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Abstract

This paper investigates the properties of the Damodaran (1993) estim-
ator of price adjustment. It is concluded that strong bias and low precision
of the Damodaran estimator renders it useless for empirical work, even
when the available sample size is very large.

As an alternative, a gmm-based estimator is derived. Its properties are
significantly better than those of the Damodaran estimator. However, for
empirical applications it is still preferable to estimate price adjustment
speeds using concurrent information from related time series.
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1 Introduction

Amihud and Mendelson (1987) conjecture an intuitive model of prices adjusting
to changes in fundamental values. The difference between a price and its corres-
ponding value process is reduced at the rate g1 per period. Mathematically, the
price process of the Amihud and Mendelson (1987) model can be formulated as
follows:

rt = Pt − Pt−1 = g1 (Vt − Pt−1) + ut, (1)
Vt = Vt−1 + et, (2)

where Pt and Vt are the logarithms of the price and the underlying value re-
spectively. The noise terms ut and et have variance ς2 and ν2:

Var(ut) = ς2, Var(et) = ν2, (3)

and ensure that prices remain noisy estimates of the value process. The para-
meter g1 is usually interpreted as a measure of the informational efficiency. If
g1 is less than unity, prices are said to underreact to new information, if g1 is
larger than unity, prices overreact.1

Any process defined by equation 1 and the corresponding parameter values
for g1, ς2 and ν2 has well-defined time series properties, and it is possible to
calculate expected variances and autocovariances for any chosen return interval.

Estimating the speed of price adjustment is complicated, given that there are
three unknowns for each return series. Amihud and Mendelson (1987) argue that
ς2 is negligible for index returns since price errors in individual stocks will cancel
in a well diversified index. Under the additional assumption of g1 ∈ (0.5, 1.5), g1

can be estimated directly from the first order autocorrelation of index returns.
Damodaran (1993) uses another simplifying assumption to arrive at an es-

timator for g1. Setting gk = 1 at an arbitrarily chosen return interval k, it
is possible to estimate g1 from return variances at frequency 1 and k and the
autocovariance of k interval returns. The assumption of setting gk = 1 should
not be consequential since, for any value of g1, gj quickly converges to 1 as j
grows.2 Damodaran’s method of estimation thus produces separate estimates
for all three unknowns. from a single time series. It is therefore possible to
calculate, for example, the noisiness of prices relative to the underlying value
process.

The estimator of Damodaran, denoted ĝj , is calculated as follows:

ĝj =
2
j σ̂2

j + 2
j ρ̂2

k

1
j σ̂2

j + 1
k σ̂2

k + 2
k ρ̂2

k

, (4)

where σ̂2
j is the estimated return of j interval returns, σ̂2

k is the estimated re-
turn of k interval returns and ρ̂k is the estimated autocovariance of k interval
returns.3

1Empirically, estimates of g1 are mostly less than unity, that is, prices do not fully reflect
concurrent information. Studies seldom use the Amihud and Mendelson (1987) framework,
instead the lagged price response is deduced from autocorrelations or cross-autocorrelations.
Articles presenting such results include Amihud and Mendelson (1987), Lo and MacKinlay
(1990), Damodaran (1993), and Chan (1993).

2See, for example, the numerical example in the second column of table 1.
3There was an error in Damodaran’s original formulation. Equation 4 is the corrected

formula of Brisley and Theobald (1996).
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Although the Damodaran estimator is easy to calculate and practical for
empirical work, its performance is far from satisfactory. Consider the case of
applying the estimator to a random walk. Equation 4 suggests that the value
of ĝ1 should be equal to unity. However, the bias of the estimator is so strong
that using Damodaran’s choice of k = 20 and T = 1250, we obtain an average
ĝ1 of 0.67.

In addition to the strong bias, parameter estimates also have low precision.
For the same parameter choice as above, 76% of the g1 estimates are outside
the range of economically meaningful estimates, that is ĝ /∈ (0, 1.5).4 The
standard error of individual estimates is so high (2.62) that individual estimates
are virtually useless. Even an average of 1 000 individual and uncorrelated
estimates will have a standard error of 0.08.5 Since observed differences between
securities groups tend to be small, this implies the estimator can rarely produce
significant results.

The following four sections of this paper provides a brief analysis of the prob-
lems of the Damodaran estimator. The next section, section 2, discusses how
Jensen’s inequality and division-by-zero bias the estimated parameter values.
Section 3 reports simulations results for the Damodaran estimator. Section
4 uses gmm to derive an alternative estimator and reports simulation results
comparing the two estimators.. Section 5 summarises and concludes.

