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ABSTRACT.  This paper analyzes a finite horizon, sequential move pricing
duopoly, restricting attention to Markov strategies. The solution yields station-
ary patterns, independent of initial conditions, where the reaction-functions
follow cycles of three periods. The market price never settles down, and is at
all times strictly above marginal cost. Long-run average industry profits are
approximately 5/6 of the monopoly level. These results demonstrate that nei-
ther a long horizon, nor non-Markovian strategies are required for persistent
profits in dynamic price-competition games.

1. INTRODUCTION

Since their introduction by Bertrand [1], price-competition models have become a
powerhorse in economic research. The static simultaneous move Bertrand model
predicts marginal cost pricing in a duopolistic market, a result known as 'Bertrand
paradox’. While a simple backward induction argument shows that repetition of the
static Bertrand game for a finite number of periods simply repeats the 'Bertrand
paradox’ in each of the periods, various dynamic versions that generate profitable
outcomes have been studied.

This paper analyzes a sequential move, finite horizon pricing duopoly. Two firms
compete in the price of a homogeneous product, using Markov strategies. Production
is costless, and both time and the price-space are discrete. There is no uncertainty,
and future profits are not discounted. The firms take turns setting their prices, which
means that each firm’s current pricing decision locks it in for the following period as
well when the rival moves. Demand goes to the firm with the lowest price, and is
split equally if the prices are equal.

*This work is based on the first chapter of my Ph.D. dissertation at Columbia University in
1997. 1 gladly acknowledge the great debt to my supervisor Prajit K. Dutta, who encouraged me to
proceed with this research, and provided invaluable input and sorely needed moral support. I am
especially grateful to the associate editor, an anonymous referee, and Joergen Weibull for detailed
criticisms on all parts of the paper. The constructive comments of Jay P. Choi, Richard E. Ericson,
Guido Friebel, Margaret Madajewicz, and seminar audiences at Columbia, The Stockholm School of
Economics, Yale, Cornell, Missouri-Columbia, The Norwegian School of Management, The Federal
Reserve Bank of New York, and Florida International University are appreciated.



CvycLEs IN A FINITE PRICING DUOPOLY 2

In this game, only the final two periods are ’'irregular’ since each firm chooses the
optimal myopic behavior in its last move of the game; the reaction-functions in all
other periods follow three-period cycles. On the equilibrium path of this game, a
firm inherits the smallest price above the monopoly level at which the rival is frozen,
and begins a cycle by undercutting and making all sales at the monopoly price. The
rival then sets a price sufficiently low to deter further undercutting, in fact inducing
the first moving firm to raise its price in the last period of the cycle. In response to
this relenting the rival begins a new cycle with the same behavior and reversed roles.
Long-run average industry profits are approximately 5/6 of monopoly profits.

The related literature on dynamic price competition examines the robustness of
the ’Bertrand paradox’ in infinite horizon models, and includes games both with se-
quential (Maskin/Tirole [3]) and simultaneous moves (supergames).! Maskin/Tirole
[3] shows the existence of both Fdgeworth cycle and kinked demand curve equilib-
ria, and they demonstrate long-run profitability in all outcomes. Their Edgeworth
cycles entail repeated undercutting from the monopoly price down to marginal cost.
Their kinked demand curve outcomes suffer from a multiplicity of possible kinks; A
renegotiation-proofness criterion reduces possible kinks to the monopoly price. They
conjecture that the results carry over to a finite horizon. The present paper charac-
terizes the outcome yielded by the Markov-restriction in the finite sequential move
model, and shows that there are no kinked demand curve equilibria in this case.

Supergame approaches have generated profitable outcomes using strategies that
depend on the payoff-irrelevant history of the game. The non-robustness of long-run
profitability with respect to a finite horizon is expressed in Tirole ([4], p. 253):

”Collusion cannot be sustained in the supergame framework, even for
a long but finite horizon. Thus an unbounded horizon is crucial to the
results. This raises the possibility that the results are not robust to finite-
length interaction - a reasonable assumption.”

