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Abstract

This paper evaluates the performance of three bootstrap algorithms
for the data envelopment analysis (DEA) estimator using a Monte Carlo
simulation study. The Lothgren and Tambour (1997) (LT) algorithm; the
Simar and Wilson (1997b) (SW) algorithm; and a combination of the LT
and SW algorithms (the LSW-algorithm) are considered in the study. The
empirical coverage accuracy of bootstrap confidence intervals are simulated
under both variable returns to scale (VRS) and constant return-to-scale
(CRS) restricted DEA estimators. The results indicate that the LSW-
algorithm performs slightly better than the LT-algorithm, which in turn
performs better than the SW-algorithm.
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1. Introduction

Estimation of technical efficiency using nonparametric piecewise linear envelop-
ment of the data dates back to the work of Farrell (1957). The data envelopment
analysis (DEA) estimator of technical efficiency, introduced by Charnes, Cooper
and Rhodes (1978), have found use in many efficiency measurement studies and
have been modified and extended in several ways as presented in the DEA survey
by Seiford (1996). Recently the statistical properties of the DEA estimators have
been investigated by several authors. Banker (1993), establishes consistency of the
DEA estimators for the single-output, multiple-input case, and Kneip, Park and
Simar (1996) provide convergence results for the general multiple-input, multiple-
output case. Korostelev, Simar and Tsybakov (1995a, 1995b) establish the con-
sistency of the FDH and DEA production set estimators and their convergence
rates.

An important issue in DEA applications is whether a given set of finite sample
DEA efficiency estimates indicate significant technical inefficiencies of the eval-
uated firms or not. This information is reasonably of importance to managers
who wish to focus their efforts to increase efficiency where improvements are most
needed. Albeit consistent, real world applications of DEA estimators offer no guid-
ance to the statistical inference problem in that only point estimates of efficiency
are obtained from the estimators.

An approach to perform the desired inference is to bootstrap the DEA esti-
mator. The bootstrap is a computationally intensive general method that relies
on a simple idea to perform statistical inference in various problems where the
analytical properties of the considered estimator is unknown or hard (or even im-
possible) to derive analytically. The idea in the bootstrap method, introduced by
Efron (1979) and later extended in several directions, as presented in, e.g., Efron
and Tibshirani (1993), is to resample the estimator and use the empirical distrib-
ution of the resampled estimates to calculate bootstrap confidence intervals or to
construct bootstrap hypotheses tests to perform the desired statistical inference.

The application of the bootstrap to DEA estimators is rather recent and under
extensive development. As of yet a consensus on a single bootstrap methodology
for the DEA estimators remains to be developed. Several papers applying various
bootstrap techniques on DEA estimators have recently appeared. See, e.g., Gstach
(1995), Ferrier and Hirshberg (1997), Lothgren and Tambour (1997) and Simar
and Wilson (1997b). Recently, Simar and Wilson (1997c) criticize the bootstrap
procedure suggested by Ferrier and Hirshberg (1997) and present "a primer on



bootstrapping nonparametric models” with a general guidance of how the DEA
estimators should (and should not!) be bootstrapped.

The purpose of this paper is to take up the discussion in Simar and Wilson
(1997c) and present some Monte Carlo simulation results in favor of an alternative
simple DEA bootstrap procedure that offers a simple alternative to the algorithm
suggested by Simar and Wilson (1997b). Specifically the bootstrap algorithm by
Lothgren and Tambour (1997) (LT) is presented and compared to the algorithm
by Simar and Wilson (1997b) (SW).

The LT-algorithm is a computationally simple DEA bootstrap algorithm that
differs from the SW-algorithm in two important ways: First, a simple resampling
of original efficiency estimates are used, without application of the smoothed re-
sampling applied by SW. Second, a fundamental difference is that the calculation
of the resampled efficiency estimates differ. In the LT-algorithm the bootstrap ef-
ficiency estimates are based on the distance from the pseudo-data to the bootstrap
frontier estimates. This is in contrast to the SW-algorithm where the bootstrap
efficiency estimates are based on the distance from the original observed inputs
to the bootstrapped production frontier estimates.

A comparative Monte Carlo simulation study is conducted to investigate the
performance of the LT and the SW algorithms to bootstrap single-period DEA
estimators. A comparison of the relative performance of the LT and the SW
algorithms is of interest by itself but does not provide any information on the
possible causes of a possible difference in performance. To give some guidance
on this issue we propose and evaluate the performance of a third algorithm (the
LSW-algorithm) that is based on the smoothing procedure in the SW-algorithm
and the use of the pseudo input data in the definition of the bootstrap efficiency
estimator as in the LT-algorithm. A comparison of the relative performance of
the LT and LSW algorithms indicates whether any differences in performance is
due to the use of a smoothed (SW) or non-smoothed (LT) resampling of pseudo-
efficiencies in the bootstrap algorithm. Furthermore, a comparison of the relative
performance of the SW and LSW algorithms indicates whether any differences in
performance is due to the use of original data (SW) or pseudo-data (LT) in the
evaluation of the bootstrap efficiency estimates.

