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Abstract

Asymptotic tests for fractional integration are usually badly sized in
small samples, even for normally distributed processes. Furthermore, tests
that are well-sized under normality may be severely distorted by non-
normalities and ARCH errors. This paper demonstrates how the bootstrap
can be implemented to correct for such size distortions. It is shown that
a well-designed bootstrap test based on the MRR and GPH tests is exact,
and a procedure based on the REG test is nearly exact.
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1. Introduction

Many ..nancial time series display characteristic features such as observations that
are non-normally distributed (i.e. with excess skewness and kurtosis), condition-
ally heteroskedastic and ruled by long-memory. For instance Ding, Granger and
Engle (1993) report evidence of autocorrelations between distant lags for long lags
in the absolute returns of the Standard and Poor 500, S&P500, composite stock
index. Furthermore, Granger and Ding (1995) show that the absolute value of the
rate of return for a variety of stock prices, commodity prices and exchange rates
exhibit excess skewness and kurtosis.

Long-memory is usually described by fractionally integrated speci..cations,
hence testing for long-memory may be performed via a test for a fractional dif-
ferencing power. For this purpose, several tests have been proposed and some of
the most popular are thoroughly investigated by Cheung (1993), who also studies
the infuence of ARCH disturbances. Andersson and Gredenho= (1997) imple-
ment a bootstrap method, in order to size-adjust fractional integration tests. The
bootstrap provides a trustworthy technique for estimation of the small-sample
distribution of a statistic. When using a bootstrap test the null-distribution is
retrieved by bootstrap methods and hence the critical values are adjusted to give
exact tests.

This paper investigates some fractional integration tests when the data are
non-normal or the residuals are heteroskedastic. Again, the bootstrap is used
to correct for size distortions. Another extension is a comparison of parametric,
non-parametric and heteroskedasticity invariant resampling algorithms. The aim
of the paper is to ..nd tests that are robust to non-normalities and ARCH exects
in data, and thus are well-suited when testing for long-memory in ..nancial and
economic time series.

The results suggest that the performance of a bootstrap testing procedure
depends to some extent on the chosen resampling algorithm. However, all (but
one) bootstrap tests are superior to the original version of the tests, in the sense
that the bootstrap tests have better size properties.

The paper is organized as follows. Section 2 describes the bootstrap testing
procedure and Section 3 contains a Monte Carlo simulation study where the sizes
of the tests are presented for normal and non-normal data and processes with
ARCH errors. Section 4 concludes the paper.



2. The Bootstrap Testing Procedure

The bootstrap, see for instance Efron and Tibshirani (1993), provides a feasible
method for estimation of the small-sample distribution of a statistic. The basic
principle is to approximate this distribution by a bootstrap distribution, which can
be retrieved by simulation. In short, this is done by generating a large number
of resamples, based on the original sample, and by computing the statistics of
interest in each resample. The collection of bootstrap statistics, suitably ordered,
then constitutes the bootstrap distribution.

2.1. The Bootstrap Test

The objective of a general (two-sided) test is to compute the p-value function
p(7) =p (7l = 7], T) (2.1)

where ¥, is the data generating process (DG P) under the null hypothesis, and 7
is the realized value of a test statistic 7 based on a sample of length 7". Since ¥,
is unknown this p-value function has to be approximated, which is regularly done
using asymptotic theory. For asymptotic theory to be valid it is required that
p (7) should not depend on ¥, and 7', which is usually not true in small samples.
An alternative to an asymptotic solution is to estimate the ..nite-sample DGP by
the bootstrap DGP U, that is to use a bootstrap test. According to Davidson
and MacKinnon (1996a), a bootstrap test is understood as a test for which the
signi..cance level is calculated using a bootstrap procedure.

If R bootstrap samples, each of size 7', are generated in accordance with ¥,
and their respective test statistics 7,* are calculated using the same test statistic
7 as above, the estimated bootstrap p-value function is de..ned by the quantity

R
pr(E) =Ry I > 17, (2.2)
r=1
where I () equals one if the inequality is satis..ed and zero otherwise. The null
hypothesis is rejected when the selected signi..cance level exceeds p* (7).