The solution in Markov strategies of the present finite model demonstrates that
neither a long horizon, nor non-Markovian strategies are required to sustain high
profits in dynamic price competition.

2. THE MODEL
Two firms compete in the price of a homogeneous product. The game is played over
discrete time periods ¢t = 1,2,..., 37T + 2, where T" > 0 is a finite even integer. The
length of the game is common knowledge and there is no uncertainty. The firms take

UThis model does not rely on existing rationales for profitability in static Bertrand models:
capacity constraints (or rising marginal costs in general) and differentiated products.
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turns choosing their price from a discrete set. Production is costless, and there is no
discounting. All demand goes to the lowest price.

The price set in period ¢ by the currently moving firm is p;, and that set by its
rival in the previous period, to which it remains committed in ¢, is p; 1. A firm
cannot change its price in a period in which the rival moves. The market price in ¢,
my, is defined as the lesser of the two firms’ prices: my = min {p;,p; 1}. Let 7 (my)
denote industry profits at a market price my, and let p* be the monopoly price. The
following assumptions are made.

A1: The profit-function 7 : Ry — R is three times continuously differentiable with

" < 0 and 7 (0) = 0, and 7 achieves its maximum at p* > 0.

By A1 the monopoly price p* =arg max 7 (p) is a singleton. The following Lemma
peG

summarizes implications of the assumption that are useful for the subsequent analysis.

Lemma 1. Under Al, 35 > 0, s.t. Ve € (0,8): 1) 3w (e) < w(2e), i) w(p—¢e) >
37 (p), Vp > 2= withw (p) > 0, iii) w (pM + ) + 7 (p —&) > = (pM) + 7 (p™ — 22),
and iv) 7 (22) < 47 (p™).

The proof is in the Appendix. The openness-problem of finding the highest under-
cutting price in a continuous price-space necessitates the use of a discrete price-grid:

A2: The price grid is G = {0,5, 2e,....pM ..., as} , with a positive € < &, £ as defined
in the Lemma, and a = max {f € N: 7 (fs) > 0} < o0.

The properties of the profit function that are the subject of the Lemma hold for all
sufficiently fine price grids. The essence of the fineness requirement on the grid is that
marginal undercutting does not lower industry profits so much as to render market
sharing at the next higher price more profitable. We adopt an arbitrary splitting rule
for the case where both firms set equal prices:

A3: If both firms charge the same price, they share the market equally.

Fqual splitting is not crucial, so long as matching results in less than total sales
in the market.? The last assumption specifies a tie-breaking rule in the case when a
firm is indifferent between several prices, all of which maximize its profit stream over
the remainder of the game.

A4: Tf there are multiple best replies to the rival’s continuation strategy, a firm selects
pM + £ if it is a best reply, and the highest best reply otherwise.

2Tt is easily verified that if no sharing takes place at equal prices, i.e. if then the last moving firm
makes all sales, the undercutting incentive disappears and the monopoly price can be sustained in
equilibrium.
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It will be shown that such indifference regularly occurs when a firm raises its price,
since all relenting prices above p™ are undercut to p* and therefore yield the same
payoff stream.

Denote by ¢ (p,p') a firm’s profit if its current price is p and its rival’s price is p'.
Under A3,

m(p), if p <p;
¢(p.p) =14 37 (p), fp=p;
0, ifp>yp.
The set of histories in period ¢ is H; = G, an element of which is h; € H;; the

3T+2
set of histories of the whole game is H = |J H; . A history h; is the observed
t=1

past sequence of prices, hy = (po, p1, ..., pe—1) for t = 1,2,....3T + 2, where py is the
arbitrary preexisting price at which the player moving in period 2 is frozen in the
opening period. A pure behavior strategy in period t is a mapping from the history
of the game to the price grid, s; : H; — G.