The Monte Carlo study considers estimation of input-oriented! technical inef-
ficiency using a CRS technology as the true data generating process. Technical
inefficiency is estimated using both the VRS and the CRS restricted DEA estima-

I This is not restrictive and the described algorithms and techniques can be trivially extended
to an output-oriented setting.



tor. The coverage accuracy performance of simple percentile and bias-corrected
bootstrap confidence intervals are considered for each of the LT, the SW and the
LSW algorithms. For the computationally demanding VRS estimator we consider
small-sample properties for sample sizes up to n = 60. For the CRS estimator we
consider sample sizes up to n = 500 to get some indications of the consistency
properties of the different bootstrap algorithms.

For the VRS estimator the results indicate that the combined LSW-algorithm
performs slightly better than the LT-algorithm, which in turn performs better
than the more computationally demanding SW-algorithm. For larger sample sizes
and higher nominal confidence levels the difference in performance between the LT
and SW-algorithms is more clear. For the CRS estimator the LSW-algorithm also
shows the best performance. For all considered sample sizes, the LSW percentile
intervals have consistently the highest coverage accuracies. The LT-algorithm in-
tervals performs overall better than the SW-algorithm. As for the consistency
properties of the algorithms the coverage accuracy of bootstrap confidence inter-
vals from the LT and LSW algorithms show a clear convergence of the empirical
coverage accuracy to the nominal levels for sample sizes larger than 120. For
the SW-algorithm, on the other hand, the results cast doubts on the consistency
properties of the algorithm.

The paper unfolds as follows: Section 2 presents the DEA estimator. Section 3
presents the bootstrap algorithms and Section 4 presents the bootstrap confidence
intervals considered in the study. Section 5 presents the Monte Carlo simulation
study and Section 6 concludes.

2. The DEA Estimator

A multiple-input, multiple-output production technology, where inputs = € Ri
inputs are used in the production of y € R outputs can be represented by the
production set W of attainable input-output combinations:

U = {(w, y) € R? : 2 can produce y}. (2.1)

The technology is assumed to satisfy a set of axioms discussed in, e.g., Shep-
hard (1953) and Shephard (1970). In short: (i) inactivity is allowed; (ii) “free
lunch“ is not allowed; (iii) strong disposability of inputs and outputs; and (iv) the
technology is convex.

An alternative, equivalent, representation of the technology is the input set,
defined as



L(y) ={x: (z,y) € ¥}. (2.2)
The production technology is completely characterized by the Farrell (1957)
scalar-values input-based technical efficiency measure defined as

0(z,y) =min{0: 0z € L(y)}. (2.3)

This measure is reciprocal to the input distance function by Shephard (1953)
and Shephard (1970). 6 (z,y) < 1 if and only if z € L(y). The value of the
efficiency measure is given by 0 (z,y) = |z||/ foH, where x/ € IsoqL (y) =
{z:zeL(y),px ¢ L(y),p <1} is the frontier input. A firm is considered as
technically efficient if the efficiency measure equals one.

Following Charnes et al. (1978) (CCR) the variable returns to scale (VRS)
DEA efficiency estimator for firmi = 1, ..., n, based on a sample x,, = {(x;,y;); i =
is given by the solution to the linear programs

~VRS

O =min{0: 0z, € LY ()}, (2.4)

m

where z; is the d-vector of inputs and y; is the p-vector of outputs for firm i,
LYES (y,) is the piece-wise linear convex hull envelopment of the observed sample
Xn given by

LYRS (y;) = {x:yz’ <Yz, 2>Xz, Y zi=1,z¢€ Ri}? (2.5)

i=1

where Y = (y1,%2,...,Yn) is a (p X n) matrix, X = (z1,29,...,2,) is a (d X n)
matrix of inputs and z is a n-vector of non-negative intensity variables.

-~

S
The constant returns to scale (CRS) efficiency estimator, 6, , is given by

~CRS

O =min{0: 0z; € LT ()}, (2.6)

where LORS (y;) is the piece-wise linear conical hull of the data, defined by
LERS () = {x i <Yz, x> Xz z€ Ri} (2.7)

As discussed in Simar and Wilson (1996), the ”safest” approach in estimating
efficiency, that avoids a possible misspecification, is to use the VRS estimator.
This suggestion is motivated by the fact that for a CRS technology, both LIRS C L



and LYRS C L, and both input set estimators converge to the true input set L
as the sample size n — oo (see, e.g., Korostelev, Simar and Tsybakov (1995b)).

~VRS ~CRS
Hence, under CRS, both estimators §,, and §,, are consistent. If, on the other
hand, the true technology does not exhibit CRS, the CRS input set estimator
LEES is misspecified and will not converge to L. This in turn implies that the

CRS DEA estimator giRS are inconsistent in this setting. The VRS estimator
remains consistent, however. Kneip et al. (1996) provide a complete and rigorous
treatment of the VRS DEA estimators consistency properties.

Albeit consistent, the estimators are biased in small-samples. Specifically, if

~CRS
the true technology exhibits CRS, the estimators are nested as 1 < 6; < GinR <
~VRS S . o
0., which implies that both the CRS and the VRS estimators are positively

m
biased in this setting. If the true technology does not exhibit CRS, the VRS
estimator remains consistent and positively biased for small samples whereas the

CRS estimator is misspecified and inconsistent.

