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Abstract


This paper develops and tests implications of cross-security information
aggregation on index return autocorrelation. In the model, prices are
realised individually and simultaneously in ree auction markets, then re-
aligned to take information revealed in other prices into account. This
adjustment is symmetric across stocks, leading to index return autocor-
relation of ma(1) type.


Autocorrelation will be high if the index level prior is noisy, for ex-
ample, at Monday open and after high volatility in overnight trading.
Autocorrelation will also be higher in portfolios of highly correlated secur-
ities. Overnight information revelation and high trading volume reduces
the noisiness of the index level prior and, consequently, return autocorre-
lation.


Index return autocorrelation will be low, or even negative, if there
is high cross-security correlation in revealed information, due to, for ex-
ample, index arbitrage trading or profit taking.


All major predictions are supported by tests using data from the Paris
Bourse. In contrast to earlier models of index return autocorrelation,
the model can generate both positive and negative index return autocor-
relation. This paper also documents instances of negative index return
autocorrelation.


∗The paper has benefitted from comments made by Clas Bergström, Bevan Blair, Magnus
Dahlquist, Richard Lyons and Staffan Viotti. I thank sbf–Paris Bourse, especially Marianne
Demarchi and Solenn Thomas, for its hospitality and for providing the data used. I gratefully
acknowledge research funding from Bankforskningsinstitutet. Address: Box 6501, S-113 83
Stockholm, Telephone: +46-8-736 9000, Fax: +46-8-31 23 27, Internet E-mail: finpsa@hhs.se.







1 Introduction


Short-term stock index returns are, in most observed cases, positively autocor-
related. This apparent breach of the efficient market hypothesis has attracted
much attention, both theoretically and empirically. Three explanations dom-
inate the theoretical literature: nonsynchronous trading, transaction costs and
time-varying expected returns.1


The oldest and most widely accepted of these hypotheses is the nonsynchro-
nous trading hypothesis, originated by Fischer (1966) and Scholes and Willams
(1977). Prices are assumed to be informationally efficient, but only measurable
when stocks actually trade. If the component stocks of a stock index trade at
separate points in time (nonsynchronously), last recorded prices reflect partly
old market-wide information and a delay will occur in the index’s reaction to new
information even if the “true” index level is known by all market participants.


It is possible to fine-tune the nonsynchronous trading model to generate
high levels of index return autocorrelation by assuming extreme nontrading in
certain stocks or assuming that thinly traded stocks have high betas. However,
even with these enhancements, nonsynchronous trading only accounts for parts
of the observed index return autocorrelation.2


The transaction cost hypothesis, as formulated in Cohen et al. (1980) and
Mech (1993), conjectures that stocks periodically trade at prices that do not
reflect all available information, the reason being that transaction or information
costs make additional cross-security price analysis non-profitable. This may be a
reasonable assumption in a specialist or market maker environment where most
traders only trade in a single security. However, if speculators trade in several
securities, the effects from imperfect information should be small. Also, order
submission and withdrawal are in fact close to costless on automated exchanges.


The advocates of time-varying expected returns argue that risk premia can
be time-varying, following predictable patterns, typically mean reversion, and
that, as a result, observed returns will be positively autocorrelated (See, for
example, Campbell et al., 1993). However, under time-varying risk premia the
same autocorrelation is expected to be visible in related asset returns such as
individual stock returns or index futures returns. However, both these asset
classes have consistently proved not to have serially correlated short-term re-
turns.3


In addition, the shorter the return frequency considered, the less likely it
is that time variation in expected returns is caused by time variation in risk
premia. In fact, the observed autocorrelation in intraday index returns is usually
strong enough to generate negative expected returns. Since plausible expected
returns must be higher than the risk-free rate, time-varying expected returns
could possibly explain autocorrelation in long-term returns (weekly, monthly,
etc.). However, time-varying risk premia do not provide a sensible explanation
for the behaviour of intraday returns.


1See Boudoukh et al. (1994).
2See, e.g., Atchison et al. (1987), Berglund and Liljeblom (1988), Lo and MacKinlay


(1990a), Mech (1993).
3This observation was probably first made by Boudoukh et al. (1994). If individual stock


returns are autocorrelated, they are normally negatively autocorrelated, probably as a result of
bid-ask bounce. That index futures returns have very low, if any, serial correlation is reported
by, amongst others, Stoll and Whaley (1990), Chan et al. (1991) and Chan (1992).
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In contrast to these earlier models of index return autocorrelation, this pa-
per uses a model of cross-security information aggregation first developed in
Säfvenblad (1997). Trade is modelled as taking place in separate, simultan-
eous call auctions of the Hellwig (1980) type. There are no transaction costs,
all stocks trade at efficient prices, and speculators may trade in all securities.
The only restriction used to generate the theoretical results is the time and
information constraint imposed by a simultaneous call auction procedure.


Each equilibrium transaction price will reveal information, i.e. a signal, to
the rest of the market. As stocks trade separately, resulting prices may be
inefficient with regard to the other realised prices, simply because other prices
were not observable when demand schedules were formulated. A large part of
the lead-lag relation can be captured using the index level. When aggregate
stock prices are known, the index level is known with greater precision and
prices will be revised to take this into account. The autocorrelation in index
returns results from this price revision.


Any cross-stock price inefficiencies will, of course, be corrected in subsequent
trading. Therefore, the model’s scope is limited to the analysis of short-term
lead-lag effects and information inefficiencies. The return horizons considered
ranges from minutes to hours. Questions related to long-term returns, such
as autocorrelation in weekly and monthly stock index returns, require other
modelling approaches.


The paper is organised as follows. In the next section (section 2) the model
of cross-security information aggregation is presented and testable hypotheses
with regard to index return autocorrelation are provided. Section 3 starts by
discussing some earlier empirical evidence on index return autocorrelation, and
continues by testing the model using data from the Paris Bourse. Section 4
summarises and concludes.


2 A model of cross-security information aggreg-
ation


2.1 Background


The model of cross-security information aggregation used in this paper was
originally developed in Säfvenblad (1997) to adapt the market maker model of
Chan (1993) to a noisy rational expectations equilibrium (ree) auction market.4


This implies that the model can serve as multi-security extension to several
ree models, including Grossman (1976), Grossman and Stiglitz (1980), Hellwig
(1980) , Glosten and Milgrom (1985) and Kyle (1985, 1989).5


The stochastic environment of the Chan model is extended by introducing
cross-security correlation in revealed information. Säfvenblad (1997) shows that
this richer information structure is needed to model open-to-close returns on
the Paris Bourse. It is also a necessary condition for negative index return


4The Chan (1993) model is based on Kyle (1985). Information is modelled as the net order
flow observed by a stock specialist.


5These, and other ree models, share a large number of basic properties. The similarities
are demonstrated in several papers, including Krishnan (1992), Paul (1994), Rochet and Vila
(1994), Sarkar (1994) and Vives (1995).
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autocorrelation, and allows for common cross-security trading strategies such
as index arbitrage trading.


The model is a two-stage mechanism for cross-security information aggreg-
ation within a market with many securities. In the first stage, an equilibrium
price is reached for each security in an auction market of the Hellwig (1980) type.
In the second stage, prices are realigned across securities using information re-
vealed in first stage prices. As a result, observed returns are autocorrelated,
following an ma(1)-process with, depending on parameters, positive or negative
autocorrelation.


The model clearly shows why index returns are mostly positively autocor-
related. As all stock prices are noisy, their response to new information is
proportional to the precision of the information. For an individual stock, the
signal precision is low. However, if a large number of prices are observed, these
can be used to construct a less noisy estimate of the market factor. The im-
proved precision of the market level estimate justifies a stronger response. As
stocks react symmetrically to the new information, index return autocorrelation
results.