Call the player moving in even (odd) periods ’even’ ('odd’) firm, denoted by
superscripts ’e’ (°d’). Note that if ¢ is odd, each firm has the same number of moves
remaining, otherwise the firm moving in even periods has one more move. The
strategy for the odd firm is a collection s% = {St}t:1,3,5,... , and the strategy for the
even firm is s¢ = {s;}, 5, . The strategy space for the game is s = s% U s°.
Correspondingly we divide the histories of the game into sets containing odd and
even periods, H = H% U H® . A behavior strategy of the odd firm is s? : H? — G
and of the even firm s° : H® — (. In even periods, the payoff of the even player is
& (py, pr—1) and that of the odd player is ¢ (p;_1,p¢); in odd periods, the payoff of the
even player is ¢ (p;_1,p¢) and that of the odd player is ¢ (p;, pr_1)-

This finite game contains subgames that are uniquely defined by each history
h¢. For all histories hy, (s° s%) form a Nash equilibrium of the subgame starting at
history h, i.e. s n, and sd‘htare mutually best responses for all h!. The purpose of
introducing the subgame perfect restriction is to narrow down the possibly large set
of Nash equilibria by eliminating non-credible threats.

I am further restricting the firms to using Markov strategies. A local strategy s; is
a Markov strategy if for all histories h, and R}, s¢(h:) = s¢(h}) whenever p,_1 = p,_;.
Under the Markov restriction, firms condition their reply solely on the price set by the
rival in the preceding period, which is the only payoff relevant part of the history of the
game. Such behavior can be interpreted as conventional dynamic reaction functions,
i.e. direct responses to the most recent changes in market conditions. Alternatively,
it could describe behavior in a situation where the only information consists of the
last move of the rival.

The equilibrium concept used in solving this game is that of a Markov perfect
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equilibrium. A Markov perfect equilibrium is a subgame perfect equilibrium where
both players follow Markov strategies. Since we are assuming that each s, : H, — G
is a Markov behavior strategy, we can summarize the local strategies by defining best
responses in period t, By : G — G

B, (ptfl) = ¢ <p07p17 ---;ptfl) .

We will describe the equilibrium path of the unique Markov perfect equilibrium
satisfying the tie-breaking rule A4. This path is characterized by three-period cycles
of the form (3t—2,3t—1,3t). Suppose for simplicity that ¢ > 2 is even. The prevailing
price of the odd player, ps;_3, will be p™ 4. The even firm will then set ps;_o = p™,
taking the whole market in period 3t — 2. The odd firm then cuts the price, setting
pat—1 = p;. This price is set just low enough to deter the even firm from undercutting.
In fact, the even firm then raises the price to p 4 ¢, and the cycle repeats with the
even and odd players reversing roles. This behavior is summarized in the following

table:
Odd Firm’s Price Ewven Firm’s Price Market Price

3t—2 pM 4 e M pM
3t—1 Py M P}
3t Py pM +e P}

Table 1: Prices over a typical three-period cycle
This cycling continues until the last two periods, when both firms revert to near-
monopoly prices. That is,

Odd Firm’s Price Even Firm’s Price Market Price
3T +1 pM pM e pM
3T + 2 M pM — ¢ pM — ¢

Table 2: Prices in the endgame

An analysis of the endgame shows that no pricing other than the myopic best
response can be sustained in the two last periods of the game. By backward induction,
this competitiveness in the endgame has ramifications for the preceding play of the
game. In period 37T the firm has a choice between selling twice at lower prices and
only once (in 3T + 2) at a high price if it relents now. Such a choice recurs regularly
as the game gets longer, and key to understanding the behavior of the game is the
fact that in response to low prices the relenting option is more profitable.

The full Markov strategies supporting this equilibrium path as a subgame perfect
equilibrium are detailed in the proof of Theorem 2 in the Appendix. But the intuition
is straightforward. Continuous undercutting is too costly; it pays to relent if the price
falls below a certain level, forgoing current sales for the sake of inheriting a higher
market price at one’s next move two periods later. It is optimal for each firm to
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periodically lower to this level and thereby trigger a raise by the rival. The firms
take turns with each three-cycle in setting costly strategic traps for each other and
then cashing in for a period; this is an ongoing, repetitive battle not for permanent
market dominance but for a transitory, short-term strategic advantage. Neither firm
can credibly commit to ending the ongoing strategic warfare and maintaining a stable
market price.

