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Abstract

Since the true nature of a time series process is often unknown it is im-
portant to understand the effects of model choice. This paper examines how
the choice between modelling stationary time series as ARMA or ARFIMA
processes affects the accuracy of forecasts. This is done, for first-order au-
toregressions and moving averages and for ARFIMA(1,d,0) processes, by
means of a Monte Carlo simulation study. The fractional models are es-
timated using the technique of Geweke and Porter-Hudak, the modified
rescaled range and the maximum likelihood procedure. We conclude that
ignoring long memory is worse than imposing it, when forecasting, and that
the ML estimator is preferred.
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1. Introduction

The use of erroneous models when analyzing time series may have a great impact
on, for instance, the accuracy of forecasts and policy decisions. This paper in-
vestigates the forecasting performance of the usual autoregressive moving average
(ARM A) model when the true process is fractionally integrated and the perfor-
mance of the fractionally integrated ARMA (ARFIM A) model when the true
process is non-integrated. The faulty specification is compared to the correct one.

The ARFIMA model generalizes the well-known ARIMA model by allowing for
non-integer differencing powers and thereby provides a more flexible framework
when examining time series. For example, fractional specifications can model data
dependencies which are stronger than those allowed in stationary ARMA models,
but weaker than those implied by unit root processes. This is an attractive feature
when investigating economic and financial time series, which often exhibit a strong
dependence between distant observations. Although the ARMA model is a special
case of the ARFIMA model, its use is motivated by its simplicity and smaller bias
when the differencing parameter is integer-valued.

In a previous study, Lyhagen (1997) demonstrates theoretically that ignoring
long memory (i.e. a fractional differencing power) may lead to very high relative
mean squared errors of prediction. However, the results of Ray (1993) show
that high-order AR models forecast fractional noise series well, even in the long
term. Also for fractional noise, Smith and Yadav (1994) point out that there
is a potential loss from incorrectly fitting an AR model when the differencing
parameter is positive. On the other hand, negative fractional differencing will
bring about a performance loss of the AR model only at a horizon of one step.

This paper analyzes the forecasting performance of the respective models in
terms of their mean squared prediction errors. Three popular estimation proce-
dures for the fractional model are used, namely the one of Geweke and Porter-
Mudak (1983), the modified rescaled range of Lo (1991) and maximum likelihood
(Sowell, 1992), in order to compare the performance of the estimation techniques.
As a consequence, we incorporate the effects of estimation bias and possible model
selection mistakes. Furthermore, a test for significant differences in prediction
performance is utilized.

The results suggest that the forecast errors from ARMA models are larger
than those from ARFIMA models and that the maximum likelihood procedure is
best.

The paper is organized as follows: the estimation techniques for the ARFIMA



model are introduced in Section 2. Section 3 contains the simulation study where
the model predictions are compared and Section 4 concludes the paper.

2. Estimation of the ARFIMA Model

A time series process is said to be integrated of order d, denoted I (d), if it has a
stationary and invertible autoregressive moving average (ARMA) representation
with uncorrelated disturbances after differencing d times, that is after applying the
filter (1 — B )d. When d is not integer-valued (as required for ARIMA processes)
the series is fractionally integrated. An ARFIMA(p,d, q) process {x;} is generated
by

¢p (B) (1 _B)da7t =0, (B) ay, (2.1)

where the members of the sequence {a;} are identically and independently dis-
tributed (iid) with finite variance. If the roots of ¢, (B) and 6, (B), the autore-
gressive and moving average polynomials, lie outside the unit circle and d < 0.5,
x¢ 1s stationary. When d > 0 z; is persistent, implying that there exists a region,
d € (0,0.5), where the ARFIMA model generates stationary series ruled by long
memory. This behavior cannot be mimicked with ARMA models.

The differencing filter, denoted the long-memory filter (LM F'), describes the
long-term dependence in the series and may be expanded as

i_~~ (d 2 d >

(1—-B) _,;)(lf)( B)"=1—-dB 2‘(1 d)B*.... (2.2)
The short-term structure is captured by the autoregressive and moving average
parameters, which enables separate modelling of the long and short-run dynamics.
The properties of the ARFIMA model are exhaustively described by Granger and
Joyeux (1980) and Hosking (1981).

In this study the ARFIMA models are estimated by the GPH estimator of
Geweke and Porter-Hudak (1983), the modified R/S or modified rescaled range
(MRR, Lo (1991)) and the full information maximum likelihood estimator (M LE)
of Sowell (1992).

