options to stocks, it is generally
much weaker.

The predictions of cross-security information aggregation are broadly in line
with the empirical evidence of this lead-lag relation. In the model, two separate
effects make it more likely that options lead stocks than vice versa. Firstly,
the value of the option is “more stochastic” than the value of the underlying
stock. Its value depends not only on the price of the underlying stock, but also
on interest rates and future return volatility, both of which are stochastic. In
an option that is deep out-of-the-money, the stock return volatility provides a
larger, albeit still small, proportion of option return volatility.

Secondly, the large number of traded option series will reduce the measured
lead-lag effects. As an example, it can be mentioned that in Stockholm, more
than 20 options, calls and puts combined, with different strike prices and ma-
turities are traded on Volvo b shares alone. Any lead from options to stocks
will be diluted by this one-to-many effect.

17I thank Robert E. Whaley for suggesting this extension.
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Documenting lead-lag relation would therefore be easier if an “option in-
dex” was used. This is exactly the approach used by Easley et al. (1993). By
adding trading volume in different option series, the authors create an index
that measures stock information innovation in option trading more precisely
than any individual option price series could.18 This option index leads stock
returns by at least 5 minutes, but the reverse lead extends to at least 20 minutes.
Clearly, as noted by Chan et al. (1993), even when using an option index, non-
synchronous trading in options, reduces the probability of observing a lead from
options to stocks.

When using the model presented in this paper to analyse the lead-lag relation
between stocks and options, we must be cautious since options are rarely traded
in the kind of pure auction market modelled in this paper. However, as the
pricing of the model is equivalent to the zero-profit market makers’ pricing
decision, we can feel relatively comfortable that the results will also carry over
to other market settings.

The key to the lead-lag effects is the relative information revelation in the
respective markets. If less information is revealed in the option market, it will
tend to lag the stock market. A simple example shows that this can indeed be
the case, even under very strong assumptions of trading efficiency.

The underlying value of the stock 1 is V1. Create an option portfolio with
option δ equal to unity. This implies that the option portfolio has the same
marginal price response to the change in the stock value (that is – unity). This
also implies that the variance of the option prior will be equal to the variance
of stock prior, π1, plus the variance of the prior of implied volatility (πσ):

Π =
[

π1 π1

π1 π1 + πσ

]
. (31)

Assume that agents investigate the underlying value and volatility separately.
Individuals’ private signals will then be more noisy for the option than for the
stock. Even if agents trade optimally in stock and options markets, this added
noise will persist in the realised market price (Admati, 1985). The covariance
of revealed information can therefore be written as:

Φ =
[

φ1 φ1

φ1 φ1 + φσ

]
. (32)

The off-diagonal elements of Ω can now be calculated explicitly as in equa-
tion 27–28:

ω12 = 0, (33)

ω21 =
πσφσ

|Π + Φ|
(

π1

πσ
− φ1

φσ

)
. (34)

As seen in equation 33–34, this very simple setup implies that stock returns will
lead option returns while option returns will not lead stock returns. Although
the same information is available among the agents in both markets, the realised
prices contain different information. The strength of the lead depends on the

18The fact that Easley et al. (1993) use volume data instead of price data does not matter
for the conclusions, assuming, as in standard ree models, that there is a known mapping from
excess demand to option price changes.
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stock price’s informativeness for option valuation. It thus increases in π1/πσ

and decreases in φ1/φσ.19

The assumption that all traders trade optimally in both markets is obviously
fairly strong. However, it shows that an information-based lead from options to
stocks must be based on transaction costs or other market imperfections. Given
that the informed investor can trade in both markets, it will always be optimal
to reveal exactly as much private information in both markets (profits in both
markets increase with the amount of private information revealed in trading and
are unaffected by the amount of information revealed elsewhere).