2 Properties of the Damodaran estimator

2.1 Variance of point estimates

It is straightforward to derive the asymptotic distribution of variance and auto-
covariance estimates. As an illustration, consider the null of prices following a
random walk. Using gmm we obtain:

σ̂2
1

d→ N
(
σ2

1 , 2/T
)
, (5)

σ̂2
k

d→ N
(
kσ2

1 , 2k3/T
)
, (6)

ρ̂2
k

d→ N
(
0, k3/T

)
, (7)

where σ2
1 is the true variance of unit interval returns. Note how the variance

and covariance estimate of the k interval returns has k3 and 1
2k3 times higher

variance than the estimates of the variance of unit interval returns. This is
due to the higher variance of k interval returns as well as the effectively shorter
sample period using non-overlapping k interval returns. Damodaran (1993) uses
k = 20. This implies that the variance of σ̂2

k and ρ̂2
k are 8 000 and 4 000 times

higher than the variance of σ̂2
1 .

4In this paper values of g1 ∈ (0, 1.5] are taken to be economically meaningful. The upper
limit can be set even lower. A g1 of 1.5 implies a very strong overreaction of the market
for unit interval returns. In addition it implies an unintuitive underreaction to two interval
returns, with g2 = 0.75.

5The numbers in this and the preceding paragraph are based on the simulation results
reported in table 2.
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Table 1: Bias resulting from Jensen’s inequality, approximated using a econd order
Taylor expansion of the ĝ1 function.

Expected bias k = 5 k = 10 k = 20

From σ̂2
j 0.000 0.000 0.000

From σ̂2
k 0.002 0.004 0.008

From ρ̂2
k −0.016 −0.072 −0.304

Sum −0.014 −0.068 −0.296

The bias is calculated using analogues to equation 8 under the parameter values: g1 = 1,
ς2 = 0, ν2 = 1, T = 1500.

2.2 The direct effect of Jensen’s inequality

Recall equation 4 and note that the estimator is a ratio of sums of stochastic
variables. Depending on parameter choices, ĝ1

(
σ̂2

j , σ̂2
k, ρ̂2

k

)
may be both convex

and concave in the estimated variances. As the variances and covariances are
estimated with error, Jensen’s inequality introduces a potentially large bias in
the estimator.

Given that variance and covariance estimates are stochastic, it is straight-
forward to calculate the effect of Jensen’s inequality on ĝ. For expositional
simplicity, assume that the parameter estimates σ̂2

1 , σ̂2
k and ρ̂2

k are uncorrelated.
We may then calculate the bias introduced by the variance of, for example, ρ̂2

k

using a second order Taylor series approximation.

Bias = E
[
ĝ1 − E

[
ĝ1|ρ̂2

k

]∣∣ σ̂2
j , σ̂2

k

] ≈ 1
2

∂2ĝ

∂ (ρ̂2
k)2

∣∣∣∣∣
g∗1

Var
(
ρ̂2

k

)
, (8)

g∗1 =
2
j E

[
σ̂2

j

]
+ 2

j E
[
ρ̂2

k

]
1
j E

[
σ̂2

j

]
+ 1

kE [σ̂2
k] + 2

kE [ρ̂2
k]

. (9)

Table 1 reports the bias under the null of prices following a random walk. The
bias introduced by the noisiness of ρ̂2

k dominates the other sources of bias and
increases rapidly as k is increased. Damodaran’s choice of k = 20 implies a bias
of −0.30 for a time series of length 1 250. Since the bias is proportional to the
variance of estimates, doubling the sample size will reduce the bias by half. In
a time series of, say 10 000 or more, this bias will be negligible at least for low
value of k.

2.3 A close-to-zero effect

A further problem resulting from the fact that the Damodaran estimator is
calculated as a ration of stochastic variables is a close-to-zero effect. Although
the denominator cannot be equal to zero it can get relatively close to zero.
In this case estimates will be disproportionately large. This problem is more
severe insofar as it cannot be mitigated using longer time series. The effect
will be strong when σ2

j is small relatively to σ2
k, that is, when g1 is low. This

bias can go either way. If ς2 is large and g1 small there will be strong negative
autocovariance in k interval returns. This makes the nominator negative when
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the denominator is close to zero. For low ς2 the bias is instead positive. Since
we have no way of estimating ς2 separately within the model, this problem can
only be solved by increasing the set of independent variables.