This behavior is formalized in Markov strategies of the following form:

pM, it pM < p;
Bsria (P):B3T+1 (P): p—g, if5<P§PM3
g, ifp=c¢g,
and for each t =0,...,T,
pM, i pM < p;
By(p) = { P== Pl <p<plyorpiyte<p<ph
3 p, ifp= pFy+s;
pM+e, ifp <pj;
pi, i p < p{ or p; < p;
B, — :
i1 () {p—s, if pf < p < pj;
pM, i pM < p;
By a(p) = ( p—e, pf <p<p{ orpl<p<p

Py, ifp <pftorpl <p<pf,

where each three-period cycle of best response functions (Bs;_o, Bsi—1, Bat) is pa-

rameterized by four numbers: (pf, p¢, pft, pl' ). These numbers are defined inductively

as follows:

e p} is the largest p € (¢ less than or equal to the unique p € [0, pM } solving
Tlp—e)+m(p—3s)=7(p" —2).

Then ‘
* p:+1 + g, lfp:+1 S q;
pt - f *
o1 pt+1 > q,

where ¢q is the smallest p € G greater than or equal to the unique p € [O,pM }
solving 7 (p) = 27 (r — £) and r is the smallest p € G strictly greater than the unique

pE [O,pM} solving 7 (p) = %W (pM) )

e pV is the largest p € G less than or equal to the unique p € [0, pM } solving

T(p—¢)= %W(pf),
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e pl is the largest p € G strictly less than the unique p € [0, pM } solving
m(p—e)=2m(p/),

e pltis the largest p € G less than or equal to the unique p € [O,pM} solving

1

w(p—2) =57 (o))

These strategies describe the equilibrium behavior in this game:

Proposition 2. Best responses of the form Bszrys (p), Bsry1 (p) and for each t =
0,....,T, Bs (p), Bst—1 (p) and Bs;_o (p) form the unique Markov-perfect equilibrium
of the game satisfying assumptions Al1-A4.

The proof of the Proposition is contained in the Appendix. Graphs of the best
responses in the last two periods as well as over a typical cycle are shown below
(circles indicate the market price along the equilibrium path).
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Figure 1: The Endgame
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Figure 2: Steady-State Three-Period Cycle

The parameters of a three-period cycle only depend on the particular p; defined
in that cycle. Let the sequence {p;} = (r,r + £, ..., q) thus characterize a sequence of
three-cycles, and define the integer m = %. Call this sequence of three-cycles a
"big cycle’. We have the following result concerning the length of the big cycle.
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Corollary 3. Fach big cycle defined by {p;} = (r,r + <, ...,q) contains m — 2 com-
plete three-period cycles and 3m — 2 periods altogether. The big cycle repeats in
identical form forever asT" — oco.

Proof. As detailed in the proof of Proposition 1, when a p} reaches the value g,
the sequence {p;} = (r,7 + ¢, ..., q) switches from ¢ to r instead of continuing to rise
by &; at this point a new big cycle begins, with the parameters of the first three-cycle
defined by p; = r. The sequence {p;} contains all gridprices between (and including)
q and 7, 1.e. fg—+1 elements, each of which defines the parameters of one three-period
cycle. The first and last cycles in the sequence, occurring at the transition between
two big cycles, both consist of only two periods, and hence the number of periods
in a sequence is 3m — 2. By the definition of p}, the sequence {p;} = (r,;7 + 2, ...,q)
repeats as the game lasts longer. W

Writing I (¢,T) for average industry profits in the game of length 3T + 2 with
grid size €, we have the following Proposition.

Proposition 4. Average industry profits converge to %W (pM ) as the game lasts longer;
i.e., for a given £ > 0 satisfying A2, II (¢, T) — %W (pM) as’l'— oo .