Normally, the index return autocorrelation is positive, but an important
feature of the model is that it can also generate negatively autocorrelated index
returns. This will be the case when the error in revealed information has higher
cross-security correlation than the error in the prior valuation of securities.
Under such circumstances, index returns rather than cross-security information
will be used to identify price errors. The result is negatively autocorrelated
index returns.


The model’s implications are not limited to index return autocorrelation. In
fact, the model may also be used whenever there is simultaneous information
revelation in several securities or in several markets. Some examples are the lead-
lag effects between stocks and stock options, between index futures and cash
index returns, between prices for the same asset on two exchanges. Säfvenblad
(1997) specifically analyses the model’s implications for cross-autocorrelation
among individual stock returns, and the lead-lag relation between stock returns
and stock option returns.


In this model, security prices reflect all historical information, but not in-
formation made available simultaneously (or later) in other securities. Indi-
vidual securities will therefore exhibit a delayed response only to information
revealed simultaneously in prices of other securities. Public information re-
leases, or other information not revealed in prices, will be reflected in all prices
simultaneously, and therefore do not result in index return autocorrelation.6


In contrast to both the nonsynchronous trading and the transaction cost
hypotheses, there is no lagged response to public information. All prices are
efficient and react instantly to public information. The index return autocorre-
lation is not a result of lagging returns, but of causality. Realised prices cause
a revaluation of all other securities. When securities trade simultaneously the
causality will be symmetric and reciprocal, resulting in index return autocorre-
lation.


Although returns are cross-autocorrelated, and thus predictable, the price
inefficiency cannot be used to make trading or arbitrage profits, since price


6Public information may, however, generate increased uncertainty about the current value
of stocks. If this uncertainty is resolved in trading, autocorrelated index returns may result.
Compare with the empirical tests in section 3.5.3.
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revisions are predicted by all agents. Prices will therefore adjust without trading.
Several authors have discussed the questions of price informativeness and


information acquisition in the context of ree models.7 Those questions however,
are not addressed in this paper. Price informativeness is taken to be exogenously
determined, but the results of the model have clear implications for information
acquisition. As market-wide information is imperfectly reflected in stock prices,
it is relatively more profitable to trade on market-wide information in this setting
than in the Admati (1985) framework.8


The model is best adapted to a simultaneous opening call auction in an
electronic limit order book market, such as the Paris Bourse or the Toronto
Stock Exchange. Under this trading arrangement, no (or very little) cross-stock
information is available until after the morning call, and only then can prices
adjust to the information revealed in opening prices. Clearly, prices can adjust
to any information available before the opening procedure.


2.2 Basic model


In the economy, N securities trade separately in simultaneous call auction mar-
kets of the Hellwig (1980) type. Each security is a claim to an unobservable
underlying value. The fundamental value can, for example, be interpreted as
the value of all securities in the absence of private information. The N values
are arranged in the N × 1 vector V.


There are two types of traders in the market, namely speculators and li-
quidity traders. Speculators are rational and profit maximising agents, some
of whom have received or acquired information, “a signal,” relative to the un-
derlying value of securities. Liquidity traders trade for some other exogenous
reason (e.g. hedging or liquidity constraints) and their demand is independent
of the expected value of securities. Liquidity trading can be correlated across
securities, but is assumed to be independent of past liquidity trading, value
innovations and any private signals.


Before trading, agents share a normally distributed, noisy prior belief, P∗
−1,


about the underlying value of all securities:


P∗
−1 = E [V |F−1] ∼ N(V,Π) , (1)


where F−1 is the public information set available before trading. The covariance
matrix of the common prior, Π, is known by all agents.


Agents calculate optimal demand schedules using any private information
and the equilibrium covariance structure of signals and returns. Standard
assumptions (normal distribution and exponential utility over next period’s
wealth) provide optimal demand schedules that are linear in price.


Demand schedules for individual securities are collected by a Walrasian auc-
tioneer who sets a price vector P that clears supply and demand for all stocks
simultaneously.


Relying on standard ree results, it is known that each price realised in
trading reveals a signal, Fi for each stock.9 Here, the signal is modelled as a


7See, e.g., Grossman and Stiglitz (1980) and Holden and Subrahmanyam (1992).
8For a formal development in a market maker environment of the Kyle (1985) type, see


Shin and Singh (1996).
9See, e.g., Hellwig (1980), proposition 5.2. It also follows directly from the martingale


property of prices.
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Table 1: Sequence of events and information in the model of cross-security informa-
tion aggregation


Event Description


A All agents share a common prior, P∗
−1, which is a normally distrib-


uted measurement of underlying values V with covariance matrix
Π


B Each agent submits N , optimally calculated, linear demand sched-
ules to a Walrasian auctioneer. Submitted demand schedules are
not revealed to other traders.


Trading The Walrasian auctioneer simultaneously sets market clearing
prices, Pi, in all N markets. Orders are executed immediately.


C Agents observe the realised price vector, P.
D Agents use the equilibrium noisiness of prices to deduce a signal,


F, from realised prices, P. The signal has covariance matrix Φ.
E Agents calculate posterior beliefs P∗ of V using Bayesian updating


and the revealed signal F.


Sequence of events: A → B → Trading → C → D → E. All agents know the information
structure of underlying returns, that is, the true value of Φ and Π. They also know the
precision of their own, and other agents’ signals. Transaction costs are zero.


noisy measurement of the error in the prior valuation. For all stocks, vectors
and matrices are used to write


F ∼ N
(
V −P∗


−1 , Φ
)
. (2)


For an individual stock we write


Fi ∼ N
(
Vi − P ∗


i,−1 , Φii


)
, (3)


where Φii is the ith diagonal element of the covariance matrix Φ. Intuitively,
the aggregate signal can be seen as a weighted sum of all investors’ private
information distorted by the extent of liquidity trading.10


The price in each of the N separate markets can be represented by the
following equation of Bayesian updating:


Pi =
Φii


Πii + Φii
P ∗


i,−1 +
Πii


Πii + Φii


(
Fi + P ∗


i,−1


)
. (4)


Equation 4 holds for all competitive single-security ree models, i.e., in all cases
where realised prices are unbiased predictors of the underlying value or future
price sequence. Otherwise the realised prices must be adjusted for the predict-
able part of future returns.


Although Pi reflects information available in Fi, it does not reflect all in-
formation available in the full signal vector, F. Therefore, stock prices, and the
index level, will be adjusted to take this information into account. First, define
κi as the price’s responsiveness to new information in Fi:


Pi = P ∗
i,−1 + κiFi κi =


Πi


Πi + Φi
. (5)


10See Admati (1985) for a formal derivation and Säfvenblad (1997) for a short discussion.
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Rewrite equation 5 to vector and matrix notation by arranging the κi:s in the
diagonal matrix, Ω̂:


Ω̂ =






κ1 0 · · · 0
0 κ2 · · · 0
...


...
. . .


...
0 0 · · · κN



 . (6)


The realised price can then be written as the prior plus the signal vector, F,
premultiplied by Ω̂:


P = P∗
−1 + Ω̂F. (7)


As price and signals are normally distributed, standard Bayesian theory can
be used to calculate a closed form solution for the posterior, P∗, given the
extracted signal vector F:11


P∗ = E [V |F−1, F (or P)] = P∗
−1 + ΩF, (8)


Ω = Π (Π + Φ)−1 . (9)


The posterior is linear in F with Ω as an updating matrix which maps N signals
into N efficient prices.