2.4 High variance

The low precision of variance and covariance estimates also make g1 estimates
very noisy. Using k = 20, the standard error of individual g1 estimates is above
0.5 even when using time series with 10 000 observations for the estimation.
Given the range of permissible values for g1, this implies that individual estim-
ates cannot be used for inference.

Reducing k reduces the problems due to noise in variance estimates but also
makes the estimator less theoretically convincing. Setting k too low introduces
biases from the fact the gk may not, in fact, be equal to unity.6

2.5 Non-uniqueness of parameters

In the Amihud and Mendelson (1987) model parameters cannot always be
uniquely determined from return series properties. For example, all return series
with parameters satisfying, g1 =

√
1− ς2/ν2, will follow a random walk. This is

also the standard prediction of g1 from noisy rational expectations equilibrium
models such as, Hellwig (1980) or Kyle (1985). Another case when it is hard to
determine parameters from data is the case of weak overreaction of prices. For
such parameters, time series properties are close to those of a series with higher
ς2 with g1 equal to unity.

Depending on parameters, return properties are quite different “close” to the
random walk. Therefore it is only meaningful to estimate g1 once the random
walk hypothesis has been rejected. Using the single series estimation of price
adjustment coefficients thus always implies an implicit assumption of market
imperfections.

3 Simulation results

This section investigates the properties of the Damodaran estimator using sim-
ulations.7 Figure 1 presents the distribution of ĝ1 in the form of histograms. It
is evident that the proportion of meaningful estimates is too low. In addition
the estimates seem to be “all over the map”. Increasing the sample size does
not improve the properties of the estimator.

Figures 2 and 3 present the bias of the Damodaran estimator for varying
choices of parameter choices and sample lengths. An unbiased estimator would
follow the dashed line closely, but for the Damodaran estimator, this is clearly
not the case. For many parameter combinations, the function E [ĝ1|g1] is flat

6Compare with the results presented in figure 4. The results from setting k = 5 are more
well-behaved than those obtained for k = 20, but also more strongly biased.

7Simulation details: ĝj is calculated using equation 4. Variances and covariances are es-
timated using overlapping returns. This reduces the variance estimates by approximately one
third, see Richardson and Smith (1991). Value innovations and errors are normally distrib-
uted. Tests using fat-tailed and skewed distributions produce similar results (not reported).
The Matlab programs used for the simulations are included in the working paper version of
this paper (available from the author).
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Figure 1: Simulation of the Damodaran estimator: Histograms of simulation results.

Panel a: g1 = 0.8, T = 1500 Panel b: g1 = 0.8, T = 10 000
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Panel c: g1 = 1.0, T = 1500 Panel d : g1 = 1.0, T = 10 000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

Meaningful estimates 25%

Close estimates 7%

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

Meaningful estimates 61%

Close estimates 19%

Each histogram represents the results across 5 000 simulations. The thick vertical line indic-
ates the true value of g1 in the simulations, while the narrow vertical line indicates the sample
average of ĝ1. Common parameter values: ς2 = 0.1, ν2 = 1.0, k = 20. Observations outside
the interval (0, 1.5) are truncated from the histograms, but included in the calculated mean.
In addition to showing the distribution of estimates, each panel also shows the proportion of
economically meaningful (ĝ1 ∈ (0, 1.5]) and “close” estimates (defined as |ĝ1 − g1| ≤ 0.1).
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Figure 2: Bias of Damodaran’s estimator for different sample lengths
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Parameter values: ν2 = 1, ς2 = 0.1, T ∈ {1 500, 5 000, 10 000} (thin, medium, thick solid line),
k = 20. The dotted diagonal line indicates the true value of g1. Deviations from the dotted
line implies positive (above) or negative bias (below).

or downward sloping. A smaller true coefficient will thus result in a larger es-
timated coefficient. For low values of g1, the close-to-zero effect is so severe
that ĝ1 seems to be wholly unrelated to the true value. As shown in figure 2,
an increased sample size reduces the bias due to Jensen’s inequality, thereby
increasing the average value of ĝ1, however the close-to-zero effect is not af-
fected.8,9

Figure 3 reports similar results, this time for different choices of ς2/ν2. The
same pattern similar to that of figure 2. However, the figure shows how the
“close-to-zero bias” is highly sensitive to the values of ς2/ν2. For high ς2/ν2,
the nominator of equation 4 is more likely to be negative when the denominator
is close to zero. This makes cross-sectional inference of estimated g1 parameters
close to impossible, unless separate estimates or assumptions on the noisiness
of prices are made.