Proof. Over a cycle, the equilibrium path of market prices consists of one
period at p* followed by two at p;. The prices p} keep moving up by £ with each
cycle: p; = pj,, + <. It follows from the definitions of ¢ and r that the profit levels at
the prices of this sequence have as approximate lowest and highest values %W (pM ) and
T (pM ) , respectively. Hence the average profit over a big cycle in the two periods of
a three-cycle that have p} as market price is approximately %W (pM ) , which together
with p™ in the third period gives approximately %W (pM ) as average industry profits
for large T. A

Since r > 0, the sequence {p;} = (r,7 +¢,...,q) implies that the market price
is strictly bounded away from zero in all periods. Note also that for any given T,
I, T) — %W (pM> as ¢ — 0. This holds because p; = p4 4 ¢ (1" —t) and therefore
w(py) ~ 5w (pM) , VL < T.

Since matching is never an optimal strategy over a three-cycle, there does not exist
a kinked demand curve equilibrium. Unlike in the infinite horizon model neither is

3When a big cycle ends and another one begins, the regular pattern of repeating complete three-
period cycles is interrupted. As detailed in the proof of Proposition 2, the last and first three-period
cycle of a big cycle consists of only two periods each, with the third one being skipped over in
the transition process. This irregularity interferes with the notation used in describing equilibrium
strategies. The timing subscripts in all big cycles from the second onwards ought to take into
account the two missing periods per completed big cycle, which would require using the end period
rather than the start of the game as reference point. This notationally more complex subscripting
is avoided for ease of exposition. The corollary implies that the smaller ¢, the longer the first big
cycle, for which the timing subscripts are correct, lasts.
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perfect collusion sustainable nor in fact is there any stable market price that can
persist over time. In the infinite model there is a large number of kinked demand
curve equilibria each based on the reciprocal belief that the rival will also match. In
the finite model such outcomes are not Markov perfect, since they unravel from the
end. Intuitively, near the end, the gain {rom continued matching gets smaller (as
fewer collusive periods remain) relative to the temptation to undercut and capture
the whole market for a period. The finite end date acts as 'counter-commitment’, i.e.
as guarantee to undercut high prices, destroying the credibility of a price-matching
strategy.

3. A LINEAR DEMAND EXAMPLE
This section presents the price-path generated by a linear market demand curve of
the form D : ¢ =1 —E, for 0 < p < 2. The associated industry profits are then
T=p— %, with a profit of 7 (1) = % at the monopoly price pM = 1. The distance of
the price grid is 0.01.

The following table gives each firm’s price, the market price and profits for the
final 17 periods of the game, and for the transition phase between the first and second
big cycle. Since on the equilibrium path it is never optimal to match the prevailing
price of a rival, the profits are both industry profits and at the same time the payoff
of the lower-price firm, with the rival making no sales in that period.
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Odd Firm’s Price Even Firm’s Price Market Price  Profits

3T+2 1 0.99 0.99 0.49995
3T+1 1 1.01 1 0.5
3T 0.31 1.01 0.31 0.26195
37T-1 0.31 1 0.31 0.26195
37T-2 1.01 1 1 0.5
3T-3 1.01 0.32 0.32 0.268%8
31-4 1 0.32 0.32 0.268%8
3T-5 1 1.01 1 0.5
3T-6 0.33 1.01 0.33 0.27555
3T-7 0.33 1 0.33 0.27555
3T-8 1.01 1 1 0.5
3T-9 1.01 0.34 0.34 0.2822
3T-10 1 0.34 0.34 0.2822
3T-11 1 1.01 1 0.5
3T-12 0.35 1.01 0.35 0.28875
3T-13 0.35 1 0.35 0.28875
371-14 1.01 1 1 0.5
T-177 1.01 0.9 0.9 0.495
T-178 1 0.9 0.9 0.495
T-179 1 1.01 1 0.5
T-180 0.91 1.01 0.91 0.49595
T-181 0.91 0.3 0.3 0.255
T-182 1 0.3 0.3 0.255
T-183 1 1.01 1 0.5
T-184 0.31 1.01 0.31 0.26195
T-185 0.31 1 0.31 0.26195
T-186 1.01 1 1 0.5