Two sets of returns are defined. The first stage returns, r, are calculated as
the difference between recorded prices and the prior:


r = P−P∗
−1 = Ω̂F. (10)


Secondly, posterior returns, r∗, which take all information in F into account are
defined. Posterior returns are thus simply the difference between posterior and
prior valuation:


r∗ = P∗ −P∗
−1 = ΩF. (11)


It is easy to see that returns will be cross-autocorrelated whenever P∗ 6= P
or, equivalently, when r∗ 6= r. The cross-autocorrelation results because the
price adjustment from the observed price, P, to the posterior valuation, P∗,
depends on earlier returns, which are used to extract information about F:


P∗ −P = r∗ − r =
(
Ω− Ω̂


)
F =


(
ΩΩ̂−1−I


)
r, (12)


where I is an N × N identity matrix. This price adjustment is the core of
the cross-security information aggregation model. The adjustment return of
security i is a weighted sum of “unexpected” returns on all other securities.12


The weights are determined by the off-diagonal elements in the updating matrix
Ω, normalised by the strength of securities’ initial response to information κi.
We can therefore write:


r∗i − ri =
N∑


j=1


ωij


κj
(rj − E [rj |F−1, ri]) , (13)


where ωij is the jth element on row i in the matrix Ω, and κj is the jth diagonal
element in Ω̂.


11In the more general case, such an explicit solution may not be available; in addition, the
optimal updating rule need not always be linear.


12From the equilibrium condition, it follows that the expected value of P ∗
i −Pi, conditional


on the realised ri, is zero. It can be shown that equation 13 satisfies this condition.
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2.3 Index returns


Let rm denote the first stage return of an equally weighted stock index. The
index return can be written as the weighted average of the information revealed
in each stock:


rm =
1
N


1′r =
1
N


1′Ω̂F =
1
N


N∑
i=1


κiFi, (14)


where 1 is an 1 × N column vector of ones. The weights of individual signals
are determined by the κi:s, the stocks’ first stage response to the revealed in-
formation in the stock proper. The information revealed in stocks with precise
signals (high κi) will therefore be more strongly reflected in stock prices and
the index level.


Also define the posterior index returns, r∗m as the difference between the
prior and posterior index level:


r∗m =
1
N


1′r∗ =
1
N


N∑
i=1


r∗i =
1
N


ΩF. (15)


The posterior returns, unlike the first stage returns, cannot be rewritten as a
sum of signals, since all posterior returns depend on all signals with varying
weights, determined by Ω.


However, from Bayesian theory it is known that for an average of individual
values, the average of individual signals is the most efficient aggregate signal.
Therefore, an index level signal can be defined as the average of individual stock
signals:


Fm =
1
N


1′F. (16)


Similarly, the index level prior can be defined as:


P ∗
m,−1 =


1
N


1′P∗
−1. (17)


Since the stochastic properties of signals and priors are well-known, it is easy to
calculate the variance of the index level prior and signal. Denote the variances
by πm and φm, respectively:


P ∗
m,−1 ∼ N(Vm, πm) , (18)


πm =
1


N2
1′Π1, (19)


Fm ∼ N
(
Vm − P ∗


m,−1, φm


)
, (20)


φm =
1


N2
1′Φ1, (21)


where Vm is an equally weighted index of underlying values. From the defini-
tions above, it follows that πm is the average of all N2 elements in Π. It will
thus be close to the average cross-security correlation in the prior valuation of
component stocks.


Likewise, the variance of the market signal, φm, is approximately equal to the
average cross-security correlation in revealed information. Intuitively, it can be
seen as the variance of the “market mood,” unfounded optimism or pessimism,
or just the covariance of liquidity trading across securities.


8







Using the above development, the optimal market response to information,
r∗m, can be expressed as a constant, κ∗m, multiplied by the market signal,


r∗m = κ∗mFm, (22)


κ∗m =
πm


πm + φm
. (23)


The parameter κ∗m measures how agents’ beliefs react to new market-wide in-
formation Fm. If signals are only weakly correlated across securities (φm small),
it is possible to know the index level with high precision when the number of
securities is large. In this case, κ∗m will be close to unity.


Now, define a parameter κm as a parallel to κ∗m, measuring the first stage
response to index level information, in order to compare first stage and posterior
returns:


κm =
1
N


∑N
i=1 κiFi


Fm
≈ 1


N


N∑
i=1


κi. (24)


In general, κm will be approximately equal to the average of κi:s. When κm 6=
κ∗m index returns will be autocorrelated, following an ma(1)-process. If κm <
κ∗m the market return underreacts to new information, resulting in positive
autocorrelation. On the other hand, if κm > κ∗m the market overreacts to new
information resulting in negative autocorrelation.


Whether index return is positive or negative is determined by the off-diagonal
elements in Ω. If they are “mostly” positive, index returns will be positively
autocorrelated; if they are mostly negative, index returns will be negatively
autocorrelated. The intuition behind this result will be made clearer in the
next section.


2.4 A one-factor model


A direct and simple way to analyse the model’s implications is to set up a “one-
factor” model, where priors and signals have both a market component and an
individual stock component. For an individual security, assume that the prior
has the structure


Πij =
{


πm + πs if i = j
πm if i 6= j


∀i, j, (25)


where πm is the variance of the market level prior and πs is the additional
variance for individual securities. πs is equal for all securities. The covariance
matrix of the prior priors can be visualised as:


Π
N×N


=






πm + πs πm · · · πm


πm πm + πs · · · πm


...
...


. . .
...


πm πm · · · πm + πs



 . (26)


Let the revealed information have a similar structure with the variance of the
market signal φm, and the additional variance of individual stock signals, φs:


Φij =
{


φm + φs if i = j
φm if i 6= j


∀i, j. (27)
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Using this simplified structure, it is possible to calculate explicit returns. The
returns in excess of the prior, r, are simply κs, equal for all stocks, multiplied
by the revealed signal, F:


r = κsF, (28)


with
κs =


πm + πs


πm + πs + φm + φs
. (29)


In the first stage of trading, the index level reacts to market-wide information
exactly as individual stocks react to stock specific information. The realised
index return rm, is therefore the same constant, κs, multiplied by the aggregate
signal:


rm = κmFm, (30)


κm = κs =
πm + πs


πm + πs + φm + φs
. (31)


However, the optimal response of the market level to the same information is
different:


r∗m = κ∗mFm, (32)


κ∗m =
Nπm + πs


Nπm + πs + Nφm + φs
. (33)


Index returns will be autocorrelated whenever κm 6= κ∗m. Some necessary
conditions for index return autocorrelation are immediately visible from equa-
tion 31 and 33. There must be several securities (N > 1) and prior or signals
must be correlated across securities (πm 6= 0, or φm 6= 0). Index return autocor-
relation will be positive if πm/πs > φm/φs, that is, when the prior has higher
cross-security correlation than the revealed signals. Consequently, provided that
κm/κ∗m > 0.5, autocorrelation increases in πm and φs and decreases in φm and
πm.


If signals are more strongly cross-correlated than underlying returns (πm/πs <
φm/φs) the observed index returns will be negatively autocorrelated. If signal
noise is strongly correlated across securities, any common return movements
are more likely to be the result of noise than of underlying returns. Therefore,
prices will react negatively to any common price movement.


2.5 Implications for a market with continuous trading


The formal model rules out continuous trading, but it is possible to adapt the
model to the continuous trading case. In the case of frictionless trading, prices
can and will react instantly to new information. Any cross-security price error
is eliminated immediately and index return autocorrelation would be observed
only over infinitely short time intervals. The model therefore approximates the
Admati (1985) model.


The model will still have some effect under continuous, but nonsynchronous
trading. As stocks trade at irregular intervals, there will be a delay in inform-
ation about the market factor that adds to the delayed reaction imposed by
the nonsynchronicity itself. However, in such a model, the effect of delayed in-
formation will be relatively small compared with the effect of nontrading. Also,
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the index level innovation will be relatively well known after only a small num-
ber of securities have traded (say 10–20); the additional information from the
remaining (normally 100+) securities is small.


Therefore, measured index return autocorrelation would mostly be attrib-
uted to nonsynchronous trading effects. However, the model can generate sig-
nificantly higher estimates of index return autocorrelation if there is a time
restriction on information transmission. Under an explicit information restric-
tion, autocorrelation will be highest when intraday volatility is high, that is,
when cross-security price errors can be expected to be large.