2.1. The GPH Estimation Technique

Geweke and Porter-Hudak (1983) proposed a two-step procedure for the estima-
tion of fractionally integrated models, based on a non-parametric periodogram
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regression.
In a first step, d is estimated in the regression equation (where I, (-) denotes
the sample periodogram )

In{L, (w)} = fo+ Biln {4sin® (w;/2) } 15 (w; = 275/T, j=1,..,9(T)) (2.3)

by ordinary least squares (OLS). Prior to estimation of the remaining (ARMA)
parameters in a second step, the long-memory part of the series is filtered out
using the LMFE (2.2). Bl is under a proper choice of g(T') a consistent estimator
of -d. g(T') is set to the integer part of 7" and the widespread choice of v is 0.5.
The crucial assumption is that the spectrum of an ARFIMA(p,d,q) process is
the same as the spectrum of an ARFIMA(0,d,0), for the same value of d, at low
frequencies. However, Agiakloglou et.al. (1993) show that large positive AR and
large negative MA parameters affect the spectrum at low frequencies and hence
cause biased estimates.

2.2. The MRR Estimation Technique

The modified rescaled range, MRR, approach rests upon the same basic idea as
the GPH procedure, that is to estimate d in a first step and the other parameters
in a second one. Instead of using the log-periodogram regression, the fractional
differencing parameter is estimated by the R/S statistic, which is also consistent.
Lo (1991) robustifies the statistic to short-range dependence in data and this
modified R/S statistic is frequently used when testing for fractional integration
and for estimation of long-memory models.

The MRR statistic is defined by the ratio

Ry
= . 2.4
QT 6_T (lf) ( >
Following Cheung (1993), the range and standard error are estimated by
Ry = 021%}%; (2 — T) — orgiignT; (2 — T) (2.5)

o2 (k) = 624—%22 (1—%) (z; — %) (ms; — 7) (2.6)

j=li=j+1



where 62 is the usual maximum likelihood variance estimate and the correction
term is similar to that of Newey and West (1987). The truncation lag k depends on
the short-term correlation structure of the series and is set, according to Andrews’

(1991) data-dependent formula, to the integer part of (3T/2)1/3 {2[)/ (1 — [)2) }2/3 ,
with T and p denoting the serial length and sample first-order autocorrelation
coeflicient respectively. Asymptotic results suggest that In Q7 /InT" approaches
1/2 for short-range dependent processes, and thus our estimator of d is constructed

as

- 111QT 1
d= ——. 2.
InT 2 (2.7)

The MRR estimator is biased when the true process is a moving average with
large negative parameter values (Cheung (1993)).

2.3. The ML Estimation Technique'

The maximum likelihood estimator differs from the other two; while the GPH
and MRR estimators are performed in two steps the ML procedure estimates all
parameters in one single step.

Given that the roots of ¢, (B) and 6, (B) in (2.1) are all outside the unit circle
and the disturbances are normally distributed with mean zero, the likelihood
function to be maximized is the well-known

L2 =0 Fp@l e {sxm @x ), ey

where X7 is the T x 1 data vector and autocovariance matrix X (g) is a function of
the unknown parameter vector ¢ = [d, ¢1,...,¢p,01,...,0,, Ug]/. The log of (2.8)
is maximized directly with respect to the vector ¢. Explicit expressions for the
elements of X (¢) and practical issues concerning the ML estimation are discussed
by Sowell (1992).

Generally the MLE is efficient; however, it has some drawbacks are. For
example, the MLE requires distinct roots, performs less well when d is close to
the non-stationary area (i.e. close to 0.5) and exhibits small-sample bias when d
and AR parameters are estimated jointly (Tschernig (1993)). Furthermore, mis-
specification of the likelihood function will in general lead to inconsistent estimates
of both the differencing parameter and the short-run parameters.

LA FORTRAN routine for the estimation of the ARFIMA model was generously supplied by
Fallaw Sowell.



3. The Monte Carlo Study

ARFIMA(p,d, q) processes are generated by the algorithm of Diebold and Rude-
busch (1991). The processes are primarily chosen to generate persistent or au-
toregressive series, but negative d-values and MA processes are also considered.
In each Monte Carlo iteration we estimate ARMA and ARFIMA models, from
which predictions are generated. For each prediction horizon h we calculate
the loss functions ¢™(zn,2s), where x, denotes the actual (simulated) value
of the process at time T + h and Zp the corresponding forecast using model
m = {ARMA, ARFIMA}. The accuracies are compared by the mean squared
prediction error (MSPE) loss function

R
g (a”.hua”.h Z a’;hr a’;hr 2, (31>
=1

where r = 1, ..., R is the Monte Carlo replicate. R is selected to 1000. The mean
squared prediction error of model m is expected to increase with the prediction
horizon and eventually coincide with, or exceed, the variance of the process. At
that particular horizon, that is when the MSPE, variance ratio

MV Ry, = g™ (zn,20) / V (y) (3.2)

is greater than or equal to one, the model forecasts are not more accurate than
when using the process mean. The difference in h-step performance, expressed by
the null-hypothesis of no difference in MSPE, is evaluated by a usual matched-pair

t-test,
ARMA ARFIMA

f = 9h —9n 7 (3.3)
\/V g;:xRMA o g;:}RFIMA]

along with asymptotically normal critical values, motivated by the large number
of replicates and the central limit theorem.