The bootstrap testing procedure is a general tool and can be applied to all
tests that allow for the implementation of the null-hypothesis in the bootstrap.
Davidson and MacKinnon conclude that the size distortion of a bootstrap test is of
the order 7-'/2 smaller than that of the corresponding asymptotic test. A further
re..nement of the order 7-'/2 can be obtained in the case of an asymptotically
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pivotal statistic, i.e. a statistic whose limiting distribution is independent of
unknown nuisance parameters.

This paper employs the bootstrap technique on fractional integration tests.
In order to handle non-normal or conditionally heteroskedastic data, we re..ne
the bootstrap testing procedure of Andersson and Gredenhoz (1997) to include
these cases. The bootstrap tests are based on the periodogram regression test of
Geweke and Porter-Hudak, GPH, (1983), the modi..ed rescaled range, MRR, test
(Lo, 1991) and the Lagrange multiplier REG test of Agiakloglou and Newbold
(1993).!

A fractionally integrated autoregressive moving average (ARFIMA) time series
process is described by

¢(B)1-B)'z,=60(B)a, t=1,..,T (2.3)

where the roots of ¢ (B) and ¢ (B) have all roots outside the unit circle and a, is iid
with mean zero and variance o2 < co. The dizerencing parameter d is allowed to
take any real number, but if d is restricted to the set of integers the speci..cation
(2.3) reduces to an ARIMA process. The sample autocorrelation function of a
long-memory process may be approximated by a fractionally integrated model,
hence testing for long-memory can be done by a test on d. Such tests are applied
to stationary and invertible series and d = 0 is thus a natural null-hypothesis.?

When testing for fractional integration, the DGP ¥, is characterized by an
unknown ARMA(p, q) speci..cation. Since the null model, and consequently ¥,
is unknown, the estimated (bootstrap) DGP W, is used to create the bootstrap
samples.

2.2. Construction of the Bootstrap Samples

The original non-parametric bootstrap of Efron (1979), designed for iid observa-
tions, usually fails for dependent observations, e.g. time series, since the order
of the observations is acected. Dependencies in data can be maintained in the
bootstrap resample by using a model-based bootstrap, which is the natural way
to proceed in our case since a well-de..ned model forms the null-hypothesis. A
model free procedure, such as a moving blocks bootstrap or a spectral resampling

1These tests are briety described in Appendix A.
ZStationarity and invertibility require that d < |1/2|. The ARFIMA model is presented in
greater detail by Granger and Joyeux (1980) and Hosking (1981).



scheme, may also preserve dependencies. However, model free approaches devi-
ate from the bootstrap testing idea of Davidson and MacKinnon (1996a,b), in
the sense that the resemblance between the bootstrap samples and the original
sample is sacri..ced. This is due to the implementation of the null-hypothesis,
which in this situation is done by ..Itering the series through the long-memory

.ter (1 — B)?, where d is an estimate of the dicerencing parameter. A further
drawback is that the bootstrap test would then in general be sensitive to the
estimate of d.

For the bootstrap fractional integration tests we use the resampling model,

(1—¢0—¢1B— —¢ﬁBp) T = Gy, (2.4)
which clearly obeys the null-hypothesis and can be regarded as the estimated
AR representation of the process. The autoregressive order p is selected from
the values (0,1...,5) for the size evaluation and up to 25 for the power, by the
Bayesian information criterion (BIC') of Schwartz (1978) , and the parameters are
estimated by ordinary least squares (OLS). The use of the BIC is motivated by
comparisons, not reported in the paper, with the AIC of Akaike (1974). Further-
more Andersson and Gredenho= (1997) use the AR approximation as well as an
ARMA resampling model, and ..nd that the former performs better.

The bootstrap samples x, r = 1, ..., R, are created recursively by the equation

~

ai, = ¢ (B) 'a, (2.5)

where &(B) is the polynomial of (2.4) and a; are the bootstrap residuals. In this
study the number of bootstrap replicates is R = 1, 000.

Four resampling algorithms are utilized to generate the bootstrap residuals a;.
The ..rst algorithm, b;, makes use of a normality assumption for the disturbances
a; in (2.3), and is denoted the simple parametric bootstrap. In this resampling
the residuals a; are independent draws from a normal distribution with mean zero
and variance s2.