2.6 Autocorrelation in intraday returns


Financial markets normally exhibit strong “u-shapes” during the trading day,
with both volatility and trading volume at their highest at the opening and
closing.13 Therefore, nonsynchronous trading should add less to index return
autocorrelation in early morning and late afternoon trading. However, this is
clearly not the case. As shown by McInish and Wood (1991), autocorrelation
can even be higher during periods of active trading. As transaction costs can
be expected to be small when trading volume is high, this is also contrary to
the transaction cost hypothesis of Mech (1993).


From the perspective of cross-security information aggregation, this result
is not at all surprising. The high volatility and trading volume immediately
before closing make transitory cross-security price inaccuracies more probable.
As the high volatility is coupled with high trading volume, there is also a real
possibility that traders suffer from information overload.


The model not only explains the results of McInish and Wood (1991), but
also provides a good explanation for the high observed index return autocor-
relation in daily data. Most studies use closing prices to calculate returns.
Closing prices are less subjected to nonsynchronous trading but realised in a
period of very high volatility. Therefore, cross-security information aggregation
could account for the large difference between the autocorrelation expected from
nonsynchronous trading and observed levels of autocorrelation.


2.7 Testable hypotheses


The model of cross-security information aggregation provides two main testable
predictions of index return autocorrelation. Firstly, autocorrelation increases in
the ratio πm/πs, that is, the variance of the index level prior divided by the av-
erage additional variance of the prior of individual stock prices, or, equivalently,
the level of cross-security correlation in the prior.


Secondly, autocorrelation decreases in the ratio φm/φs, the level of index
level signal noise divided by the additional noise in individual stock signals.
This ratio can also be interpreted as the level of cross-security correlation in
revealed information.


Index return autocorrelation will thus be strong if there is high uncertainty
about the true index level and much security-specific noise in revealed informa-
tion. On the other hand, index return autocorrelation will be low if uncertainty


13See Chan et al. (1991) and Chan (1992), for some empirical evidence and Admati and
Pfleiderer (1988) and Foster and Viswanathan (1993) for a theoretical discussion.
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about individual stock values is high and revealed information is strongly correl-
ated across securities. In the case of strong cross-security correlation in revealed
information, index return autocorrelation may be negative.


An econometrician cannot observe the covariance structure of the prior valu-
ation. However, the covariance of the prior can be estimated relatively easily,
since the error in the prior largely consists of value innovations since the last
trade. If the correlation structure of value innovations can be believed to be
constant, it can be estimated using the correlation in realised long-term returns.
Therefore, index return autocorrelation will tend to be higher for portfolios of
highly correlated stocks.


When trading is closed, no information is revealed in trading, but both value
innovations and new information will be revealed outside trading. Depending on
the proportions between new information and value innovations, the prior may
become both more and less noisy when trading is closed. Although information
events, such as scheduled macroeconomic announcements, may reduce the noise
in the index level, nontrading will generally increase noisiness of the index level
prior. This effect will be strong at Monday open, when index level noise has
accumulated over two nontrading days.


However, overnight developments can also enhance (at least relatively) the
precision of the index level prior and thus reduce autocorrelation. This will be
the case when there is new information revealed to the market during the night.
Overall prior precision will improve, leading to less autocorrelation when the
market opens. The empirical test of section 3.5.3 uses changes in us interest
rates that are assumed to relatively improve the precision of the index level prior.
Similar results would be expected from, for example, earnings announcements
and exchange rate changes.


Any index level innovation revealed outside trading will not result in index
return autocorrelation. In the model, such information will enter directly into
agents’ prior valuation before the next round of trading. This implies that
changes in the index level that are the result of macro announcements, interest
rate changes and so on, should be reflected in stock prices faster than market-
wide information that is revealed through trading, primarily reflecting changes
in investor valuations or preferences.


The index level prior will be particularly noisy when the index level volat-
ility is high. Using various volatility estimates, it is relatively straightforward
to identify when the index prior is more noisy than otherwise. As an example,
we know that volatility exhibits a u-shape over the trading day, and we there-
fore expect that autocorrelation will also be u-shaped. This prediction is thus
consistent with the empirical evidence reported by McInish and Wood (1991).


It is much harder to measure the correlation in revealed signals. As these are
derived from realised prices, they cannot be used to explain return patterns. In
order to capture the cross-security correlation in signals, it is necessary to use
other data besides prices. For intraday returns, an example is the index arbitrage
trading, which will induce cross-security correlation in revealed information. It
may also be possible to analyse the order book movements at opening and closing
to identify index arbitrage trading. For the daily data used in this paper, the
possibilities are limited to theoretical arguments. Section 3.6 tests an argument
based on short-selling restrictions.
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Table 2: Selected empirical evidence on index return autocorrelation


Source Series
Sample
period


Return
frequency


First auto-
correlation


Campbell et al. (1993) crspvw 1950-62 daily 0.13∗∗
1962-74 daily 0.28∗∗
1975-87 daily 0.17∗∗


Atchison et al. (1987) crspew 1978-81 daily 0.17∗∗
crspvw 1978-81 daily 0.31∗∗


Lo and MacKinlay
(1990b)


crspewsmall stocks 1962-87 daily 0.35∗∗


crspewlarge stocks 1962-87 daily 0.17∗∗
Berglund and Liljeblom
(1988)


Helsinkivw 1977-82 daily 0.49∗∗


McInish and Wood (1991) nyseew open 1984-85 daily 0.15∗
nyseew midday 1984-85 daily 0.06
nyseew close 1984-85 daily 0.27∗∗


Abhyankar (1995) ft-se 100 1986-90 60 min. 0.14∗∗
Stoll and Whaley (1990) s&p 500 1982-87 5 min. 0.51∗∗


mmi 1984-86 5 min. 0.24∗∗
Chan et al. (1991) s&p 500 1984-85 5 min. 0.45∗∗


s&p 500 1988-89 5 min. 0.27∗∗
Chan (1992) mmi 1984-85 5 min. 0.31∗∗
Abhyankar (1996) ft-se 100 1992 5 min. 0.48∗∗


Significance levels as reported or calculated from reported standard errors. ewEqually
weighted index. vwValue-weighted index. ∗∗/∗/◦ Significantly different from zero at the
0.01/0.05/0.10 level.


3 Empirical evidence


3.1 Some earlier empirical evidence


Table 2 presents a selection of published evidence on index return autocorre-
lation, and clearly shows that, index returns are positively autocorrelated, for
most return frequencies and markets. As discussed in section 2.5, the results
of McInish and Wood (1991) provide support for the model, documenting high
index return autocorrelation under high trading activity.


Similar results are also reported by Chan (1992), who finds that cash index
returns lag index futures returns more strongly when the trading intensity is high
(the marginal impact is small, but statistically significant). Similar to the results
of McInish and Wood (1991), this implies higher index return autocorrelation
when trading is active, contrary to the predictions of nonsynchronous trading.
Chan also shows that the futures lead is stronger when there are large changes
in the index level. This result is also consistent with cross-security information
aggregation. High index return volatility implies a combination of a noisy index
prior (πm/πs high) and a precise index signal (φm/Φs low), both leading to high
index return autocorrelation.


3.2 Choice of data


In continuous trading, cross-security information aggregation and nonsynchro-
nous trading have similar implications for observed cross-autocorrelation. It is
therefore important to test for cross-security information aggregation in a set-
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ting with minimal nontrading. In addition, the physical trading arrangements
should be as close to the theoretical model as possible.


Trading at the opening call auction at the Paris Bourse fulfils both these
criteria. There is no nonsynchronicity in recorded prices and the trading ar-
rangements are very close to the theoretical model. Data was kindly made
available by sbf–Paris Bourse. The dataset provides opening prices, closing
prices and trading volume for all stocks and other instruments traded through
the cac electronic trading system. The sample period is five years (1991–1995),
comprising 1302 daily observations.14


During the sample period, the electronic order book is opened for order
submission at 08:30 (09:00 until 1992). The orders are accumulated until the
opening call at 10:00, when matching orders are executed at the price that
maximises the number of shares traded.15 This price is recorded as the opening
price in the dataset. Approximately 5% of the daily trading volume is executed
at opening prices.