3. Bootstrapping the DEA Estimator

The bootstrap method is a well-established statistical resampling method used to
perform inference in complex problems. The crucial step in any application of the
bootstrap is a clear specification of the data generating process (DGP) underlying
the observed data. The basic idea of the bootstrap method is to approximate the
sampling distributions of the estimator by using the empirical distribution of
resampled estimates obtained from a Monte Carlo resampling simulation of the
estimation procedure where repeated resamples obtained from an estimate of the
DGP produce repeated estimates. The performance of the bootstrap in terms of
the validity of the conducted statistical inference ultimately hinges on how well the
DGP characterizes the true data generation and how well the DGP is mimicked
in the resampling simulation.

The DEA bootstrap algorithms by both Léthgren and Tambour (1997)% (LT)
and Simar and Wilson (1997b) (SW) is based on the same DGP model where
the inputs are assumed given by random radial deviations off the isoquant of
the input set. Formally, each input in the sample of input-output observations

2The specified DGP in LT is output-oriented but is easily adapted to the input-based model
considered here.



Xn = {(zi,y:); 1 =1,...,n}, are specified as

where 2/ € IsoqL (y;) is the unobservable frontier input for firm i. The true
efficiency measures are assumed to be drawn from the same distribution, i.e.,
«9i ~ Fg, 1= 1, ., n.

Note that this DGP model represents the idea that, conditioned on the outputs
and the input proportions, the stochastic elements in the production process are
completely represented by the random input efficiency measures.

The main idea in the bootstrap simulation is to mimic the DGP. The procedure
in both the LT and SW algorithms in each resample is as follows: Conditioned
on observed outputs and input proportions, the resample data are constructed in
two steps. First, the frontier inputs are estimated and bootstrap pseudo-inputs
are generated by replicating the DGP in (3.1) using the estimated frontier inputs
and pseudo efficiencies drawn from some estimate of the distribution Fy. The
algorithm by LT is based on a simple resampling from the empirical distribution
of the estimated efficiencies are used to generate the pseudo-efficiencies. The SW
algorithm make use of a smoothed resampling procedure, based on consistency
argument. Second, the bootstrapped efficiency estimate is obtained by evaluating
the distance from the pseudo input (in the LT-algorithm) or the original input (in
the SW-algorithm) relative to the bootstrap estimate of the frontier.

In the two subsections that follow we present the two algorithms, and discuss
the differences between them, in detail.?

3.1. The LT-algorithm

The bootstrap algorithm proposed by LT is given by the following steps:

1. Transform the input-output vectors using the original efficiency estimates
{Gm,z’ =1, ...,n} as

2. Resample, independently with replacement, n technical efficiencies from the

set of original estimates {Gm} Let 67, + = 1,...,n, denote the resampled
efficiencies.

3The algorithm can be applied to both the VRS and the CRS DEA estimator. For notational
simplicity we suppress the scale restriction notation in the following and focus the presentation
on the VRS estimator.



3. Let the bootstrap pseudo-data be given by
(«3,95) = (&]/65, ). (3.3)

4. Estimate the bootstrap efficiencies using the pseudo-data and the linear
program (2.5) as’

0°" —min {9 i <Yz, 02 > X%z, Y z=1, z€ Rﬁ} . (3.4)

m
0,2 i=1

5. Repeat steps (2) - (4) B times to create a set of B firm-specific bootstrapped

~LTxb
efficiency estimates 6,, ,b=1,...,B.

In this algorithm the bootstrap frontier estimates and the bootstrap efficiency
estimates are resampled based on a resampling of technical efficiencies from the
empirical distribution of the original estimates of efficiency. Furthermore, the
bootstrap replicates of efficiency is based on the resampled data in the same
manner as the original estimates are based on the original data.

3.2. The SW-algorithm

The bootstrap algorithm proposed by SW differs from the LT-algorithm in step
2 and step 4.

In step 2 a smoothing procedure, based on a kernel smoothing of the empirical
distribution of the original efficiency estimate, is utilized to generate a smoothed
resample of pseudo-efficiencies. The utilized smoothing procedure is based on
the reflection modification of the Gaussian kernel density estimate discussed in
Silverman (1986). The procedure is described in detail in SW, here we only present
a basic discussion sufficient to implement the smoothing.

Let 6] be the non-smoothed resample drawn independently, with replacement,
from the empirical distribution of the original estimates of technical efficiency
{ij. The smoothing procedure consists of two steps: First a small perturbation
is added to ¢}, and second a correction of the resampled sequence is applied.

First, a small perturbation he; is added to ¢;, where h denotes the bandwidth
parameter and ¢} is drawn .i.d. from a standard normal distribution, to generate

4The CRS estimator is obtained by deleting the restriction Y » | z; = 1. X* = (a7, 25, ..., 2%)
is a (d x n) matrix of pseuso-inputs.



the smoothed pseudo-efficiency 5: . Due to the fact that the efficiency measure
is bounded on the unit interval ag*discussed in Section 2, the following reflection
procedure is utilized to generate 0, :

o {6;-“+h5;‘ if 6 +her <1

%=1 2- (67 + hef)  otherwise. (3.5)

If the realization 6] + he} > 1, 5:‘ is set to the symmetric image of 67 + he;
reflected in the boundary point, i.e., §; =2 — (6F + he}) .