A second similar but non-parametric resampling scheme (denoted b,) does not
impose distributional assumptions but is directly based on the estimated residuals
a;. The bootstrap residuals are drawn, with replacement, from the recentered and
degrees of freedom corrected residual vector. One typical bootstrap residual is
constructed as

T

- xa,,
T—p—1

*_
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where s is U (p+ 1,T) distributed.

The third and fourth resampling algorithms are constructed to preserve ARCH(1)
dependence in the residuals. ARCH is introduced to the autoregression, ¢ (B) z; =
a;, by the equation a;, = ,/we;, Where the conditional variance is given by
wi = By + Pra?_;. The assumed normality of ¢; allows joint estimation of the
parameters through maximization of the log-likelihood function

1 & a?
l(¢07"'7¢p750751 |X):_ﬁ logwt—i_;t .
t=1

For the optimization, we use the numerical method of Davidon, Fletcher and
Powell, see for instance Press et al. (1992). The resamplings are based on a para-
metric or a non-parametric algorithm, similar to those above. In the parametric
case (denoted b3), a residual series &; is created by independent draws from a
N (0, s?) distribution. For the non-parametric (b;) scheme the members of {z;}
are drawn from the degrees of freedom adjusted elements of {¢;}. The boot-
strap residuals are then built by imposing the estimated conditional dependency,
according to the equations X X
@¢ = By + Brai?,
and

* ~ ~

a; = €V wy.

This implies that a; has an unconditional variance of 3,/ (1 — 51)

3. The Monte Carlo Study

The Monte Carlo study involves 1000 replicates (series), where each series is
tested for fractional integration using the original tests and the dicerent boot-
strap tests described in Section 2. The rejection frequencies of the non-fractional
null-hypothesis, i.e. the empirical sizes, are evaluated and compared. The power
of a bootstrap test is in general close to that of the size adjusted asymptotic test
(see Davidson and MacKinnon 1996b). In particular, for the asymptotic tests in
this study and normal processes, Andersson and Gredenho= (1997) demonstrate
this for a bootstrap test with the simple parametric resampling scheme.
To evaluate the size of the tests ..rst order autoregressions,

(1 —¢B)z: = at, (3.1)



of length 7" = 100 are generated and the parameter ¢ is set equal to the values
{0,0.1,0.5,0.7,0.9}. To reduce the initial-value ecect, an additional 100 observa-
tions are generated. We construct the data in order to display three dicerent char-
acteristics: normality, non-normality (skewness and excess kurtosis) and ARCH
errors. The characteristics are introduced via the disturbances a;.

3.1. Normal Processes

The experiment examining the empirical size of the tests under normality is based
on the process (3.1) where the disturbances {a,} are iid normally distributed with
mean zero and variance equal to unity. Table 3.1 presents the sensitivity of the
empirical size with respect to the investigated AR parameters for a nominal 5%
level of signi..cance. Signi..cant dicerences from the nominal size are obtained
when the rejection frequencies lie outside the 95% acceptance interval (3.6,6.4).

The estimated size of the original MRR test always dizers signi..cantly from
the 5% nominal level. In particular, the MRR test is strongly conservative for large
positive parameters. The GPH test is severely over-sized for highly short-term
dependent series, which is explained by a biased periodogram regression estimate
due to large positive AR roots, see Agiakloglou et al. (1993). Compared with the
other original tests the REG test is well-sized; only one signi..cant size-distortion
can be found. A more detailed presentation of the tests is given in Andersson and
Gredenho= (1997).

The results suggest that the MRR and GPH bootstrap tests, regardless of
resampling, give exact tests in the sense that the estimated sizes of the tests coin-
cide with the nominal. The bootstrap REG test based on the simple parametric
resampling is almost exact, whereas the non-parametric resampling (which does
not incorporate the normality) produces notably large sizes for strongly depen-
dent AR processes. The resamplings that account for the (non-existing) ARCH
exects have resonable estimated sizes, however conservative for ¢ equal to 0.7 and
0.9.