To minimise problems of low liquidity, the sample is restricted to the 70 most
traded stocks on the monthly settlement list (Reglement Mensuel). All selected
stocks have an average daily trading volume of at least 5 million frf per day
during the sample period. Summary statistics on all the individual stock series
used are reported in table 8 (p. 25–26).16


The closing price is realised in continuous trading and is the last price at
which a transaction is executed (trading closes at 17:00). As trading is very
active during the last minutes of the day, the average nontrading is only a few
seconds for sample stocks. Any return spill-over from nonsynchronous trading
should thus be negligible.


With the exception of the exact simultaneity in the sbf dataset, the data
is thus similar in character to the nyse data used by Amihud and Mendelson
(1987).


3.3 Portfolio construction


As a measure to further reduce effects of low liquidity or other measurement
errors, three portfolios of 23-24 stocks are created on the basis of trading volume
(High Volume, Medium Volume and Low Volume). The portfolio containing the
most liquid stocks, High Volume, contains only very liquid stocks. The time
series results for this portfolio should thus be considered most robust.


To test hypotheses relative to the cross-security correlation of the prior cross-
sectionally, three correlation sorted portfolios of 23-24 stocks are created (High
Correlation, Medium Correlation and Low Correlation, see section 3.5.1 for
the test). Stocks were ranked according to the average correlation in monthly
returns between the stock and all other stocks. The High Correlation portfolio
has very high cross-security correlation in monthly returns (0 .499 ), and is thus
created from securities with low idiosyncratic risk. A seventh portfolio, All


14Only stocks with more than 1000 trading days during the sample period were considered.
15There is, however, one important difference from the model setup. During the preopening


stage, an indicative price is available to the market. Biais et al. (1996) study the information
content at the preopening stage using mainly a single-security perspective. They show that
preopening prices are not very informative. Most limit orders are submitted in the final
minutes before opening. Detailed accounts of the trading structure are also found in Biais et
al. (1995).


16The same data is used in Säfvenblad (1997).
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Table 3: Summary statistics for stock portfolios


Portfolio


Autocor-
relation
at open


Autocor-
relation
at close


Cross-security
correlation in
monthly returns§


Trading


volume‡


High Volume 0.066
(0.042)


0.157∗∗


(0.022)
0.336


(0.187)
87.4
(1.3)


Medium Volume 0.023
(0.043)


0.052∗


(0.026)
0.212


(0.133)
21.4
(0.3)


Low Volume 0.185∗∗


(0.054)
0.045


(0.033)
0.227


(0.142)
8.6


(0.1)
High Correlation 0.070


(0.043)
0.123∗∗


(0.025)
0.499


(0.077)
57.4
(0.9)


Medium Correlation 0.151∗∗


(0.048)
0.097∗∗


(0.032)
0.283


(0.089)
24.6
(0.3)


Low Correlation 0.080◦


(0.042)
0.066∗∗


(0.024)
0.079


(0.096)
35.8
(0.5)


All Stocks 0.150∗∗


(0.043)
0.122∗∗


(0.027)
0.248


(0.156)
39.1
(0.5)


Regressions use least squares estimation with asymptotic gmm standard errors (in parentheses)
that are robust to heteroskedasticity (Hansen, 1982). §Cross-sectional standard errors in
parentheses. ‡Average per day, per stock, trading volume in million frf. Standard deviation
across trading days in parentheses. ∗∗/∗/◦ Significantly different from zero at the 0.01/0.05/
0.10 level.


Stocks , contains all 70 stocks in the sample. Opening prices, closing prices and
daily transaction volume are calculated for each portfolio. Summary statistics
for the portfolios are reported in table 3.


3.4 Methodology


In order to use both opening and closing prices, two types of returns are cal-
culated. Overday returns are calculated as the log difference between opening
and closing prices:


r
day
i,t = log


(
P close


i,t


)
− log


(
P


open
i,t


)
. (34)


Overnight returns are similarly measured from close to open:


r
night
i,t = log


(
P


open
i,t


)
− log


(
P close


i,t−1


)
. (35)


Overnight returns are dated with the day when the return period ends. For
example, Monday overnight return measures the return from Friday close to
Monday open. Using these two types of return observations, autocorrelation at
open is estimated using the regression model


r
day
i,t = β0 + β1r


night
i,t + εi,t, (36)


while autocorrelation at close is calculated using the regression model


r
night
i,t = β0 + β1r


day
i,t−1 + εi,t. (37)
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Regressions use least squares estimation with heteroskedasticity consistent gmm
standard errors (Hansen, 1982). Regressions do not exclude or control for out-
liers.


3.5 Testing effects from the variance of the index level
prior


This section presents five separate tests of the prediction that index autocorre-
lation increases in the variance of the index level prior (πm in the theoretical
model).


3.5.1 Highly correlated return series


We start by testing whether portfolios of highly correlated securities exhibit
higher return autocorrelation. Parts of the error in the prior result from value in-
novations. If innovations are strongly correlated across securities, so will the er-
rors of prior estimates. Industry portfolios are thus expected to exhibit stronger
autocorrelation than “mixed” portfolios.17


At open the hypothesis is supported for Medium Correlation and Low Cor-
relation but rejected for High Correlation (results in table 3). High Correlation
has lower autocorrelation than both the other portfolios (0 .070 versus 0 .151 ,
0 .080 ). The most probable reason for this rejection is the significantly higher
liquidity of stocks in High Correlation. Trading volume of stocks in High Correl-
ation is about twice that of stocks in Medium Correlation and Low Correlation.


Given the results at open, results at close are surprisingly well in line with
predictions. The autocorrelation increases in the level of cross-security correl-
ation (0 .066 , 0 .097 , 0 .123 ) and the difference between High Correlation and
Low Correlation is statistically significant. This result must be considered par-
ticularly strong as the high liquidity of stocks in High Correlation should tend
to reduce autocorrelation.


3.5.2 A Monday effect


As a second test, we analyse day-of-the-week effects on autocorrelation. The
index prior can be expected to be particularly noisy when markets open after the
weekend, that is, at Monday open. Private information and other uncertainty
have then accumulated during two nontrading days. The highest autocorrelation
should thus be observed at the Monday open. For closing returns, day-of-the-
week effects should be less pronounced as the closing is always preceded by a full
trading day during which index level uncertainty can be reduced to “normal”
levels.


Both these conjectures are supported by the results presented in table 4. At
close, the null of all days having the same autocorrelation cannot be rejected for
any of the portfolios. However, at open there is a strong, significantly positive,
Monday effect in all stock portfolios.18


17Using industry portfolios however, is not a good way to test this proposition for two
reasons. Firstly, to obtain a reasonable number of securities, industry portfolios must include
less liquid stocks. Secondly, the average correlation between same-industry shares is not much
higher than the average correlation among all stocks.