Table 3: Prices and Profits in a Linear Demand Example

In this example, the first (seen from the end) big cycle ends when p* in period
T — 180 reaches the value 0.91. This induces the rival in the preceding period to
deviate from the regular pattern of undercutting the prevailing price by ¢, and instead
to lower to the new trigger level of p* = 0.30.* With this trigger level a new big cycle

“The value p* = 0.30 results from the condition for p¥ to become so high that in the preceding
period it is optimal for the rival to lower to that level even from p* or higher prices. Lowering
yields two periods of 7 (p?) compared with one of undercutting at p™: = (p?) > %W (pM) . The
threshold level of p! is then the smallest p € ( strictly greater than the unique p € [0, p] solving
p— %pQ = %0.5. The solution to this equation is given by p = 0.29289, and the next higher price on
the grid is then 0.3.
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begins that goes on until once again p* reaches the value 0.91. Every time this value
is reached a new identical big cycle begins as in period T'— 182. In this example, the
repetitive sequence of cycles contains 60 complete three-period cycles (it takes p* a
three-cycle to move up by 0.1, and over a big cycle p* moves from 0.30 to 0.91), plus a
shortened two period transition phase each in the beginning and end of the sequence;
there are hence 184 periods contained in the big cycle.’

4. CONCLUSION

Finite horizon oligopoly models have long been shunned because it was thought that
the end-date introduced persistent irregularities, thereby rendering the models hard
and inelegant to solve without adding valuable insight into the nature of competition.
Typically one would solve the infinite horizon version of a model, and conjecture that
essentially the same solution applies to the same model with a finite, but long horizon.
It is hoped that this paper makes finite horizon models more workable by showing
that only very few periods in the end are indeed irregular, and that these quickly
disappear from the payoff-relevant horizon as the game moves away from the end. A
main feature of this model is the cyclicality of the reaction-functions, which derives
from the fact that the firms only have to consider the subsequent two to four periods in
finding their profit-maximizing price. The repetitive triggering and relenting pattern
over those steady-state cycles offers a new understanding of the nature of dynamic
strategic interaction between two rivals.

The second insight gained from this model is that the minimal one-period commit-
ment introduced by sequential order of moves is sufficient to sustain high profitability.
Neither a long horizon, nor non-Markovian strategies are necessary for persistent prof-
itability. Unlike in the infinite horizon version of the model, the price never drops
to marginal cost, and there are no kinked demand curve equilibria. Countering intu-
ition, the industry is more profitable in the finite horizon compared to the Edgeworth
cycles in the infinite case. While preventing a perfectly collusive outcome, the fi-
nite end-date also acts as a commitment device for tougher off-path behavior in the
FEdgeworth cycles, sustaining a higher equilibrium price-path.

This paper considers only the simplest setting. It is not clear how to model
sequential moves in a model where more than two firms compete in price. A further
research path is to relax the assumption of a fixed sequential order of moves, and
endogenize timing and order of moves in a continuous time framework.

°In this example the number of periods in the sequence of three-cycles is even, and therefore
it is always the even player who moves in a second consecutive triggering period and initiates the
transition to a new big cycle. This is not a general feature of the model and depends on the particular
demand curve and grid distance chosen.

Note also that the first big cycle starts at a pi; = 0.31 and hence contains one complete cycle
less than the big cycles to follow.
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While the present paper shows the non-robustness of Maskin/Tirole [3] with re-
spect to a finite horizon, their results are only demonstrated for discount factors close
to one. The infinite horizon game with impatient firms remains a challenge for future
research, and possibly the price dynamics obtained here for the finite horizon offer a
clue to its solution.
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5. APPENDIX
Proof of Lemma 1. 1) Since by strict concavity of 7,

lim 7(2¢) lim 7(g) + e’ (2e)
e0 () £—0 7(e)
_ lim 7(e) /e + 7' (2¢)
=0 7(e)/e
_ ©'(0) + 7' (0) _,
7'(0) ’