3.2. Non-Normal Processes

In the non-normal case, the disturbances a, are distributed with mean, variance,
skewness and kurtosis equal to 0, 1, v, and ~; respectively. The members of {a;}
are generated by the transformation,

a; = co + cray + el + c3ald ar ~ N (0,1), 3.2)



Table 3.1: Rejection percentage of the nominal 5 percent fractional integration
test when the data follow an AR(1), of length 100, with normal errors.

¢

Test 00 01 05 07 0.9

MRR o 76 6.8 23 1.3 0.8

b1 53 59 48 47 3.9

b 45 42 49 5.0 4.4

b3 6.2 6.4 6.0 52 3.9

by 6.0 6.4 55 53 4.3

GPH o 49 49 83 179 71.8

by 50 52 47 4.3 3.7

b 50 51 46 4.2 4.0

b3 53 58 50 44 3.6

by 54 55 50 44 3.6

REG o 59 69 64 51 5.1

by 6.0 51 47 4.2 4.7

by 45 37 56 7.9 19.2

b3 50 46 37 33 34

by 48 48 36 35 35

The number reported is the rejection percent-

age of the two-sided 5% test. Bold face de-

notes a signi..cant deviation from the nom-

inal size. Under the null-hypothesis of no

fractional integration, the 95% acceptance in-

terval of the rejection percentage equals (3.6,

6.4). o denotes the original test and b; — by

the bootstrap testing procedures described in
Section 2.

proposed by Fleichmann (1978). In this situation, the sequence {a;} will have a
distribution dependent upon the constants ¢;, which can be solved for using a non-
linear equation system speci..ed as a function of selected skewness and kurtosis.
~vs and -, are chosen to generate series x; with a skewness and kurtosis of 2 and
9 respectively.® The empirical size of the tests under non-normality is reported in
Table 3.2.

The original MRR and GPH tests are robust to excess skewness and kurtosis,
in the sense that the results are similar to the normal case. This does not imply
that the tests are well-sized, since the distortions of the MRR test are slightly more

3The expressions for the determination of ¢;,i = 0, ...,3 and how the residual skewness and
kurtosis depend on those of the time series process are given in Appendix B.



Table 3.2: Rejection percentage of the nominal 5 percent fractional integration
test when the data follow an AR(1), of length 100, with non-normal errors.

¢

Test 00 0.1 05 0.7 0.9
MRR o 77 6.0 22 20 05
b1 50 55 5.3 5.4 4.8
by 47 48 4.4 4.8 4.6
b3 49 6.0 55 4.2 4.2
by 47 6.0 5.2 45 3.8
GPH o 49 56 8.0 16.3 72.2
by 42 4.2 3.7 45 3.9
by 44 43 5.0 4.7 3.6
b3 42 54 53 5.0 3.7
by 44 54 51 5.2 4.1
REG o 55 7.3 7.7 6.6 8.7
by 49 5.0 338 47 2.4
ba 51 39 45 6.9 13.8
b3 39 58 45 3.1 1.5
by 3.8 4.7 4.2 1.8 1.1
See note to Table 3.1. The skewness and kur-
tosis of the disturbances are selected in order
to give a skewness of 2.0 and a kurtosis of 9.0,

for all processes.

articulated and the GPH test is still severely over-sized for large parameters. In
contrast to the other tests, the original REG test is sensitive when the data do
not ful..ll the normality assumption. The dicerence between the empirical and
nominal size is in general signi..cant.

The estimated sizes of all bootstrap MRR and GPH tests never dizer signi...-
cantly from the nominal 5%. The bootstrap REG tests behave as in the normal
case. That is, the parametric b; works well, the non-parametric b, is over-sized
for large parameters and b; and b, are conservative for the same parameters.

3.3. Processes with ARCH Errors

For the ..nal set of processes the assumption of identically and independently
distributed errors is relaxed. Instead we consider the ecect of heteroskedasticity of
ARCH(1) type, which implies that the disturbances are conditionally distributed
as ay;—1 ~ N (0,w;), Wwhere w, =1 — 4+ a7, and § < 1. The parametrization
implies that the unconditional variance of a; equals unity, and the parameter
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G is selected as 0.5 and 0.9. The 0.9 parameter imposes a strong conditional
dependence in the disturbances, but the fourth moment of the disturbance process
does not exist. As a complement, the weaker ARCH dependence of § = 0.5 is
also investigated.