18The strong Monday effect motivates the use of a dummy for Monday open in the remaining
regressions.
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Table 4: Index return autocorrelation conditional on day-of-the-week


β̂1 β̂2 β̂3 β̂4 β̂5


Portfolio Mon. Tue. Wed. Thu. Fri. Wald


At Open
High Volume 0.218∗∗


(0.066)
0.076


(0.110)
−0.066
(0.116)


−0.019
(0.077)


−0.001
(0.117)


8.1◦


Medium Volume 0.173∗


(0.080)
0.090


(0.109)
−0.158
(0.103)


−0.090
(0.063)


0.049
(0.092)


10.1∗


Low Volume 0.328∗∗


(0.114)
0.156◦


(0.088)
0.147


(0.112)
0.048


(0.079)
0.186∗


(0.076)
4.3


All Stocks 0.302∗∗


(0.068)
0.193◦


(0.106)
−0.001
(0.111)


0.014
(0.058)


0.158
(0.108)


12.4∗


At Close
High Volume 0.160∗∗


(0.050)
0.100∗


(0.047)
0.183∗∗


(0.061)
0.162∗∗


(0.039)
0.169∗∗


(0.048)
1.7


Medium Volume 0.041
(0.063)


0.032
(0.048)


0.105
(0.077)


0.061◦


(0.037)
0.014


(0.055)
1.2


Low Volume −0.074
(0.078)


0.040
(0.049)


0.079
(0.099)


0.108∗


(0.043)
0.066


(0.051)
4.4


All Stocks 0.094
(0.060)


0.084◦


(0.051)
0.163◦


(0.085)
0.145∗∗


(0.037)
0.114∗


(0.054)
1.4


Results are similar for the correlation-sorted portfolios (not reported). Trading volume is
approximately equal across days of the week, with the exception of Mondays, when trading
volume is approximately 25% lower than on other days (not reported). Regression model:
rt = β0 + (β1D1,t−1 + . . . + β5D5,t−1)rt−1 + εt. D1,t, . . . , D5,t are dummy variables for the
day of the week (1=Monday). The time indices refer to return periods (overnight or overday).
The Wald statistic tests the restriction β1 = . . . = β5. χ2(4) critical values: 13.2/9.4/7.7
at the 0.01/0.05/0.10 level. Regressions use least squares estimation with asymptotic gmm
standard errors (in parentheses) that are robust to heteroskedasticity (Hansen, 1982). ∗∗/∗/◦
Significantly different from zero at the 0.01/0.05/0.10 level.
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3.5.3 High overnight volatility


Large overnight changes in foreign stock market values result in a noisier than
usual index prior at opening. Although investors observe information about
overnight events, they cannot judge the full impact on French stock values. As
discussed earlier, this should result in higher autocorrelation at open.


The results presented in panel a of table 5 support this prediction. Auto-
correlation at open is higher following large absolute index returns in overnight
us trading for all portfolios, although the statistical significance for individual
portfolios is weak.


Another important observation from table 5 is that index return autocor-
relation is negative conditional on low overnight volatility (−0 .078 , −0 .161 ,
−0 .077 , −0 .047 ). Although this result is not statistically significant, it shows
that a comprehensive model of index return autocorrelation must be capable of
modelling both positive and negative autocorrelation.


3.5.4 Improved index level precision


The argument above can also be extended to include new information about
the value of French equities released during the night. As an overnight change
in the us index level implies a probable change in the unobservable French
“fundamentals”, us index returns always increase the level of noise in the index
level prior. However, a change in the us interest rates should have less influence
on the fundamental values of French stocks, although it certainly affects the
discounted value of these fundamentals.


There will consequently be relatively low uncertainty about the valuation of
French stock after the realisation of large overnight interest rate changes. The
change in interest rates provides an additional signal that can be used to update
the common index level prior. Large large changes in interest rates should lower
the uncertainty of the index prior and thus reduce autocorrelation at open.


The results presented in panel b of table 5 support this prediction. Autocor-
relation at open is significantly lower, and in some cases even negative, following
large absolute changes in us interest rates. The statistical significance for indi-
vidual portfolios is not strong, but the point estimates indicate the same pattern
for all portfolios.


3.5.5 High trading volume


As argued in the theoretical section, trading increases the precision of prices by
releasing private information to the market.19 If trading is intense, the index
level will be a better estimate of the “true” index level than otherwise. Con-
sequently, high trading volume should be associated with low autocorrelation,
in particular at close.


The results reported in table 6 support the model’s prediction. Autocorrela-
tion at close is lower after days of high trading volume for all reported portfolios.
For three out of four portfolios, the difference is statistically significant. There is
also a weak spill-over of reduced autocorrelation at the following day’s opening
(not statistically significant, not reported).


19 This has also been demonstrated empirically by, e.g., Amihud and Mendelson (1987).
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Table 5: Index return autocorrelation at open conditional on overnight stock returns
and interest rate changes


β̂1 β̂2 β̂3


Portfolio small large Monday Wald


Panel a: Conditional on index returns
High Volume −0.078


(0.084)
0.033


(0.056)
0.241∗∗


(0.085)
1.5


Medium Volume −0.161∗


(0.077)
0.002


(0.048)
0.229∗


(0.093)
3.6◦


Low Volume −0.077
(0.068)


0.205∗∗


(0.048)
0.222∗


(0.097)
13.0∗∗


All Stocks −0.047
(0.076)


0.118∗


(0.049)
0.244∗∗


(0.080)
4.2∗


Panel b: Conditional on interest rate changes
High Volume 0.011


(0.067)
−0.059
(0.068)


0.234∗∗


(0.084)
0.7


Medium Volume −0.027
(0.052)


−0.130∗


(0.064)
0.247∗∗


(0.090)
1.8


Low Volume 0.255∗∗


(0.063)
0.028


(0.057)
0.175◦


(0.096)
7.8∗∗


All Stocks 0.122∗


(0.059)
−0.015
(0.062)


0.240∗∗


(0.077)
3.4◦


Both panels: Regression model, rt = β0 + (β1D1,t−1 + β2D2,t−1 + β3DMonday,t−1)rt−1.


DMonday,t is a dummy variable for Monday open. Panel a: D1,t is a dummy variable for the


central 50% of return observations, while D2,t is a dummy variable for the remaining obser-
vations. Uses daily s&p 500 returns collected by Findata. Panel b: D1,t is a dummy variable
for the central 60% of interest rate changes, while D2,t is a dummy variable for the remaining
observations. Uses changes in 10 year us Treasury bond rates collected by Sveriges Riksbank.
The regressions use raw returns (not filtered for the expected effect of overnight us index
returns and interest rate changes). Regressions using filtered data give similar parameter
estimates and test statistics. The Wald statistic tests the restriction β1 = β2. χ2(1) crit-
ical values: 6.6/3.8/2.7 at the 0.01/0.05/0.10 level. Regressions use least squares estimation
with asymptotic gmm standard errors (in parentheses) that are robust to heteroskedasticity
(Hansen, 1982).
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Table 6: Index return autocorrelation at close conditional on trading volume


β̂1 β̂2


Portfolio Low High Wald


High Volume 0.232∗∗


(0.037)
0.097∗∗


(0.026)
9.0∗∗


Medium Volume 0.118∗∗


(0.045)
0.009


(0.030)
4.2∗


Low Volume 0.090
(0.056)


0.005
(0.038)


1.6


All Stocks 0.199∗∗


(0.050)
0.065∗


(0.029)
5.4∗


Regression model: rt = β0 +(β1D1,t−1 +β2D2,t−1)rt−1. D1,t (D2,t) is a dummy variable for
low (high) trading volume in the portfolio All Stocks. The Wald statistic tests the restriction
β1 = β2. χ2(1) critical values: 6.6/3.8/2.7 at the 0.01/0.05/0.10 level. Regressions use least
squares estimation with asymptotic gmm standard errors (in parentheses) that are robust to
heteroskedasticity (Hansen, 1982). ∗∗/∗/◦ Significantly different from zero at the 0.01/0.05/
0.10 level.


3.6 Testing effects from cross–security correlation in re-
vealed information


The results of section 3.5.3 (table 5), show that the autocorrelation at open
is negative conditional on a “quiet night,” that is, small us index returns. In
the model, this implies that there is non-zero cross-security correlation of the
information revealed in the opening call auction (high φm/φs), contrary to the
assumption of Chan (1993).


Unfortunately, the signals are not observable and the cross-security correla-
tion in revealed information is not measurable. For empirical testing, theoretical
arguments must be used to identify situations where the cross-security correl-
ation of revealed information is particularly high or low.20 As the correlation
depends on events in the trading process itself, and not on the events prior to
the auction, it is hard to find good testable cases of high and low correlation in
revealed information. The two possible tests discussed here are based on index
arbitrage trading and short-selling restrictions.