5 Empirical tests

5.1 Testing under continuous trading

Most stock markets operate on a continuous basis. Although this is perfectly
consistent with the model, continuous trading poses some problems for empirical
testing of the model. The simultaneity of price discovery is a key element of the
theoretical model. Without this simultaneity, the model becomes very difficult
to test for two separate reasons. Firstly, if two stocks trade in random order
at different points in time, the cross-autocorrelation effects are very similar to
those predicted by cross-security information aggregation.20 Secondly, a large
share of observed lead-lag effects can be attributed to improved knowledge of
a market factor. If stocks trade nonsynchronously, realised market returns can
be observed between trades in a single security. This will bias estimates of
cross-autocorrelation.21

Therefore, any test of the model must try to reduce the nonsynchronicity of
prices. In addition, it is preferable to test the model just after the occurrence of
an “information event” where the high return volatility makes the identification
of lead-lag effects less sensitive to measurement errors and other noise. For
intraday returns, it is probable that cross-stock adjustments will be too small
to be identifiable using econometric techniques.

This demand for exact simultaneity strongly restricts the choice of dataset.
Clearly, it is possible to assume that prices realised within, say 10 seconds, are de
facto simultaneous. This may be a correct interpretation of the actual inform-
ation processing capacity of the market place, but testing should preferably be
carried out using data which is not subject to any nonsynchronicity in trading.

The best real world candidate for testing the model is an opening call auc-
tion of the kind used at the Toronto Stock Exchange and the Paris Bourse. This
market setting closely resembles the model setup of this paper. All limit orders
are submitted to the electronic trading system before the opening call auction.
Prices are then set simultaneously for all stocks, i.e., without any nonsynchron-
icity.

19Intuitively, the ratio π1/πσ should be quite high. Using the Black-Scholes formula with a
given stock price leaves little additional noise in option prices. The ratio φ1/φσ depends on
the price precision in each market, which is hard to judge in the general case.

20See, e.g., Fischer (1966), Scholes and Willams (1977) and, in particular, Lo and MacKinlay
(1990a,b).

21The sign of the bias depends on the chosen specification of price formation.
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5.2 Data

The data chosen for the empirical testing comprises opening and closing prices
for all stocks traded in the automated cac system of the Paris Bourse.22 In order
to minimise possible problems of nontrading and low liquidity, the sample is
restricted to the 70 most traded stocks on the monthly settlement list (Reglement
Mensuel). All stocks used have at least 1000 days of price data during the
sample period. For the chosen stocks, there are virtually no nontrading days.
The sample covers five trading years, 1991–1995.

Opening prices are set in a simultaneous call auction procedure. During the
preopening period, starting 08:30 (09:00 until 1992), orders can be freely added
and cancelled. Traders observe an indicative opening price based on limit orders
entered into the system. However, most executed orders are entered into the
system during the last 5-10 minutes of the preopening period. At 10:00, an
opening price is calculated and all crossing orders are executed (approximately
5% of total daily trading volume is traded at the opening prices). After the
opening, trading is continuous until the close (17:00). 23

In the Paris market, closing prices are also suitable for testing the model.
As in most continuous stock markets, trading is very active in the last minutes
of trading. This almost eliminates the problems of nonsynchronous trading.
Average non-trading for the stocks in the sample is only a few seconds, as a
number of traders in fact compete to trade at the day’s last prices. For practical
purposes, closing prices can therefore be treated as simultaneously determined.

The main advantage of the dataset is the absence of nontrading. However,
the long time period between open and close makes the observation of lead-lag
effects less probable. It is possible that cross-security price effects drown in the
noise induced by overday trading and overnight information. Except for stocks
listed on us exchanges, it is impossible to observe prices after the close, but
it is possible to use prices from, say, 15 minutes into the trading day to test
the properties of lead-lag effects at open. However, the available intraday time
series are too short for a meaningful analysis.

5.3 Methodology

5.3.1 Returns

In order to use both opening and closing prices, two types of returns are cal-
culated. Overday returns are calculated as the log difference between opening
and closing prices:

r
day
i,t = log

(
P close

i,t

)
− log

(
P

open
i,t

)
. (35)

Overnight returns are similarly measured from close to open:

r
night
i,t = log

(
P

open
i,t

)
− log

(
P close

i,t−1

)
. (36)

Overnight returns are dated with the day when the return period ends. For
example, Monday overnight return measures the return from Friday close to
Monday open.