One important problem in the application of the smoothing procedure is the
choice of the bandwidth parameter h. Several approaches to select the bandwidth
h is available, as discussed in, e.g., Silverman (1986). In the Monte Carlo study
performed in this paper, we use a simple automatic robust bandwidth selection
rule for univariate data proposed by Silverman (1986, p. 47-48)°

h=0.90n""" min {5, Ri3/1.34}, (3.6)
where 7, denotes the plug-in standard deviation estimate of the efficiency esti-
mates {@n} and Ry3 denotes the interquartile range of the empirical distribution

of {@n}, respectively.
The final smoothed resampled efficiencies, denoted 7, are obtained by cor-

recting 5? as
v =05+ (6 = 5) 1+ 12/, (3.7)

where 6, = 3", 6*/n is the average of the resampled original efficiencies. This
correction guarantees that the resampled efficiency (asymptotically) have the same
first two moments as the original efficiency estimates @m .

The second, more fundamental difference between the two algorithms is in
step 4. In the SW-algorithm the bootstrap efficiency estimate for the ith firm is
evaluated as the efficiency of the original input x; relative to the bootstrapped
isoquant of the input set L* (y;) instead of using the bootstrap pseudo-input z}
as in the LT-algorithm.

To summarize, the SW-algorithm is given by the following steps:

1. Transform the input-output vectors using the original efficiency estimates
{Qm,i =1, ...,n} as

(@91, ) = (s Oins i) (3.8)

5 A similar bandwidth selection rule for bivariate smoothing is used by Simar and Wilson
(1996) for the smoothed bootstrap of Malmquist productvity indices.

9



2. Generate smoothed resampled pseudo-efficiencies v as follows

2.1. Given the set of estimated efficiencies {ém}, use (3.6) to obtain the
bandwidth parameter h.

2.2. Generate {6;} by resampling, with replacement, from the empirical

o~

distribution {Gm} of the estimated efficiencies.

2.3. Generate the sequence {5:} using (3.5).
2.4. Generate the smoothed pseudo-efficiencies {7;} using (3.7).

3. Let the bootstrap pseudo-data be given by
(@, 50) = (307 wi) - (3.9)

4. Estimate the bootstrap efficiencies using the pseudo-data and the linear
program (2.5) as®
~SW * . n
0; =min {9 Y <Yz 02, > X2, Y zm=1, z€ Ri}. (3.10)

0,2 i=1

5. Repeat steps (2) - (4) B times to create a set of B firm-specific bootstrapped

. . ~SW=xb
efficiency estimates §,, ,¢=1,...,n,b=1,..., B.

3.3. The LSW-algorithm

We also consider a third algorithm which is based on a combination of the LT and
the SW algorithms. The LSW-algorithm is based on the smoothing procedure
in the SW-algorithm and the use of the pseudo input data in the definition of
the bootstrap efficiency estimator as in the LT-algorithm. That is, step 2 in the
combined LSW-algorithm consists of the smoothing procedure in step 2 in the
SW-algorithm; and in step 4 in the LSW-algorithm the bootstrap replicate of the
efficiency estimate is obtained according to step 4 in the LT-algorithm.

SThe CRS estimator is obtained by deleting the restriction > i, z; = 1.

10



3.4. Some remarks

SW argues that a simple naive resampling cannot give a consistent bootstrap
procedure and concludes that the proposed application of the smoothing and
reflection procedure in the resampling in the SW-algorithm provides a way to
obtain a consistent bootstrap procedure. In their discussion of the consistency
issue, SW do not consider any alternative approach to calculate the bootstrap
efficiency estimates other than defining the bootstrap efficiency estimates as the
efficiency of the original observed input relative to the bootstrap frontier estimate.
SW did not consider the alternative approach used in the LT-algorithm where
the bootstrap efficiency estimates are based on the distance from the pseudo
input data (in the input-oriented efficiency approach considered in this paper)
to the bootstrap frontier estimates. This difference between the algorithms is
crucial since without this modification the simple resampling used in the LT-
algorithm will give an inconsistent bootstrap procedure as discussed in a single-
input example by Simar and Wilson (1997c).

As discussed by SW and Simar and Wilson (1997¢) a key issue in any bootstrap
application is the replication of the data generating process assumed to generate
the observed data. We argue that the proposed LT-algorithm provides a more
accurate replication of the DGP specified in (3.1) than the SW-algorithm. While
the resampling suggested by SW focuses on the sampling variability of the pro-
duction frontier estimate underlying the efficiency estimate, the resampling in the
LT-algorithm explicitly incorporates the fact that the sampling distribution of the
DEA estimator necessarily is a function of both the sampling distribution of the
production frontier estimate and the sampling distribution of the input-output
data. In the LT-algorithm the bootstrap frontier estimates and the bootstrap
efficiency estimates are based on the resampled data in the same manner as the
original estimates are based on the original data. In this way both the stochastic
data generating process and the sampling distribution of the frontier estimates
will be incorporated in the bootstrapped efficiency estimates.

4. Confidence Intervals

4.1. Simple percentile intervals

The simplest and most straightforward method to obtain bootstrap confidence
intervals is the percentile method. As presented in, e.g., Efron and Tibshirani
(1993), the percentile interval is based on the empirical distribution function of

11



the bootstrapped efficiencies 9

in’

b=1,..,B, defined as £} (s) = Bzr(e <s>

for any real value s, where I (-) denotes the standard indicator function. A (1—2«)
(equal-tail) confidence interval for the true technical efficiency 6 for the ith firm
is given by

<9Z(La), 5251“)), (4.1)
where @;;(La) is the ath quantile of Fj, i.e., @;;(La) = Z:Tl (o). The quantiles of

Fjare given by the [(B + 1)a]th and the [(B + 1) (1 — a)]th ordered values of 5:2,
b=1,..., B, respectively, where [r| denotes the integer part of any real value r.