Results in Table 3.3 show that the MRR test is quite robust also against
conditional heteroskedasticity. However, compared with the case of uncorrelated
data, cf. § = 0, the test tends to be more conservative as the ARCH parameter
increases. The GPH test is unacected by ARCH in the disturbances. In short,
these tests have the same size problem as with uncorrelated disturbances. On the
other hand, the usually well-sized REG test is very sensitive to ARCH exects and
exhibits a seriously distorted size for g = 0.5 and in particular for 5 = 0.9.

The robustness of the MRR and GPH tests against ARCH exects can be
detected in the bootstrap tests. As a result all bootstrap MRR and GPH tests
are exact for all generated combinations of 5 and ¢.

The disappointing size of the original REG test is partly inherited by 5, and bs.
Furthermore, the increasing pattern with the AR parameter for b, is still present.
However, the size distortions of b; and b, are smaller for the lower value of 5. The
REG test, overall, requires that the resampling scheme allows for ARCH exects.
This is exactly what bootstraps b3 and b, do, and despite a few conservative values
these bootstraps are not only superior to the original test, but also much better
than b; and b,.

3.4. Size Comparisons and Power

Table 3.4 supplies an overview of the tests that exhibit the best size properties,
judged by the number of signi..cant results based on the 95% acceptance region,
for the respective processes. All bootstrap MRR and GPH tests work well and
have equivalent size properties, for all processes investigated. The simple non-
parametric bootstrap REG test is badly sized when the generated process has
an AR parameter close to the unit circle, regardless of the characteristics of the
disturbance process. Otherwise, all REG tests, even the original, perform well
under normality, whereas for non-normality the simple parametric bootstrap is
best. When ARCH errors are introduced, the bootstraps that account for the
heteroskedasticity clearly adjust the size of the REG test better. Since these
resamplings also work for uncorrelated errors, b3 and b, exhibit the best REG
performance overall.

A bootstrap MRR or GPH test is shown to be exact, and a well-designed
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Table 3.3: Rejection percentage of the nominal 5 percent fractional integration
test when the data follow an AR(1), of length 100, with ARCH errors.

¢
Test 0.0 0.1 0.5 0.7 0.9
8 =0.5

MRR o 9.5 40 24 18 0.6
b1 4.4 4.8 5.1 3.9 3.8

by 4.3 4.8 4.7 4.3 4.1

b3 5.1 5.1 4.8 5.4 3.9

by 4.7 4.9 4.1 5.2 3.8
GPH o 4.5 4.3 57 17.6 71.6
by 4.0 4.1 4.0 3.9 3.6

by 3.8 4.2 4.0 3.6 4.1

b3 3.8 3.5 4.0 4.5 4.2

by 4.0 3.8 3.9 4.8 4.5

REG o 98 9.7 90 7.4 104
b1 7.6 85 5.4 46 7.3

by 8.7 4.6 6.6 46 25.2

b3 4.3 3.8 3.9 3.9 3.7

bs 4.2 4.0 3.9 3.7 4.0

8=0.9

MRR o 34 31 14 08 0.7
b1 3.7 3.8 4.0 4.0 5.3

by 4.0 3.6 4.1 3.7 3.7

b3 5.2 5.4 4.8 4.3 4.2

by 5.1 5.3 4.8 4.0 4.3
GPH o 4.7 50 6.5 16.8 70.9
b1 4.7 5.0 4.1 4.2 4.1

by 5.4 5.3 4.7 3.8 3.8

b3 4.0 4.7 4.2 6.2 4.7

by 4.0 4.7 4.4 6.4 4.6

REG o 28.6 29.3 295 29.2 334
b1 79 84 73 71 7.3

by 9.2 6.8 88 144 249

b3 31 38 35 38 43

by 36 38 33 41 44
See note to Table 3.1. The error processes follow
an ARCH process with parameter 3.
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Table 3.4: Best test based on size properties.