22The data has been provided by sbf–Paris Bourse.
23Detailed accounts of the trading procedures are provided by Biais et al. (1995, 1996) and

de Jong et al. (1995).
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5.3.2 Cross-autocorrelation estimates

Cross-autocorrelations at open are estimated using the regression model

r
day
i,t = β0 + β1r

night
j,t + εi,t, (37)

while cross-autocorrelation at close is calculated using the regression model

r
night
i,t = β0 + β1r

day
j,t−1 + εi,t. (38)

Regressions use Least squares estimation with heteroskedasticity consistent gmm
standard errors (Hansen, 1982). Regressions do not exclude or control for out-
liers.

5.3.3 Cross-sectional testing

As expected from the model and the large number of traded securities on the
Paris Bourse, lead-lag effects between individual securities returns are relatively
weak. Therefore, testing requires the aggregation of data. Relative to Chan
(1993), this paper provides a methodological innovation in investigating the
cross-sectional properties of cross-autocorrelation estimates between individual
securities pairs.24

The cross-sectional approach provides a total of 4830 estimates of pair-wise
cross-autocorrelation. As these estimates are produced from a mere 70 return
series, there is strong dependence between individual estimates. To alleviate
this problem, the cross-sectional estimation (table 3) is performed in two steps.
In the first step, 70 separate regressions are estimated, holding either leading
or lagging security constant. This provides 70 sets of parameter estimates,
the mean of which is reported along with the cross-sectional standard error
(across the 70 regressions). Reported significance levels test whether the mean
is different from zero.

5.4 Results

5.4.1 Cross-autocorrelation with market return

One of the model’s predictions is that stock returns should be more strongly
cross-autocorrelated with the market return than with other individual stock
returns. Results in table 2 strongly support this hypothesis. Average cross-
autocorrelation between individual stock returns is much lower than cross-
autocorrelation with the market return (0 .019 , 0 .037 versus 0 .098 , 0 .114 ).

The model also predicts that “noisy” securities should be most strongly
cross-autocorrelated with the market return. As trading volume can be used
as a proxy for price informativeness, the least traded securities should thus lag
the market return more strongly than more liquid securities. Since the sample
provides a relatively narrow range of liquidity, the effect should be relatively
weak within the sample. Empirical results (not reported) show that cross-
autocorrelation at open decreases in trading volume. However, at close the
effect of trading volume is weakly positive. The most traded securities lag the

24Chan (1993) aggregates returns to index series and uses time series methods on the less
noisy index series. This approach is also used in a companion paper, Säfvenblad (1997).
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Table 2: Return correlations and cross-autocorrelations

Mean Median Min Max N

Pairwise correlations
Overday returns 0.188

(0.101)
0.162 -0.043 0.505 2415

Overnight returns 0.131
(0.132)

0.089 -0.500 0.603 2415

20-day returns 0.269
(0.169)

0.258 -0.172 0.863 2415

Pairwise cross-autocorrelations
At open 0.019

(0.039)
0.017 -0.335 0.148 4830

At close 0.037
(0.043)

0.033 -0.092 0.185 4830

Cross-autocorrelation with market return
At open 0.098

(0.071)
0.105 -0.124 0.279 70

At close 0.114
(0.057)

0.111 -0.056 0.267 70

Reported cross-autocorrelations are the estimates of β1 from the regression model: ri,t =
β0 + β1rj,t, i 6= j. N is the number of distinct security pairs in the sample. 20-day returns
are calculated using closing prices. Cross-sectional standard errors in parentheses.

market return more strongly than less traded securities. This is partly the
expected result of less idiosyncratic noise in the most liquid stocks, but other
trading-based explanations must be used to explain these effects. This question
is not pursued any further in this paper.