4.2. Bias-corrected intervals

As discussed above in Section 2 the DEA estimators are biased in small-samples.
Simar and Wilson (1997b) present a simple and direct approach to bias correct the
percentile intervals in (4.1) using a simple additive bias correction. The bootstrap
estimate of the DEA estimator bias is given by

1 ~xb
bias Z st (4.2)

b:l

The bias-corrected firm-specific (1 — 2«a) (equal-tail) confidence intervals are
simply obtained by shifting the bounds in the intervals in (4.1) by the factor
2 - bias} as

~#(l—cv)

<9 ) _ 9. biast, 07 —2-b¢’a§;>. (4.3)

Simar and Wilson (1997b) motivate the correction of 2 - bias} by the fact that
this correction centers the empirical bootstrap distribution on the bias-corrected
estimate 0;, = Gm — bzas Shifting the intervals in (4.3) by a factor of 1 - bzas

will center the intervals on the biased estimator Qm

5. The Monte Carlo Study

The simulation study consider a single-input, single-output technology with DGP
specified in accordance with assumptions A7 to A4 in Kneip et al. (1996) used

12



to establish the consistency properties of the DEA estimator. In short, these
assumptions are’

1. The sample x,, = {(z;,v:);i=1,...,n} are i.i.d. random variables on the
convex attainable production set W.

2. The support of the density function of the output y, f(-), has a compact
support D C R,

3. The inputs has a conditional density f (z|y) for all y € D.

4. To ensure consistency of the DEA estimator, the DGP must insure that
observations will be observed near the frontier when n is sufficiently large.®

Based on these assumptions, the following single-input, single-output constant
returns to scale DGP is considered in this study:

The outputs are assumed uniformly distributed on the compact support D
given by the interval D = [1.0, 9.0]. Le., y; ~ U (1.0,9.0). Given the output, the
frontier inputs x{ are derive from the simplest possible CRS technology relation
Yi = m{ . The actually observed input for the ith firm is then generate by the

following input-oriented technical inefficiency mechanism
xT; = x{eo‘lo‘“”, (5.1)

where u; is i.2.d. standard normally distributed.

Under this DGP, input-oriented technical efficiency is given by 6; = e=Yi,
where U; ~ N (0,0.010) truncated at zero from below.

In each Monte Carlo replicate, input and output data are generated according
to the design above for a sample of n firms. For each firm in the sample, technical
inefficiency is estimated using the linear programs presented in Section 2. The
bootstrap algorithms presented in Section 3 gives n bootstrap confidence intervals
for the firm-specific technical inefficiency. For each replicate of the Monte Carlo
simulation we keep track of whether or not the intervals cover the true realizations
of the technical inefficiency. Completing this procedure, the empirical coverage of
the Monte Carlo replicates give estimates of the true coverage accuracies, i.e., the
empirical confidence level, of the firm-specific bootstrap confidence intervals.

"Note that the assumptions in Kneip et al. (1996) are stated for general multiple-input,
multiple-output technologies.
8See assumption A4 in Kneip et al. (1996) for a formal expression of this assumption.
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In the simulation study, we use 1000 Monte Carlo replicates and B = 1000
bootstrap resamples in the bootstrap algorithm. This number of bootstrap repli-
cates is recommended by Efron and Tibshirani (1993, p. 275) in order to make
the variability of the boundaries of the confidence intervals constructed from the
bootstrap ”acceptably” low.

5.1. Results’

Results are presented for the empirical coverage accuracy of simple percentile and
bias-corrected bootstrap confidence intervals for the VRS and the CRS estimator
for nominal confidence levels 0.80, 0.90, 0.95 and 0.975, 0.99. For the VRS esti-
mator we consider small-sample properties for sample sizes n = 20, 30 and 60.
For the more computationally simple CRS estimator we also consider the addi-
tional sample sizes n = 120, 250 and 500 to assess some consistency properties
of the coverage accuracy of the bootstrap confidence intervals obtained from the
algorithms.

Table 5.1 gives Monte Carlo estimates of the empirical coverage accuracy of
the simple percentile and bias-corrected bootstrap confidence intervals obtained
when bootstrapping the VRS DEA estimator. Table 5.2 gives similar results for
the CRS DEA estimator.'’

For both the VRS and the CRS DEA estimators we find that the bias-correction
procedure by Simar and Wilson (1997b) does not work well for neither the LT nor
the LSW-algorithm. The empirical coverage accuracies of the bias-corrected LT
and LSW intervals are lower than the coverage accuracies of the simple percentile
intervals. However, the bias-correction procedure seems to be better suited for
the SW intervals. The bias-corrected SW-intervals have clearly better coverage
accuracy than the empirical coverage of zero(!) obtained for the simple percentile
SW intervals for all sample sizes and all nominal levels considered in the study.

The results for the VRS estimator in Table 5.1 indicate that the LSW-algorithm
has the best performance. For all considered sample sizes, the LSW percentile

9The results are obtained using Microsoft FORTRAN compiler PowerStation, version 4.0.
The LP-programs are solved using the MSIMSL revised simplex routine DDLPRS.