Results for first-order autoregressions and fractionally integrated processes of
length 100 and forecasting horizons up to step 20 are reported in the figures of this
paper. In addition, larger sample sizes (T" = 225, 400 and 625) and longer predic-
tion horizons (up to 0.27") have been investigated. An increase in the serial length
implies more accurate estimates (in particular for the fractional procedures), and
a relatively better prediction performance for the ARFIMA model. Otherwise, the
conclusions drawn from the 7" = 100 case are not altered by the results obtained
for the larger sample sizes.



3.1. Autoregressions

The forecasting performances for generated first-order autoregressions are exam-
ined using the specification

Ty = ¢$t71 + ay, (34>

where {a;} is a sequence of iid N (0,1) random deviates. In order to handle model
selection uncertainty, the lag-orders p and g of the ARMA and fractional models
are selected by the Bayesian information criterion, BIC, of Schwartz (1978) from
the values {0,1,2 3} in each Monte Carlo iteration. The case of no differencing
parameter in the ARFIMA model is ruled out.

The study investigates autoregressions with parameter ¢ = 0.5, 0.7 and 0.9.
Figure 3.1 presents the MSPE variance ratio (3.2) for each of the models together
with the associated t—statistic (3.3) for ¢ = 0.7 and 0.9 processes.

The maximum possible prediction horizon increases with the size of the AR
parameter. In particular, when ¢ = 0.5 (not reported in the figures), the MVRs
rapidly assume values above one, which implies short prediction horizons. For pre-
diction steps one to three, the model mean squared prediction errors are all quite
similar. However, a few significant differences (from the ARMA performance) are
found for the GPH and maximum likelihood estimated models. Using the MRR
procedure, the forecasts are as accurate as those produced by the ARMA model.
For prediction horizons above three, forecasting is valueless.

As the parameter ¢ becomes larger, the prediction horizon (using the ARMA
model) increases to a maximum of five (maybe eight) steps ahead for ¢ = 0.7
processes and 18 steps when ¢ = 0.9. For ¢ = 0.7, and in particular ¢ = 0.9, the
bias of the GPH procedure is quite large and thus the forecast errors obtained
are also quite large. As a consequent, the GPH performance is often significantly
worse than that of the non-fractional model, that is the t-values fall below -2, for
¢ = 0.7 processes. For almost unit root processes, the GPH estimator produces
prediction errors that are usually significantly larger than those of the ARMA
model. The other estimation techniques predict highly short-term dependent
processes (almost) as well as the ARMA models; their t-ratios usually fall between
-2 and 2.

Turning to the mean squared prediction errors, we find no support in favor
of the non-fractional specification. In a forecasting context, no substantial loss
is experienced when imposing long memory by using ARFIMA models on AR
processes. In particular, the MRR procedure performs very well, but the ML
estimator is also quite accurate.



Figure 3.1: Estimated mean squared prediction errors and t-values of the MSPE

test for an AR(1) process of length 100.
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The figure presents the MSPE variance ratio (3.2) (first column) and the ¢-
statistic of the MSPE test (3.3) (second column) of the estimation procedures
for horizons to 20. The rows correspond to ¢ = 0.7 and 0.9. The data are
generated according to (3.4) .



3.2. Persistent Processes

The fractionally integrated series are generated as ARFIMA(1,d,0) processes,
(1—¢B)(1—B)"z = a, (3.5)

where a; is again i2dN (0, 1). The process is denoted fractionally differenced white
noise (FFDW N) when ¢ equals zero. In the case of generated fractionally inte-
grated processes, the models to be estimated are specified by the BIC, where the
orders p and ¢ are selected from the values {0,1,...,10}. The MSPE variance
ratios (3.2) and t-values of the MSPE test (3.3) are reported in Figures 3.2 and
3.3.

Weakly persistent FDWN processes with the parameter d equal to 0.1 or 0.2,
being almost white noise, do not contain enough structure to be forecasted. Al-
ready at horizon one, the MVRs (see Figure 3.2 for d = 0.2) exceed one and sub-
sequently predictions are useless, regardless of estimation technique and model
choice.