5.4.2 Cross-autocorrelation and the cross-security correlation of the
prior

As discussed above, the correlation in long-term returns can be used as a meas-
urement of cross-security correlation in the common prior valuation of securities
(πm, in the single-factor model). Table 3, panel a, reports the results obtained
using the correlation in 20-day returns as a proxy for πm, in a linear specifica-
tion of the relation between cross-autocorrelation and cross-security correlation
of the prior.25

Results show that lead-lag effects are significantly stronger between highly
correlated securities, as predicted by the model. Parameter estimates of the
correlation effect are similar at open and close (0 .049 , 0 .053 ). Lead-lag effects
are, however, still fairly weak even between strongly correlated securities.

25Other return lengths yield similar results. Choosing long return lengths minimises the
influence between daily cross-autocorrelation and measured return correlation.
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Table 3: Cross-autocorrelation as a linear function of return correlation and trading
volume

Average across 70 regressions

β̂0 β̂1 R2

Panel a: Correlation in 20-day returns
At open 0.003∗

(0.011)
0.049∗∗

(0.062)
0.081

At close 0.019∗∗

(0.018)
0.053∗∗

(0.044)
0.059

Panel b: Trading volume of leading stock
At open −0.116∗∗

(0.102)
0.078∗∗

(0.069)
0.081

At close −0.257∗∗

(0.189)
0.171∗∗

(0.123)
0.252

Panel c: Trading volume of lagging stock
At open 0.190∗∗

(0.149)
−0.102∗∗

(0.086)
0.134

At close −0.160∗∗

(0.151)
0.114∗∗

(0.100)
0.127

This table reports the average of 70 separate regressions of the following type. Panel a:
[Estimated cross-autocorrelation]i,j = β0+β1[Estimated correlation in 20-day returns]i,j +εj .
Panel b: [Estimated cross-autocorrelation]i,j = β0 + β1[log trading volume for leading stock
/10]i,j + εj . Panel c: [Estimated cross-autocorrelation]i,j = β0 + β1[log trading volume for
lagging stock /10]i,j + εj . Trading volume is measured in millions of frf per day. There are
69 observations in each regression. Standard errors in parentheses report the standard error
of the parameter estimate across the 70 regressions. Significance levels test whether the mean
of estimates is different from zero. ∗∗/∗/◦ Significantly different from zero at the 0.01/0.05/
0.10 level.
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Table 4: Same-industry effects on cross-autocorrelation

Correlation in

Returns
20-day
returns

Cross-auto-
correlation†

Stock
pairs

Paris overday (at open)
Same industry 0.212

(0.101)
0.311

(0.183)
0.020

(0.036)
80

Different industry 0.188
(0.102)

0.270
(0.168)

0.018
(0.039)

2335

Paris overnight (at close)
Same industry 0.124

(0.138)
0.311

(0.183)
0.028

(0.042)
80

Different industry 0.134
(0.132)

0.270
(0.168)

0.037
(0.043)

2335

Cross-sectional standard errors in parentheses. †Average cross-autocorrelation (both ways)
across stock pairs.

5.4.3 Cross-autocorrelation and the precision of the prior

In panels b and c of table 3, similar methodology is used to estimate the effects
of price precision on lead-lag effects. Assuming that high trading volume implies
better price precision, both in prior and revealed information, the theoretical
results of section 3.3 predict that high volume stocks will exhibit stronger leads
to other securities.

This prediction is confirmed by data both at open and close. The lead
of a stock increases significantly in the stock’s trading volume. Judging from
parameter estimates and R2, the volume effect is particularly important at close.

It was also predicted that the most liquid securities would exhibit weaker
lags to other securities. However, the empirical evidence is mixed. At open, the
lag is significantly decreasing in the lagging stock’s trading volume. At close,
the relation is reversed. The most liquid securities also exhibit the strongest
lags to other securities. This is analogous to the increased cross-autocorrelation
with the market return mentioned in section 5.4.1. The result is partly due to
the most liquid stocks’ higher market factor loading, but it is most probable
that other effects contribute to this relation. It should also be pointed out that
since all stocks in the sample are very liquid, the range of liquidity may not be
large enough to detect the basic effect.