Normal Non —normal ARCH Owverall
MRR b; — by by — by by —by by —by
GPH b — 4 by — by by —by by —by
REG b1,(0,b3,bs) b1, (b3,04) by (b3) b3, b4

The Table reports the best test based on the smallest hum-
ber of signi..cant size distortions. The test within brackets is
regarded as almost equivalent to the ones without.

bootstrap test based on the REG test nearly exact. Furthermore, the stylized
DGPs of this study are quite well-behaved, whereas in empirical situations they
are not. Consequently, the asymptotic tests are likely to be more distorted and
the gain from a bootstrap test to be even larger.

Davidson and MacKinnon (1996b) show that the power of a bootstrap test,
based on a pivotal statistic, is generally close to the size-adjusted asymptotic test.
Table 3.5 presents the power of the tests for fractionally integrated white noise,
(1 — B)* z, = a;, where the members of {a,} have a normal, non-normal* or het-
eroskedastic distribution. Only the parametric bootstraps are reported, because
of the similar power properties of the corresponding non-parametric resamplings.
However, combined with the REG test the simple parametric bootstrap b, ex-
hibits, at positive dicerencing parameters, notably better power properties than
the simple non-parametric resampling bs.

The power of the MRR and GPH tests are preserved by all bootstrap proce-
dures, except for processes with d = 0.45. In this case too many autocorrelations
are included in the variance correction term of the MRR test, resulting in a neg-
atively biased estimate of the fractional dicerencing parameter which lowers the
power of the original test. This phenomenon is not experienced by the bootstrap
tests, which have well-behaved power curves. For the GPH test a large dicer-
encing parameter results in a rich parameter structure of the resampling model,
which implies that the resample periodograms resemble the periodogram of the
highly persistent original process. Thus, the bootstrap GPH test has di¢culties
in distinguishing fractional processes from AR speci..cations. The power of the
REG test is preserved by the simple parametric bootstrap, whereas the ARCH

4The skewness and kurtosis of the residuals as functions of the time series moments are given
in Appendix B.
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Table 3.5: Rejection percentage of the nominal 5 percent fractional integration
test when the data follow fractional noise of length 100.

d
Test -045 -0.25 -0.05 0.0 0.05 0.25 0.45
Normal processes
MRR o 146 11.3 3.7 50 58 147 40

by 16.5 13.6 6.1 53 69 143 186
b3 136 124 44 6.2 6.6 119 123
GPH o 21.8 8.3 39 50 44 17.0 40.9
b1 21.0 111 53 50 53 165 118
b3 17.6 9.3 48 53 53 7.1 122
REG o 439 27.8 3.8 5.0 108 353 225
by 41.0 37.6 6.7 6.0 80 259 196
bs 199 239 3.1 50 56 161 14.1
Non-normal processes

MRR o 6.9 8.7 50 50 68 158 6.8
b1 10.8 8.2 47 50 54 11.8 18.6
bs 8.0 8.7 53 49 60 116 184
GPH o 259 10.8 6.1 50 70 154 4038

by 20.4 105 45 42 53 84 100

bs 19.7 9.2 56 42 66 79 89

REG o 429 326 42 50 108 379 225

by 422 37.7 55 49 6.1 271 158

bs 23.1 30.2 42 39 53 204 16.7
ARCH processes

MRR o 10.8 8.0 49 50 6.0 191 171
b1 8.3 5.7 31 37 48 112 203
bs 9.4 7.3 43 52 52 130 137
GPH o 211 101 59 50 6.0 148 40.7

b1 194 114 56 47 49 89 127
b3 17.0 9.2 55 40 58 7.7 106
REG o 31.7 16.6 45 50 7.0 212 10.9
b1 359 251 95 79 95 216 187
b3 11.6 9.3 28 31 24 93 75
The number reported is the rejection percentage of the two-
sided 5% test. o denotes the original test, and b; and b3 the
bootstrap testing procedures described in Section 2.
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resamplings have a lower power throughout.

On the basis of the estimated power, two major situations are detected. If we
cannot rule out ARCH erects in the disturbances, the highest power is given by
a simple bootstrap MRR or GPH test. However, if there are no ARCH erects
(in theory or data) then the simple parametric REG test clearly outperforms all
other testing procedures.