0 To save space, only the average coverage accuracy of the n firm-specific coverage accuracies
are presented for each case. The complete set of results, containing the minimum, the maximum
and the variance of the average empirical coverage accuracy, can be obtained from the author
upon request.
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Table 5.1: Monte Carlo simulation results for the VRS estimator

n LT-perc SW-perc LSW-perc LT-BC SW-BC LSW-BC
Nominal level: 0.80

20 0.7068 0.0000 0.7061 0.6830 0.7281 0.6845

30 0.7680 0.0000 0.7671 0.7383 0.7334 0.7375

60 0.8280 0.0000 0.8132 0.7999 0.7148 0.7952

Nominal level: 0.90
20 0.7879 0.0000 0.7981 0.7303 0.8237 0.7267
30 0.8439 0.0000 0.8521 0.7795 0.8540 0.7738
60 0.8979 0.0000 0.9025 0.8327 0.8744 0.8260

Nominal level: 0.95
20 0.8361 0.0000 0.8499 0.7463 0.8397 0.7411
30 0.8896 0.0000 0.8973 0.7909 0.8736 0.7837
60 0.9324 0.0000 0.9407 0.8386 0.9032 0.8326

Nominal level: 0.975
20 0.8456 0.0000 0.8868 0.7516 0.8446 0.7476
30 0.9018 0.0000 0.9241 0.7961 0.8790 0.7889
60 0.9542 0.0000 0.9616 0.8417 0.9088 0.8357

Nominal level:0.99
20 0.8474 0.0000 0.9109 0.7528 0.8488 0.7515
30 0.9056 0.0000 0.9444 0.7979 0.8824 0.7924
60 0.9591 0.0000 0.9739 0.8431 0.9121 0.8371

Average coverage accuracy of the DEA bootstrap percentile (perc)
and bias-corrected (BC) confidence intervals for the LT, SW and
LSW algorithms.
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intervals have consistently the highest coverage accuracies. For the largest sample
size, n = 60, the intervals undercover slightly for the highest nominal levels 0.975
and 0.99 but works well for the lower levels. Furthermore, the results indicate
that SW-algorithm does perform slightly better than the LT-algorithm for the
smallest sample size n = 20. This is not surprising since the smoothing procedure
involved has more effect the smaller the sample size. The LT-algorithm performs
on the other hand better than the SW-algorithm for the sample sizes n = 30 and
60. Both LT and SW algorithms give confidence intervals with lower empirical
coverage than the nominal levels, but the coverage accuracies increase with the
sample size.

The results for the correctly specified CRS estimator in Table 5.2 indicate that
the LSW intervals show, as for the VRS estimator case, the best performance. For
the smaller sample sizes the LSW intervals have coverage accuracy of the correct
order of magnitude with a slightly higher coverage accuracy than the nominal
levels. As the sample size increase the coverage accuracy of the LSW-intervals
approaches the correct nominal level. Furthermore, the LT-algorithm performs
overall better than the SW-algorithm. Even for the smallest sample size n = 20
the LT-intervals have approximately the correct coverage accuracy for the levels
0.80, 0.90 and 0.95. And as the sample size increase, the LT-intervals perform as
well as the LSW-intervals.

As for the consistency properties of the algorithms the coverage accuracy of
bootstrap confidence intervals from the LT and LSW-algorithms show a clear
convergence of the empirical coverage accuracy to the nominal levels for sample
sizes larger than 120. For the SW-algorithm, on the other hand, the results cast
doubts on the consistency properties of the algorithm. The coverage accuracy
of the SW-intervals tend to decrease with increased sample size for the lowest
nominal level 0.80. The intervals slightly undercover for the smallest sample size
n = 20 (with coverage accuracy of 0.76), but as the sample size increase, the
coverage accuracy is continuously decreasing to reach a lowest level of 0.09 for the
largest sample size n = 500. For the higher nominal levels, the coverage accuracies
appear to have a hump-shaped pattern that reaches a maximum for larger sample
sizes the higher the nominal level after which a considerable decrease in coverage
accuracy is observed. Specifically, for the nominal level 0.90 the coverage accuracy
reaches its maximum coverage (the correct level 0.90) for a sample size of n = 60
and then decrease steadily with increased sample size. Similar patterns are found

16



Table 5.2: Monte Carlo simulation results for the CRS estimator

n LT-perc SW-perc LSW-perc LT-BC SW-BC LSW-BC
Nominal level: 0.80

20 0.8266 0.0000 0.8338 0.8136 0.7580 0.8331

30 0.8271 0.0000 0.8306 0.8196 0.7150 0.8403

60 0.8172 0.0000 0.8186 0.8310 0.6170 0.8454

120 0.8083 0.0000 0.8102 0.8401 0.4000 0.8509

250 0.8042 0.0000 0.8053 0.8468 0.2450 0.8535

500 0.8015 0.0000 0.8035 0.8509 0.0910 0.8552

Nominal level: 0.90
20 0.9079 0.0000 0.9347 0.8681 0.8530 0.8798
30 0.9219 0.0000 0.9306 0.8805 0.8860 0.8845
60 0.9165 0.0000 0.9187 0.8801 0.9000 0.8825
120 0.9093 0.0000 0.9104 0.8798 0.8330 0.8820
250 0.9045 0.0000 0.9053 0.8795 0.5010 0.8813
500 0.9016 0.0000 0.9030 0.9793 0.2260 0.8809