3.6.1 Index arbitrage


If some agents buy or sell several securities simultaneously, as in the case of
index arbitrage trading, realised returns and revealed information will be more
strongly correlated across securities. Therefore, index return autocorrelation
will be reduced or even negative after index arbitrage transactions.


This hypothesis is supported by the empirical results of Harris et al. (1994).
The authors use nyse intraday data to study return behaviour close to large in-
dex arbitrage transactions. Index returns are strongly positively autocorrelated,
but following on index arbitrage transactions, returns reversals are documented


20It is also possible to measure cross-security correlation of revealed information using the
cross-security correlation in short-term returns. However, for empirical testing of the model,
in-sample measures cannot be used (in the presence of measurement errors, the null would tend
to be rejected). However, it is possible to identify cross-security correlation using matching
samples or out-of-sample techniques.
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(returns are thus negatively autocorrelated). Conditional on non-arbitrage pro-
gram trades, index return autocorrelation is close to zero, i.e. significantly lower
than normal levels of autocorrelation.


3.6.2 Short-selling restrictions


In a market with explicit or self-imposed short-selling restrictions, downward
price pressure originates (mostly) from the owners of the security in question.
In contrast, upward price pressure may originate from any market participant,
owners and non-owners alike. Investors can thus be “stock-picking” in a rising
market, but must sell whatever stocks they already hold in a falling market.


As investors in aggregate hold the market portfolio, cross-security correla-
tion in revealed information is higher conditional on an index level decrease.
Consequently, there will be lower index return autocorrelation conditional on
an index level decrease.


This conjecture is supported by the results in table 7 where return autocor-
relation is conditioned on the preceding index return. At open, autocorrelation
results are mixed. For the least liquid portfolio, autocorrelation is somewhat
higher following on negative index returns, but all other portfolios exhibit higher
autocorrelation conditional on index level increases. At close, the pattern is in
line with predictions, and index return autocorrelation is consistently higher
after days of above average stock market performance. In three out of four
reported cases, the difference is statistically significant.


To test whether this asymmetry is, in fact, a result of an asymmetry in in-
vestor behaviour, is outside the scope of this paper. It is, however, an interesting
topic for future research.


3.7 Interpreting empirical results within the model


The following example is not a formal test of the model. Instead it is intended
to show how the model can be used as an analytical tool to interpret observed
return phenomena and generate testable hypotheses.


In table 3, we can compare index return autocorrelation at open and close.
It is clear that the point estimate of autocorrelation is higher at close than
at open for High Volume, the portfolio of most liquid stocks (0 .066 at open ,
0 .157 at close). For the Medium Volume portfolio there is no large difference
between autocorrelation at open and close (0 .023 , 0 .052 ), but for Low Volume
the relationship is the reverse with high autocorrelation at open but low at close
(0 .185 , 0 .045 ).


It seems reasonable to believe that the index level uncertainty is lower at
close than at open as overday trading reduces the uncertainty about the true
index level.21 Still, autocorrelation is stronger at close for High Volume. In
terms of the model of cross-security information aggregation, this effect must
be a result of reduced cross-security correlation in revealed information at close.


What may be the cause of this reduction in cross-security correlation of the
revealed information? The obvious suspect is the trading behaviour of individual
investors. It is well known (albeit from anecdotal evidence) that many investors


21This conjecture is supported by results reported in table 8. While individual stock re-
turns are strongly negatively autocorrelated at open (average: −0 .125 ) they are only weakly
autocorrelated at close (−0 .044 ). This result is consistent with higher price precision at close.
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Table 7: Index return autocorrelation conditional on high and low returns


β̂1 β̂2 β̂3


Portfolio Low High Monday Wald


At open
High Volume −0.085


(0.087)
0.055


(0.069)
0.253∗∗


(0.092)
1.4


Medium Volume −0.098
(0.069)


0.003
(0.059)


0.239∗∗


(0.091)
1.1


Low Volume 0.147◦


(0.079)
0.104


(0.066)
0.197◦


(0.112)
0.1


All Stocks 0.010
(0.076)


0.126∗


(0.060)
0.255∗∗


(0.089)
1.3


At close
High Volume 0.071◦


(0.040)
0.242∗∗


(0.042)
. . . 6.0∗


Medium Volume −0.046
(0.048)


0.137∗∗


(0.046)
. . . 5.4∗


Low Volume −0.027
(0.069)


0.094◦


(0.056)
. . . 1.3


All Stocks 0.026
(0.048)


0.205∗∗


(0.052)
. . . 4.4∗


Regression model: rt = β0 + (β1D1,t−1 + β2D2,t−1 + β3DMonday,t−1)rt−1. D1,t (D2,t)


is a dummy variable for low (high) realised index returns in the preceding trading period.
DMonday,t is a dummy variable for Monday open. The Wald statistic tests the restriction


β1 = β2. χ2(1) critical values: 6.6/3.8/2.7 at the 0.01/0.05/0.10 level. Regressions use least
squares estimation with asymptotic gmm standard errors (in parentheses) that are robust to
heteroskedasticity (Hansen, 1982). ∗∗/∗/◦ Significantly different from zero at the 0.01/0.05/
0.10 level.
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on the Paris Bourse prefer to trade at the close or as near as possible to the
close. This is probably because most performance evaluation is carried out
against closing prices as these are most readily available. Some speculators may
also want to close open positions before the trading day ends.


In an ree, market such trades are considered to be liquidity trading since
they are not based on expected future returns. If the closing transactions are
uncorrelated across securities, this can explain the empirical results. This pro-
position is clearly testable using intraday data.


Why, then, is the same result not observed for the Low Volume portfolio?
Although component stocks are less liquid than the High Volumestocks, they
are still quite liquid. If these less liquid stocks are not subject to position closing
liquidity trading at close it could be that positions are closed in earlier trading,
or that traders do not let positions grow too big during the day. Both hypotheses
are testable using dealer inventory data.


4 Conclusion


This paper derives a model of autocorrelation in stock index returns based on
information aggregation across stocks that trade individually.


The first main implication of the model is that increased cross-security cor-
relation in the market prior of security prices increases index return autocor-
relation. This proposition was tested using several different approaches. High
cross-security correlation of the prior is expected, for example, at Monday open,
after overnight us market volatility and in portfolios of highly correlated stocks.
All tests support the model at varying levels of statistical significance.


The other main implication of the model is that autocorrelation decreases
in the cross-security correlation of the information revealed in trading. This
aspect of the model is significantly more difficult to test as signals and signal
correlations are unobservable.


One empirical test supported the prediction that index return autocorrela-
tion should be lower after days with negative index returns. Empirical evidence
of Harris et al. (1994) supports the prediction of lower index return autocorrela-
tion conditional on index arbitrage trading. They even report return reversals,
i.e. negative return autocorrelation.


An important advantage of the model is that information is extracted from
prices using standard ree theory. The model is therefore formulated from the
point of view of an econometrician who only observes realised prices.


Relative to earlier work on index return autocorrelation, the paper provides
a methodological innovation by using a narrow, carefully selected, dataset in-
stead of market-wide stock portfolios. This makes it possible to eliminate other
possible sources of index return autocorrelation such as nonsynchronous trading
or transaction costs.


Although testing is carried out in a controlled environment, it is highly prob-
able that the same price adjustments are present in intraday trading. There,
the resulting autocorrelation will be lower, but cross-security information ag-
gregation can help to account for the index return autocorrelation not explained
by nonsynchronous trading, especially during active trading. The model thus
explains the findings of McInish and Wood (1991), that is, the u-shape in index


23







return autocorrelation. High autocorrelation at open and close is consistent
with the high uncertainty of the index level prior present at open and close.