5.4.4 Same industry shares

It is also possible to test whether the cross-autocorrelation is stronger between
companies with highly correlated return processes, without using correlation
data as explanatory variable. One way is to identify closely related shares using
another method of identification such as industry classifications. Returns on
stocks within the same industry can be expected to be more strongly correlated
than other shares, are therefore also expected to exhibit stronger lead-lag effects
than other stocks.
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The industry effect seems to be quite small for the stocks in this sample. The
20-day correlation between stock returns for stocks within the same industry is
0 .311 , compared to 0 .270 between other stocks (table 4). Not surprisingly, the
difference in cross-autocorrelation is small, and not statistically significant. At
close, it is even slightly higher between firms in different industries.

5.4.5 Cross-security correlation in short-term returns

One important feature of the model is that it is sufficiently rich to model both
positive and negative cross-autocorrelations in stock returns. This property is
not present in alternative models such as the Chan (1993) model or the non-
synchronous trading specification of Lo and MacKinlay (1990a). Both models
predict that the cross-security correlation of short-term returns is lower than
the correlation in long-term returns for all security pairs.26

In the Chan, model this result is obtained because signals (revealed net de-
mand) are uncorrelated across securities. In the Lo-MacKinlay framework, price
measurements are delayed. Therefore, for shorter return intervals, measured re-
turns reflect partly different value innovations.

This difference in predictions makes it possible to test whether the model
of cross-security information aggregation developed here is a useful extension of
the Chan (1993) model or a good complement to the nonsynchronous trading
model.

The effect on measured returns is most easily described using simulations.
Figure 1 presents a simulation of the relation between correlations in short-term
and long-term returns for four separate specifications of multi-security stock
markets. Each dot represents the short- and long-term correlation between a
pair of securities. For dots below the dashed 45◦ line, short-term correlation is
lower than long-term correlation.27 The solid line is a least squares regression
line, included to help compare different panels.

Panel a presents a simulation of the model of cross-security information
aggregation, developed in section 3. The average correlation between signals
varies between 0 .3 and 0 .6 . For many stocks with lower cross-security correl-
ation than 0 .4 in long-term returns, the short-term correlation is higher than
long-term correlation.

Panel b presents the results of a similar simulation where the correlation in
signals has been set to zero, as in the Chan (1993) model. The regression line
does not pass exactly through the origin, but it is clear that short-term returns
are less strongly correlated than long-term returns for virtually all security pairs.

Panels c and d present simulations of a pure Lo and MacKinlay (1990a)
model, where stock prices are nonsynchronous measurements of an underlying
value process. In panel c, prices are subject to very high nontrading (50% per
day); in panel d, the nontrading frequency is close to what can be observed
empirically for less liquid markets (5%).

The cross-security correlation of overday and overnight returns in the Paris
Bourse sample is presented in figure 2. For the overnight returns in panel b,

26Closer to zero is the exact formulation, but negatively correlated stock returns are very
rare. This can, e.g., be seen in figure 2. The prediction can also be formulated in terms of the
least squares regression lines in figures 1 and 2. Both models predict a positive slope and an
intercept of zero.

27An addition of a temporary component, such as bid-ask bounce, does not alter the basic
relation between short and long-term correlation for any of the models.
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Figure 1: Simulation of the cross-security correlation in short- and long-term returns
using four separate specifications of price return behaviour in a multi-
security market
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Correlation in 1-period returns plotted against the correlation in 20-period returns for four
separate specifications of cross-security return behaviour. Each dot represents the long-term
and short-term correlation of a security pair. Dots below (above) the dashed 45◦ line indicate
that securities have higher (lower) long-term than short-term correlation.
Panels a and b show a simulation of the model of cross security information aggregation. In
panel a, the cross-security correlation of revealed information varies between 0 .3 and 0 .6
(φm/(φm + φs) ∈ [0.3, 0.6]). In panel b, the correlation of signals is set to zero, similar to
the Chan (1993) model. Panel c and d present the return behaviour under nonsynchronous
trading modelled according to Lo and MacKinlay (1990a). In panel c, the trading frequency
is set to 0 .50 per stock per day, spread evenly throughout 25 daily subperiods. In panel d,
the trading frequency is a more “normal” 0 .95 per day.
The solid line is a least squares regression line using all observations. The cross-security cor-
relation of value processes varies between 0 .10 and 0 .80 for all four panels (πm/(πm + πs) ∈
[0.0, 0.8]).
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Figure 2: Cross-security correlation in overday and overnight returns compared to
correlation in monthly returns
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Cross-security correlation in overday and overnight returns plotted against the correlation in
monthly (20-day) returns. Each dot represents a pair of securities (in total 2415). Dots below
(above) the dashed 45◦ line indicate that for this security pair, short-term returns are less
(more) strongly correlated than long-term returns. The solid line is a least squares regression
line using all observations.