321 > 0 such that the claim holds for all positive & < ;. ii) For p > pM 7 (p—¢) >

7 (p) and the claim holds trivially. For p € (2=,p™], since 1in(1) w(p—e)=m(p) by
continuity of 7, for any given i?T (p), 329 > 0 st. Ve € (0,8), 7(p) —w(p—e) <
i?T (p) . iii) Performing a second-order Taylor-expansion on both sides of the expres-

sion, we get for some k,l € (0,£) and m € (0, 22):
2

- <pM> Lo <pM> i %Wu <pM> i égzsﬂm <pM i k:)
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i <pM> e <pM> i %Wu <pM> . %é’;ﬂ/// <pM . l)
4

> 7 (pM) + 7 (pM) — 2en’ (pM) + 227" (pM) — 5537#” (pM — m) )
Simplifying and dividing by 2, and noting that 7’ (pM ) = 0 yields
0>a" (p") +o(e),

where o (£) is a first-order term in £ with lim o (¢) = 0. Letting £ — 0, this becomes

e—0
0> 7T” <pM> ,

which always holds by strict concavity of 7. Thus 323 > 0 s.t. Ve € (0,23), the
claim holds. iv) Since llil(l) 7w (2e) = 7w (0) = 0 and by Al, %W (pM> > 0, 38, > 0 s.t.
Ve € (0,24) the claim holds.

Define & = min {&y,23,23,24}. Then 3 £ > 0 such that the Lemma holds Ve €
(0,2). m

Proof of Proposition 2. The structure of the proof is as follows. First the
optimal behavior in the last two periods of the game is derived. Then it is shown how
directly preceding the endgame the first three-period cycle appears. In particular, in
3T it is optimal to relent in response to low prices to benefit from a high market price
later on; anticipating this, the rival finds it worthwile to set a low price in 37T — 1,
giving it three consecutive periods of profits. Key to the proof is to show that this
situation repeats periodically with alternating roles, generating a sequence of three-
cycles. Iinally, the case of pf ; > ¢ is considered, which brings to an end one big
cycle and starts a new, identical one.

Consider the endgame consisting of periods 3T+ 2 and 37T + 1. In 3T+ 2, the even
firm selects the price that maximizes the current period’s profit, given the prevailing
price of the rival: psrie =argmax ¢ (p, psry1). By property ii) of the Lemma, for all

peG

prices above 2¢ undercutting gives strictly higher profits than matching, and by 1)
lowering to ¢ is the best response to 2. Only at ¢ is matching a best response, since
the alternatives of undercutting and raising both yield zero profits. In 37 + 1, the
odd firm foresees that a price above ¢ will not give it any sales in 37 + 2. It could
make two periods of sales by setting p3r,1 = £, but by Al this is optimal only in
response to £ and 2¢, but not to higher prices. In particular, part i) of the Lemma
implies that the best response to psr = 3¢ is 2¢ rather than lowering to . Hence
Bsri1 = Baryo.

In periods 3¢, two cases are to be considered. In ¢t = T' the even firm can undercut
the odd firm, giving it a profit stream of 7 (p — &) + 7 (p — 32). Or it could relent
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now, forgoing current sales, in order to benefit from the high market price when it
captures the whole market in the last period. By A4, the optimal relenting price is
pM + &, given that the rival will undercut this and any higher price to p*. The payoff
to relenting is then 7 (pM — 5) in the last period. The choice between relenting to
sell once at a high price and undercutting to sell twice at lower prices determines the
cutoff price p}. below which relenting is optimal. At prices above pM + ¢, the best
response is p + ¢ rather than p* by part iii) of the Lemma.