In addition to the bias discussed above, the estimates of gj are not consistent
across choices of j. Given an estimate of g1, estimates for all higher gj follow
easily from standard algebra:

gj+1 = gj + g1 − gjg1. (10)

8It should be noted that an increase in the sample size to 100 000 corresponds to using, for
example, 3 years worth of 5 minute returns. Using such short return interval implies a lower
value of the true g1 (a daily g1 of 0.99 corresponds to a 5 minute g1 of 0.04) and probably a
higher value for k (Assuming g1 day = 1, implies k = 120). Given the properties of ĝ1 for low

g1 and high k this implies that estimates will deteriorate with increased data frequency.
9In this context it should be mentioned that Damodaran (1993) presents simulation res-

ults in support of the derived estimator. Unfortunately, the simulation uses the parameter
specification, g = 0.7, σ2/ν2 = 0.4, T =1250. For this parameter combination the estimator
is close to unbiased.

7



Figure 3: Bias of the Damodaran estimator for three values of σ2
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Parameter values: ν2 = 1, ς2 ∈ {0.1, 1.0, 5} (thin, medium, thick line), T = 1500, k = 20. The
dotted diagonal line indicates the true value of g1. Deviations from the dotted line implies
positive (above) or negative bias (below).

However, the Damodaran estimator does not have this property. Instead the
speed of convergence to gj = 1 is too low. This illustrated by the relatively
large difference between the first two columns of table 2.

3.1 Damodaran’s empirical results

In the light of the simulation results it is possible to reject most of the empirical
findings reported in Damodaran (1993). Table 2 compares the results reported
by Damodaran to results from two matching simulations. Results are consistent
with figure 2. The estimated value of ĝ1 is close to 0.65 both for a random walk
and for a process with a true g1 of 0.7. We may therefore conclude that the
underreaction results presented by Damodaran are predominantly generated
from the choice of k and T , not the properties of actual price adjustment. The
same conclusion must be made about the reported medium term overreaction.

Damodaran also report evidence of cross-sectional differences in price ad-
justment coefficients between amex and size-sorted nyse stocks. According to
Damodaran small stocks seem to react slower than large stocks, however dif-
ferences between categories are small. Given the small sample length and the
high variance of ĝ1, these differences are cannot be interpreted as statistically
significant difference in the speed of price adjustment.

4 A gmm estimator

Using the General Method of Moments technique (gmm) of Hansen (1982) it is
straightforward to derive a consistent estimator of g1. The model of Amihud and
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Table 2: Estimates of gj as reported by Brisley and Theobald (1996) compared to
simulation results

Original

estimates†
Theoretical

value‡
Matched

simulation§
Random walk

prices¶

ĝ1 0.6408 . . . 0.6476 0.6673
ĝ2 0.7336 0.8710 0.8361 0.8455
ĝ5 0.9503 0.9940 0.9525 0.9505
ĝ10 1.0050 1.0000 0.9886 0.9853
ĝ15 1.0080 1.0000 0.9957 0.9935
ĝ20 1.0000 1.0000 1.0000 1.0000

†Values taken from Brisley and Theobald (1996), table I. ‡Calculated using equation 10 and
g1 = 0.6408. §Average estimated g1 using equation 4 under the true parameters g = 0.7,
ς2 = 0.4, ν2 = 1.0, T = 1250, k = 50, 5 000 simulations. ¶Average g1 under the true
parameters g = 1.0, ς2 = 0.0, ν2 = 1.0 and T = 1250, k = 50, 5 000 simulations.

Mendelson (1987) provides a large number of possible moment conditions based
on predicted variances and covariances. Predicted variances give us moment
conditions of the form:

E
[
r2
k,t −

gk

2− gk
kν2 +

2
2− gk

ς2

]
= 0, (11)

for k interval returns. Similarly we have:

E
[
rk,trk,t−i − gk (1− gk) iν2 − gkς2

]
= 0 (12)

from the predicted autocovariance of k interval returns. Combined with the
equation for gi, we can construct a gmm estimator using an arbitrary number
of moment conditions. The simulation use an estimator based on 2k moment
conditions, k variance moments and k covariance moments.