Nominal level: 0.95
20 0.9414 0.0000 0.9690 0.8781 0.8600 0.8825
30 0.9582 0.0000 0.9731 0.8881 0.8920 0.8913
60 0.9615 0.0000 0.9676 0.8907 0.9140 0.8912
120 0.9577 0.0000 0.9581 0.8888 0.9470 0.8900
250 0.9544 0.0000 0.9546 0.8875 0.8900 0.8894
500 0.9619 0.0000 0.9524 0.8878 0.4810 0.8892

Nominal level: 0.975
20 0.9425 0.0000 0.9941 0.8783 0.8650 0.8831
30 0.9630 0.0000 0.9919 0.8886 0.8940 0.8914
60 0.9802 0.0000 0.9890 0.8921 0.9140 0.8941
120 0.9815 0.0000 0.9845 0.8932 0.9520 0.8943
250 0.9801 0.0000 0.9802 0.8918 0.9680 0.8933
500 0.9778 0.0000 0.9778 0.8921 0.8360 0.8934

Nominal level: 0.99
20 0.9425 0.0000 0.9992 0.8783 0.8690 0.8833
30 0.9630 0.0000 0.9996 0.8886 0.9000 0.8914
60 0.9823 0.0000 0.9982 0.8921 0.9190 0.8942
120 0.9905 0.0000 0.9963 0.8938 0.9530 0.8956
250 0.9921 0.0000 0.9936 0.8939 0.9720 0.8955
500 0.9912 0.0000 0.9914 0.8943 0.9740 0.8956

Average coverage accuracy of the DEA bootstrap percentile (perc)
and bias-corrected (BC) confidence intervals for the LT, SW and
LSW algorithms.
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for the nominal level 0.95 intervals which reaches a maximum coverage of the
correct level 0.90 for a sample size of n = 120 and for the nominal level 0.975
intervals which has a maximum coverage of about the correct level (0.97) for a
sample size of n = 250.

To say the least, these results cast serious doubts on the consistency properties
of the SW-algorithm for computing bootstrap confidence intervals.

6. Summary and Conclusions

This paper performs a comparative Monte Carlo simulation study to evaluate
the performance of three alternative to bootstrap the Data Envelopment Analysis
(DEA) estimator of technical efficiency. The algorithms proposed by Léthgren
and Tambour (1997) (LT) and Simar and Wilson (1997b) (SW) are presented and
their respective performance are compared. The performance of a third bootstrap
algorithm (the LSW-algorithm), based on a combination of the LT and SW algo-
rithms, is also considered in the study. A comparison of the relative performance
of the LT and LSW algorithms indicates whether any differences in performance is
due to the use of a smoothed (SW) or non-smoothed (LT) resampling of pseudo-
efficiencies in the bootstrap algorithm. Furthermore, a comparison of the relative
performance of the SW and LSW algorithms indicates whether any differences in
performance is due to the use of original data (SW) or pseudo-data (LT) in the
evaluation of the bootstrap efficiency estimates.

The Monte Carlo study considers estimation of input-oriented technical inef-
ficiency using a CRS technology as the true data generating process. Technical
inefficiency is estimated using both the VRS and the CRS restricted DEA estima-
tor. The coverage accuracy performance of simple percentile and bias-corrected
bootstrap confidence intervals are considered for each of the LT, the SW and the
LSW algorithms.

The results indicate that the best small-sample performance for both the VRS
and the CRS DEA estimator is given by the combined LSW-algorithm. For the
VRS estimator the simple LT-algorithm performs better than the more compu-
tationally demanding SW-algorithm and for the CRS estimator the LT-algorithm
performs clearly better than the SW-algorithm. For the computationally more
simple CRS estimator we consider larger sample sizes to assess some consistency
properties of the algorithms. The results indicate that bootstrap confidence inter-
vals from the LT and LSW algorithms show a clear convergence of the empirical
coverage accuracy to the nominal levels for sample sizes larger than 120. For the
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SW-algorithm, on the other hand, the results cast doubts on the consistency prop-
erties of the algorithm. The coverage accuracy for the SW-intervals decrease with
increased sample size for the lower nominal level 0.80. For the higher nominal lev-
els, the coverage accuracies appear to have a hump-shaped pattern that reaches a
maximum for larger sample sizes the higher the nominal level after which a consid-
erable decrease in coverage accuracy is observed for increased sample sizes. These
findings contradict the statement by Simar and Wilson (1997b) that the proposed
SW-algorithm provides a consistent bootstrap algorithm. The main argument in
Simar and Wilson (1997b) relies on the use of the smoothed resampling. One
might argue that the automatic bandwidth selection rule used in the Monte Carlo
study is not “optimal” for the SW-algorithm, and that there are other selection
rules that will render a consistent algorithm. This possible sensitivity of the SW
bootstrap algorithm regarding consistency related to the choice of bandwidth se-
lection rule is not discussed in Simar and Wilson (1997b) (or any other work by
L. Simar and P. Wilson known to the author) but the obtained results from this
Monte Carlo study indicate the need for this type of research. Nevertheless, as
noted above, the obtained results are in favor of consistency of the LSW algo-
rithm, despite the fact that it is based on exactly the same bandwidth selection
rule as the SW-algorithm.