4. Conclusions

The concept of bootstrap testing for fractional integration works extraordinarily
well. If the signi..cance level is calculated by a bootstrap procedure an exact
test is almost always the result. However, the choice of resampling algorithm may
acect the degree of size adjustment. For instance, if the original test is sensitive to
distributional assumptions, in particular ARCH erects, this should be accounted
for when specifying the resampling model. However, if the test is robust to ARCH
errors, the choice of resampling is not very important for the size properties of
that test.

Since economic and ..nancial data are often heteroskedastic we recommend the
use of the parametric ARCH resampling scheme for the REG test. However, if
prior information suggests that the investigated series does not have ARCH exects,
the simple parametric bootstrap has equivalent size properties and a higher power,
and should thus be used.

The MRR and GPH tests, which are robust to deviations from the iid nor-
mality of the disturbances, have nice size properties for all bootstrap procedures.
Due to the simplicity and the slightly higher power of the simple algorithms, they
are preferred when bootstrapping the MRR and GPH tests.

The main conclusions are that the bootstrap tests are remarkably well-sized
(whereas the originals are not) and robust to non-normalities and ARCH egects,
and that reliable testing for fractional integration in many cases requires a boot-
strap test.
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Appendix

A. Tests for Fractional integration

Consider the regression equation

In{l, (wj)} =a—dn {4 sin? (w;/2) + vj} , (A1)
where I, (w;) is the periodogram at the harmonic frequencies w; = 2xj/7, and
j=1,..,9(T) = T2 The ordinary least squares (OLS) estimator of d is then

consistent and the distribution of (do.s — d) /SE (dors) is asymptotically nor-

mal. This is the periodogram regression estimation/testing procedure of Geweke
and Porter-Hudak (1983).
Lo (1991) proposes a modi..ed rescaled range (M RR) statistic when testing
for fractional integration. This modi..ed rescaled range is de..ned by the ratio
. Ry
QT OA'T (k) 9 (AZ)
where the range and the standard error are calculated by

% %

Ry = Ofg?g%tzzl (we —T) — Orgngt:ZI (2 — ) (A.3)
k T j
j=li=jt1

The truncation lag, &, is set, to the integer part of (37/2)3 {20/ (1-7")}°, where

p denotes the sample ..rst-order autocorrelation coedcient and 6° the maximum
likelihood variance estimate. Asymptotic critical values of the MRR test are given
by Lo (1991).

The LM type test, denoted REG, of Agiakloglou and Newbold (1994) is carried
out through the likelihood based auxiliary regression

p q
ar =Y BWisit Y 72—y + 0K + s, (A.5)
-1

i=1 j=
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where

Ko =Y j  ay, 9(3) Wi = x4, 9(3) Z, = a; and wuy is iid normal.

J=1

G, and 0 (B) are the estimated residuals and MA polynomial under the null and
m is a prespeci..ed truncation lag. The equation (A.5) is ..tted by OLS over the
time period ¢ = m + 1, ..., T and the usual ¢-statistic for the null hypothesis 6 = 0
follows an asymptotic N (0,1) distribution.

B. Generation of Non-normal Data

B.1. The Skewness and Kurtosis Relationship

Under the assumptions in Section 3 the skewness and (raw) kurtosis for the dis-
turbance process are given by

(1-¢°

PYS = FS (1 B ¢2)3/2

and
C Tw(¢®+1) — 697
7k - 1 . ¢2 9

where I'; and I'; are the corresponding moments of the AR(1) process.
In the fractionally integrated case the disturbance skewness and kurtosis are
given as

o= {(rk S DIEEI S 5;5,3}/W2 (@),

J=0k#j

where ¢; is the ith weight in the moving average representation,

o0
Ty :Z i,
i=0
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for the fractionally integrated process. The weights are given by
o = 1
6 = d
1
(Si = ;(Si_l(i—l—d), for : > 1.

B.2. The Fleichmann Algorithm

The constants in (3.2) are given as the solutions to the following system of equa-
tions,

G = —C

W = 24|cics+ (14} + Bees) + 3 (12 + 48cyc5 + 14165 + 22563 |
_ Vs

Cy =

2 (e + 24c¢1c3 + 10563 + 2)

and )
Vs

2 =2¢2 + 12¢cic5 +
! (@ 1 240105 + 10562 + 2)

> + 30c3.
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