both the Chan model and the nonsynchronous trading model seem to fit the
observed relation between short- and long-term returns. However, given the
absence of nonsynchronicity in the sample, nonsynchronous trading is obviously
not a possible explanation. This conclusion is further strengthened by the large
difference between correlation in short- and long-term returns. Nontrading of
at least 50% per day is needed to generate a similar pattern.

In the case of overday returns (panel a), approximately one third of security
pairs exhibit higher short-term than long-term correlation. As mentioned above,
this cannot be reconciled with the nonsynchronous trading model or the Chan
(1993) model.28

In order to generate this return structure, revealed information must be
strongly correlated across stocks. This implies an initial overreaction to common
information for about a third of the stock pairs. These empirical results suggest
that order submission in the Paris market is strongly correlated across stocks
at close.

To the best of the author’s knowledge, this kind of analysis of short-term
versus long-term correlation is new. It is therefore impossible to say whether the
cross-security return correlations documented in this paper are representative
for other stock exchanges.

6 Conclusion

The model of cross-security information developed in this paper provides res-
ults that are intuitive and easily adaptable to stock price data. For individual

28The same conclusion can be drawn from the fact that the intercept of the least squares
regression line is significantly different from zero for overday returns, but not for overnight
returns (not reported).
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stock returns, the model predicts a well-defined and testable structure of cross-
autocorrelations. Securities with informative prices will tend to lead other se-
curities, especially if revealed information is uncorrelated across securities. If
the number of stocks sharing a factor is large, the cross-autocorrelation of in-
dividual stock returns will be low. However, it can still be significant if stocks
share a factor not shared by other securities. Implications can be drawn to
lead-lag structures of, for example, stocks, debt, warrants, and options related
to a single company. As the model uses information extraction from realised
prices, empirical testing is straightforward.

In the empirical section, several of the model’s predictions were supported by
data from the Paris Bourse. Cross-autocorrelation is higher between securities
with highly correlated long-term returns at open and close. More liquid secur-
ities, should have less noisy prices, and therefore tend to lead other securities.
This conjecture was supported by data both at open and close. However, the
most liquid securities were also strongly lagging other securities at close, hint-
ing at very strong reciprocal leads and lags between the most liquid securities.
Cross-autocorrelation with the market return is, as predicted, much stronger
than cross-autocorrelation between individual securities.

It was also shown that the model presented in this paper can explain observed
return patterns better than the alternative models. The Lo and MacKinlay
(1990a) model requires unrealistically high nontrading frequencies to explain
the big difference between the short-term and long-term correlation of stock
returns. The Chan (1993) model, which is nested by the model of this paper, is
not sufficiently rich to generate higher short-term than long-term correlation of
returns. As this property was observed for roughly one third of Paris overday
return pairs, the addition of cross-security correlation in revealed information
clearly adds empirical usefulness to the model.

The model of cross-security information aggregation has a large potential for
modelling stock price behaviour. The model is set in a general ree framework,
which makes it easy to adapt to different trading environments. Moreover, its
generality makes it a useful tool for analysing a large number of price discovery
issues. In this paper, the lead-lag relation between stock options and corres-
ponding stock returns was discussed. A companion paper, Säfvenblad (1997),
studies the implications for stock index returns.
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