Next, consider periods 3t,t < T'. Facing a following three-cycle 3 (¢ +1),3 (t + 1)—
1,3(t 4+ 1) — 2, the firm moving in 3¢ needs only consider three periods since the pay-
off stream beyond that is independent of its current action. This is because its own
optimal behavior in 3 (¢ + 1) — 1 will force the rival to relent in 3 (¢4 1). At low
prices, the only way to achieve two consecutive periods of profits is to undercut to
at most pf,, with the consequence of having to relent to p},, in the next move two
periods later. The alternative is to relent now to p™ + ¢ (using A4), giving profits
of w (pz‘H) in 3(t+1) — 1. Since it follows from the definitions of pf, and py, , that
2m (pﬁH) <7 (p;‘ +1> , relenting is more profitable than lowering to pﬁu in response to
any prevailing price of the rival. Optimal behavior in 3¢ is then obtained by compar-
ing relenting to undercutting by . The former yields 7 (pz‘ +1> , while for prices above
phy1 + = the latter yields 7 (p — <) + 7 (pj,,) and below it, 7 (p — ). This choice
determines the cutoff price p; above which marginal undercutting is optimal. Note
that p; is defined by the equation 7 (p— <) =7 (pz‘ﬂ) , and hence p; = p;, | +¢< .

At p = ptLJrl + &£ matching is more profitable than undercutting since by giv-
ing up half the market today the firm avoids having to relent two periods hence:
%W (ptLH + 5) +7 (pZ‘H) > (ptLH) . This follows from the fact that for all ¢, (pZ‘H) >
%W (pM) , which implies 7 (pZ‘H) > %W (ptLH) .

To show that pf, > pf, we construct from the definitions of pf, p¥,; and
p; an indirect link between pf , and p;. First note that 27 (ng — 5) <7 (p;‘ +1>
and w (ptLH — 5) < 27 (pﬁﬁ . From the definition of pf, , the latter implies that
s (ptLH) > 27 (ng) . Second, p; = pf,; + ¢, and hence 7 (p}) > 7 (pz‘H). We have

T (ptL+1> > 21 (thH> > 21 (thJrl - 5) <7 (p:+1> < (p;)-

From concavity of m and the fact that the difference between 7 (pt[fd) and T (thH — 5)
in the first strict inequality is multiplied by 2, it follows that pf,, > p}.

In periods 3t —1, at high prevailing prices the firm can either sell twice by lowering
to pf, or once by undercutting. The former yields 27 (p}), which is larger than
7w (p —¢) from the latter. In response to prices below p}, undercutting gives two
periods of profits 27 (p — &). However, up to p{ this is less than relenting to p} with
a profit of 7 (p}) in the next period. By property ii) of the Lemma, matching is a less
profitable reply to p; than undercutting.
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The firm moving in periods 3t — 2 has to consider only two periods, since the
continuation strategy of the rival will force it to relent two periods later indepen-
dent of what it does now. At high prices, it can sell twice by lowering to pY, or
once by marginal undercutting. The comparison of the associated payoffs, 27 (pg )
and 7 (p— ¢), defines the cutoff price p* such that for all higher prices marginal
undercutting is the best reply. At prices less than p!', undercutting gives 27 (p — &)
which for all prices below pF is less than the payoff to relenting to p¥, (pg ) Since
T (pf) > %W (pM ), property iv) of the Lemma ensures that for suitably fine price
grids profitable undercutting is still possible at such low prices.

The end of a big cycle occurs when pj,; > ¢. Since pf = p;, | + £, and each p{ in

turn is a positive function of p;, the sequence { pY } .1, lsrising as seen from the end.

From the definition of r, if p¥, | > r the payoff to lowering to pf,,, 27 (ng% exceeds
that of marginally undercutting p™ +¢, 7 (pM ) . In that case, what would be regular
periods 3 (¢ + 1) — 2 become periods of the type 3t — 1, with a new p; = pf,, = r.
This 7 is the smallest price such that selling twice at r is more profitable than one
period at p™. The definition of ¢ obtains from the smallest p},; that defines a
P,y > r. That ¢ < p™ is confirmed by noting that at a price p},, = p™ — ¢, pf},
is defined as the largest p € G less than or equal to the unique p € [0, pM } solving
21 (p—e) = 7 (pM — ). Concavity of 7 then implies that 27 (p) > 7 (p™), and
hence p > r which is the condition for the switch to take place. Hence ¢ < p™ as
long as ng <r.h