The gmm estimate is obtained by setting the corresponding in-sample mo-
ments to zero. This is equivalent to minimising:

(
ĝ1, ς̂

2, ν̂2
)

= arg min
g,ς2,ν2

T∑
t=1

gt

(
g1, ς

2, ν2
)′

S−1
w gt

(
g1, ς

2, ν2
)
, (13)

where S−1
w is the inverse covariance matrix of moment conditions, estimated at(

ĝ1, ς̂
2, ν̂2

)
using k lags and gt is a vector of 2k sample moment conditions at

time t. For details, see Hansen (1982).
An illustration of the results obtained using the gmm estimator is given

in figure 4. The gmm estimator has several advantages over the Damodaran
estimator. Firstly, its estimates are by construction always within the range of
permissible parameter values. Secondly, individual estimates are significantly
less noisy and the estimator is much more “well-behaved”. The main drawback
of the gmm method is that it is computationally much more demanding.

Although it is clear that gmm provides significantly better results than the
Damodaran estimators, results are still quite wobbly, particularly for intermedi-
ate values of g1, since g1 = 0.75 implies that prices follow a random walk. The
experienced positive bias is due to a large number of observations with ĝ1 close
to unity.
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Figure 4: Comparision of the Damodaran estimator and a simple gmm estimator

0 0.5 1 1.5
0

0.5

1

1.5

Damodaran, k=20

Damodaran, k=5

GMM

True value of g1

E
st

im
a
te

d
va

lu
e

o
f
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The figure presents the results from four separate estimators: 1 the Damodaran estimator
with k = 5 (thin dotted line), 2 the Damodaran estimator with k = 20 (thick dotted line), 3
the gmm estimator with k = 5 (thin solid line), and 4 the gmm estimator with k = 10 (thick
solid line). The gmm estimator uses 2k moment conditions as described in section 4. All
estimators use identical simulated return data, estimated using the Amihud and Mendelson
(1987) model (equation 1) with the parameter values: ς2 = 0.5, ν2 = 1.0, T = 1500. The
dotted diagonal line indicates the true value of g1. Deviations from the dotted line implies
positive (above) or negative bias (below).
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5 Conclusion

This paper demonstrates that the estimator of price adjustment coefficients,
derived in Damodaran (1993), cannot be used for empirical work. Results are
biased and extremely noisy. In addition, parameter estimates are often not
meaningful in the context of the Amihud and Mendelson (1987) model. In some
cases the bias is so severe that estimated parameter values are negatively related
to the true values.

The cursory exposition made in section 4 shows that, for the purpose of es-
timating price adjustment coefficients, a simple gmm estimator produces robust
and consistent results that are significantly better than those of the Damodaran
estimator. However, given the ambiguity of parameter values, even the gmm
estimator should only be used where there is a theoretical foundation for prices
actually following a Amihud and Mendelson (1987) type process, and not, say
a random walk with measurement noise.

Even when this condition is satisfied, the information in a single time series is
often not sufficient to estimate price adjustment coefficients efficiently. However,
using additional information, such as returns in concurrent time series, it will be
feasible to measure the price response to a common factor quite efficiently. Such
an estimator is outside the scope of this paper, and is probably best derived with
a particular testing environment in mind.

References

Amihud, Yakov and Haim Mendelson, “Trading Mechanisms and Stock
Returns: An Empirical Investigation,” Journal of Finance, July 1987, 42 (3),
533–555.

Brisley, Neil and Michael Theobald, “A Simple Measure of Price Adjust-
ment: A Correction,” Journal of Finance, March 1996, 51 (1), 381–382.

Chan, Kalok, “Imperfect Information and Cross-Autocorrelation among Stock
Prices,” Journal of Finance, September 1993, 48 (4), 1211–1230.

Damodaran, Aswath, “A Simple Measure of Price Adjustment Coefficents,”
Journal of Finance, March 1993, 48 (1), 387–400.

Hansen, Lars Peter, “Large Sample Properties of Generalized Method of
Moments Estimators,” Econometrica, July 1982, 50 (4), 1029–1054.

Hellwig, Martin F., “On the Aggregation of Information in Competitive Mar-
kets,” Journal of Economic Theory, 1980, 22, 477–498.

Kyle, Albert S., “Continuous Auctions and Insider Trading,” Econometrica,
1985, 53 (6), 1315–1335.

Lo, Andrew W. and A. Craig MacKinlay, “An Econometric Analysis of
Nonsynchronous Trading,” Journal of Econometrics, 1990, 45, 181–211.

Richardson, Matthew and Tom Smith, “Test of Financial Models in the
Presence of Overlapping Observations,” Review of Financial Studies, 1991, 4
(2), 227–254.

11