The main conclusion based on the conducted Monte Carlo study regarding the
appropriate approach to bootstrap DEA estimators can be simply summarized as:
Use a bootstrap algorithm where the bootstrap efficiency estimators are based
on the pseudo-data as proposed by Lothgren and Tambour (1997), instead of
the original data as in the algorithm by Simar and Wilson (1997b). Given this
pseudo-data bootstrap efficiency estimator, the question of whether to used a
simple or a smoothed resampling to obtain a consistent bootstrap procedure is of
minor importance although the smoothed resampling has somewhat better small-
sample properties.

Several extensions for future research can be identified. This study consid-
ers only the two most basic methods to construct bootstrap confidence intervals.
Alternative more refined interval methods such as the median bias-corrected and
the bias-corrected and accelerated intervals, as presented by Efron and Tibshirani
(1993), can also be considered. Furthermore, as discussed above, the smooth-
ing procedure applied in this paper in the SW-algorithm relies on an automatic
selection of the bandwidth parameter that may not be the most efficient. Alter-
native selection rules such as cross-validation procedures, discussed and imple-
mented by Simar and Wilson (1997a) in the DEA bootstrapping context, can also
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be considered. Yet another important extension is to consider the performance
of competing bootstrap algorithms for multiple-input, multiple-output technolo-
gies since one of the primary motivations for using DEA is the ease with which
multiple-input, multiple-output efficiency and productivity can be estimated.

These extensions are, however, left to future research. This study is the first
study that considers an evaluation of the validity of the statistical inference ob-
tained from competing DEA bootstrap algorithms. The mentioned extensions are
important in their own respect, but the results from the simple setup used in
this paper can nevertheless provide important information. The performance of
an algorithm that fails in the simple setting (i.e., the SW-algorithm) should rea-
sonably be questioned in more complicated real-world cases. On the other hand,
for an algorithm that performs well in a simple setting (i.e., the LT and LSW
algorithms) further evaluations are needed to assess more general robustness and
validity properties.

20



References

Banker, R. D. (1993). Maximum Likelihood, Consistency and Data Envelopment
Analysis: A Statistical Foundation, Management Science 39, 1265-1273.

Charnes, A., Cooper, W. W. and E. Rhodes. (1978). Measuring the Efficiency of
Decision Making Units, Furopean Journal of Operational Research 2, 429—
444.

Efron, B. (1979). Bootstrap methods: Another Look at the Jackknife, Annals of
Statistics 7, 1-26.

Efron, B. and R. J. Tibshirani. (1993). An Introduction to the Bootstrap, Mono-
graphs on Statistics and Applied Probability 57, Chapman and Hall, London.

Farrell, M. J. (1957). The measurement of Productive Efficiency, Journal of the
Royal Statistical Society, Series A 120, 253—281.

Ferrier, G. D. and J. G. Hirshberg (1997). Bootstrap Confidence Intervals for
Linear Programming Efficiency Scores: With an Illustration Using Italian
Banking Data, Journal of Productivity Analysis 8, 19-33.

Gstach, D. (1995). Comparing Structural Efficiency of Unbalanced Subsamples: A
Resampling Adaptation of Data Envelopment Analysis, Empirical Economics
20, 531-542.

Kneip, A., Park, B. U. and L. Simar. (1996). A Note on the Convergence of
Nonparametric DEA Efficiency Estimates, CORE, Discussion Paper 9603,
Center for Operations Research and Econometrics, Université Catholique de
Louvain.

Korostelev, A. P., Simar, L. and A. B. Tsybakov. (1995a). Efficient Estimation
of Monotone Boundaries, The Annals of Statistics 23, 476—489.

Korostelev, A. P., Simar, L. and A. B. Tsybakov. (1995b). On Estimation of
Monotone and Convex Boundaries, Publications de I’Institut de [’Université
de Paris 39, 3-18.

Lothgren, M. and M. Tambour. (1997). Bootstrapping the Data Envelopment
Analysis Malmquist Productivity Index, Applied Economics, forthcoming.

21



Seiford, L. M. (1996). Data envelopment analysis: The Evolution of the State of
the Art (1978-1995), Journal of Productivity Analysis 7, 99-137.

Shephard, R. W. (1953). Cost and Production Functions, Lecture Notes in Eco-
nomics and Mathematical Systems 194, Springer-Verlag. Originally published
by Princeton University Press 1953.

Shephard, R. W. (1970). The Theory of Cost and Production Functions, Princeton
University Press, Princeton.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analyis,
Chapman and Hall Ltd, London.

Simar, L. and P. W. Wilson. (1996). Estimating and Bootstrapping Malmquist
Indices, CORE, Discussion Paper 9660, Center for Operations Research and
Econometrics, Université Catholique de Louvain.

Simar, L. and P. W. Wilson. (1997a). Nonparametric Tests of Returns to Scale,
Mimeo, October 1997.

Simar, L. and P. W. Wilson. (1997b). Sensitivity Analysis of Efficiency Scores:
How to Bootstrap in Nonparametric Frontier Models, Management Science,
forthcoming.

Simar, L. and P. W. Wilson. (1997¢c). Some Problems with the Ferrier/Hirshberg
Bootstrap Idea, Journal of Productivity Analysis, forthcoming.

22