An important application of the model is as a tool to analyse empirical
evidence of cross-security information aggregation. For example, the model can
be used to analyse lead-lag effects between index futures returns and cash index
returns. The example in section 3.7 shows how testable hypotheses can be
generated from “stylised results.” Hypotheses are left as suggestions for future
research as they require intraday data for the empirical testing.


Two major conclusions can be drawn from the model. Firstly, index re-
turn autocorrelation is consistent with efficient markets and prices. Transaction
costs, measurement errors and other inefficiencies may increase autocorrela-
tion, but autocorrelation need not be zero in the absence of such imperfections.
Secondly, the model can generate both positive and negative autocorrelation in
index returns. Almost all earlier theoretical and empirical work has focused
on positive return autocorrelation, but as the empirical results show, negative
index return autocorrelation is observed in several cases. This is an interesting
field for further empirical study.
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Table 8: Summary statistics of stocks used for portfolio construction


Autocorrelation Volatility × 100


Corr
No.† Name At open At close


Trading
volume‡


close-
to-open


open-
to-close


2 Alcatel Alsthom 0.163∗ 0.082∗∗ 217.2 0.900 0.536
1 Elf Aquitaine −0.050 0.065∗∗ 174.1 1.039 0.627
3 Total 0.002 0.006 116.8 1.035 0.739
3 LVMH Moët Vuitton 0.008 0.019 116.0 0.926 0.717
3 Générale des Eaux 0.015∗∗ 0.309 114.1 1.046 0.671


1 Groupe Danone −0.169∗∗ 0.000 107.4 0.847 0.483
1 Société Générale A −0.012 0.043∗ 96.3 1.036 0.607
1 Suez (Compagnie de) −0.081 0.102∗∗ 93.3 1.127 0.676
1 Saint-Gobain −0.074 0.058∗∗ 90.8 1.101 0.638
1 Peugeot −0.041 0.088∗∗ 90.2 1.066 0.585


3 Carrefour −0.053∗ 0.093 80.9 0.964 0.605
1 l’Oreal −0.046 −0.003 80.2 1.085 0.630
1 Paribas (fin.) −0.050 0.069∗∗ 74.0 1.228 0.726
1 Lafarge −0.099∗ 0.040◦ 66.3 1.135 0.640
1 Air Liquide −0.116∗ −0.008 65.0 0.931 0.525


3 UAP −0.006 −0.051 63.2 1.425 0.905
1 Michelin B 0.001 0.047∗ 62.7 1.248 0.689
2 Axa 0.018∗∗ 0.062∗∗ 60.6 1.241 0.807
1 Lyonnaise des Eaux −0.116∗ 0.029 60.3 1.034 0.604
2 Eurotunnel −0.004 0.112∗∗ 56.5 1.589 1.022


1 Accor 0.018 0.056∗∗ 46.3 1.017 0.590
1 Havas −0.192∗∗ 0.037◦ 39.5 1.188 0.672
3 Canal+ −0.024 0.004 37.0 1.097 0.627
3 Sanofi −0.014 −0.013 34.9 1.082 0.737
2 CLF −0.082◦ 0.014 33.9 1.145 0.713


3 EuroDisney sca −0.140∗∗ 0.139∗∗ 31.4 1.579 1.095
3 Pernod-Ricard 0.005 0.087 28.9 1.105 0.800
1 Bouygues −0.195∗∗ −0.006 28.2 1.112 0.683
1 CCF −0.183∗∗ −0.070∗∗ 25.9 1.190 0.733
1 Bancaire (Cie) −0.275∗∗ −0.016 25.0 1.524 0.856


3 Pinault-Printemps −0.286∗∗ −0.121∗∗ 25.6 1.104 0.722
2 Carnaud Metalbox −0.302∗∗ −0.020 24.1 0.996 0.599
1 Schneider −0.279∗ −0.124∗∗ 24.4 1.440 0.980
1 Thomson-CSF −0.223∗∗ −0.019 24.6 1.508 0.858
3 Valeo −0.012 −0.044 21.4 1.229 0.823


The table continues on the next page.
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Table 8 continued


Autocorrelation Volatility × 100


Corr
No.† Name At open At close


Trading
volume‡


close-
to-open


open-
to-close


3 AGF −0.044 −0.084∗∗ 21.3 1.086 0.753
2 Eridania Beghin −0.241∗∗ −0.062∗ 20.2 1.002 0.598
3 Promodes −0.026 −0.177 19.3 1.080 0.767
2 CFF −0.061∗ −0.059∗ 17.9 1.395 0.874
3 Legrand −0.014∗∗ −0.215∗∗ 16.7 1.107 0.846


2 Chargeurs −0.180∗∗ −0.059∗ 15.0 1.157 0.694
3 Castorama Dubois −0.037∗∗ −0.133∗∗ 14.3 1.093 0.663
1 Saint Louis −0.364∗∗ −0.085∗∗ 14.8 1.044 0.649
2 Pechiney Intl −0.155∗∗ −0.102∗∗ 13.9 1.276 0.764
3 Rhone-Poulenc cip −0.158∗ −0.356∗∗ 12.7 1.836 1.795


3 Roussel-Uclaf ord. −0.019 −0.344∗ 12.6 1.182 0.944
2 Credit Lyonnais ci −0.386∗∗ −0.095∗∗ 11.0 1.431 1.022
2 Pechiney cip −0.292∗∗ −0.081∗∗ 11.3 1.337 0.790
2 Credit National −0.044 −0.183◦ 11.5 1.055 0.716
2 Casino Guichard −0.392∗∗ −0.125∗∗ 11.6 1.424 0.855


2 Club Mediterranée −0.204∗∗ −0.040 11.7 1.155 0.747
3 Synthelabo −0.013 −0.147∗∗ 10.3 1.140 0.811
3 Docks de France 0.012∗∗ −0.066 10.7 0.970 0.703
2 Cap Gemini Sogeti −0.216∗∗ 0.008 10.1 1.315 0.824
2 Matra Hachette −0.152∗ −0.138∗∗ 10.2 1.759 1.194


2 Cetelem −0.071 −0.076◦ 9.5 1.245 0.774
2 Lagardere groupe −0.197∗∗ −0.075∗∗ 9.8 1.434 0.883
3 Groupe Ass. Nat. −0.026 −0.082∗ 9.5 1.291 0.887
3 Bic −0.055◦ −0.004 9.1 1.071 0.791
1 CGIP −0.219∗∗ −0.120∗∗ 9.4 1.179 0.779


1 Schneider −0.361∗∗ −0.071∗∗ 7.9 1.510 0.902
1 Imetal −0.347∗∗ −0.128∗∗ 7.7 1.330 0.820
2 Sodexho −0.355∗∗ −0.118∗∗ 6.1 0.975 0.579
3 Rhone-Poulenc Rorer 0.045∗∗ −0.268∗∗ 6.8 0.847 0.892
2 Cerus-Europ. Reun. −0.311∗∗ −0.045◦ 6.0 1.312 0.879


2 Comptoirs Modernes −0.341∗∗ −0.153∗∗ 6.4 0.982 0.630
2 Sovac −0.010 −0.121∗∗ 5.9 1.164 0.840
2 Essilor Intl −0.327∗∗ −0.116∗∗ 5.9 1.152 0.727
2 Ecco −0.254∗∗ −0.103∗∗ 5.5 1.207 0.763
3 Seb −0.008 −0.131∗ 5.9 1.155 0.861


Average
Sample standard error


−0.125
(0.131)


−0.044
(0.108)


39.0 1.186
(0.203)


0.771
(0.184)


Regressions use least squares estimation with asymptotic gmm standard errors (not repor-
ted) that are robust to heteroskedasticity (Hansen, 1982). †Included in correlation portfolio,
1=High Correlation, 2=Medium Correlation, 3=Low Correlation. ‡Average per day, per
stock, trading volume in million frf. ∗∗/∗/◦ Significantly different from zero at the 0.01/
0.05/0.10 level.
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