Results for d = 0.4 in Figure 3.3 suggest that only occasional ARFIMA MVRs
of unity are found for a more persistent fractional noise process. In fact, up
to step 100 forecasts using the ARFIMA models (with the MLE) are possible.
Furthermore, the ARFIMA-MLE is always significantly better than the ARMA
model; the t-values are well above 2. The GPH estimator is better than the ARMA
specification at step five and above (significantly at step seven) and the MRR at
horizon eight (ten). The relatively weak performance of the MRR procedure is
explained by over-adjustment for (non-existing) short-term dependence in data.
Therefore, additional AR parameters, and thus mis-specified models, are as a rule
required to capture all autocorrelation in the series. Judged by the mean squared
errors, the performance of the MRR procedure for ARFIMA(0,0.4,0) processes
is close to that of the ARMA model, while the GPH procedure and in particular
the method of maximum likelihood generates notably lower values. The results
suggest, when forecasting is worthwhile, that the ARFIMA-MLE should be used
for predicting fractional noise processes.

An introduction of AR-type short memory, according to equation (3.5), en-
hances the predictability compared to FDWN for the same value of d. Unlike the
case of fractionally differenced white noise with d = 0.2, processes with d = 0.2
and ¢ = 0.2 may be predicted several steps ahead. The performances of the
ARFIMA model, with all estimation techniques, and the ARMA model are fairly
similar, and the t-ratios suggest that the MRR may be better (by a close margin)



Figure 3.2: FEstimated mean squared prediction errors and t-values of the MSPE

test for an ARFIMA(1,0.2,0) process of length 100.
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See note to Figure 3.1. The rows correspond to ¢ = 0.0, 0.2 and 0.5 respec-
tively. The data are generated according to (3.5) .
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than the other estimators. Again for d = 0.2, when ¢ equals 0.5 we notice that
the MRR procedure produces the most accurate forecasts, followed by the non-
fractional model. It appears to be the case that the 0.2 differencing power is not
large enough to cause problems for the ARMA model. The GPH estimator gives
the worst performance in this situation, but even this is not bad.

Proceeding with ARFIMA(1,0.4,0) processes, when ¢ = 0.2 the GPII pre-
dictions are better than those of the ARMA model. However, the variance of
(g,?RMA — gBF IMA) is quite large, leading to small ¢-ratios which are usually
positive but not always significantly larger than zero. The MRR procedure works
well in the presence of AR parameters, and exhibits t-ratios favoring the ARFIMA
model. However significant, the differences in mean squared prediction errors are
quite small. The maximum likelihood estimated ARFIMA models display the
best performance and the mean squared prediction errors are notably lower than
those of the other procedures, especially from horizon seven and onwards.

When d = 04 and ¢ = 0.5, the MLE estimated models again have much
smaller MSPE figures than the ARMA model. The differences are not that great
for the MRR estimated ARFIMA models, but they are strongly significant. As
in the case of AR processes with large values of ¢, the GPH procedure generates
poor forecasts for ARFIMA(1,0.4,0) processes with intermediate to large positive
autoregressive parameters.

The non-fractional ARMA model works fairly well for short-range predictions
when the true process is fractionally differenced, whereas the ARFIMA specifi-
cations are optimal for long-range forecasting. In general, for the fractionally
integrated processes investigated, the best predictions are obtained when using
the maximum likelihood ARFIMA estimation procedure.

3.3. Moving Averages and Anti-persistent Processes

For MA(1) processes the choice of model hardly matters. The ARMA model is
found to have a slightly better performance, and the maximum likelihood esti-
mated ARFIMA models are in turn marginally more accurate than those esti-
mated by the GPH and MRR procedures. The simplicity of the non-fractional
specification motivates the use of ARMA models in this case. However, the true
process is unknown and the modelling choice hardly affects the forecasting per-
formance.

For anti-persistent (d < 0) processes also, the difference in forecasting per-

formance between the ARMA and ARFIMA models is very small. This is in
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Figure 3.3: Estimated mean squared prediction errors and t-values of the MSPE
test for an ARFIMA(1,0.4,0) process of length 100.
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agreement with the results of Smith and Yadav (1994).

4. Concluding Remarks

This paper investigates and compares the forecasting performance of ARMA and
ARFIMA models. The results suggest that the modified rescaled range and max-
imum likelihood estimators for the fractionally integrated model generate predic-
tions that are almost as accurate as those of the ARMA model, when the true
process is a first-order autoregression or moving average. The predictions are
also quite similar for negatively fractionally integrated processes. The estimator
of Geweke and Porter-Hudak performs badly when the true process is an AR(1)
with a large positive parameter.

For persistent processes, the GPH and MRR produce short-term predictions
that are worse than the ARMA forecasts. However, the opposite is found for
intermediate and long-range forecasts. The MLE is better than the ARMA model
for all horizons.

The GPH technique experiences problems when combining fractional integra-
tion with an autoregression, especially for intermediate to large AR parameters.
In the case of simultaneous short and long memory, the MRR and in particular
the MLE procedures generate better predictions than the ARMA model.

In general, it is worse to ignore than to impose long memory when forecasting.
Overall, the MLE is the best of the fractional estimators and the ARFTMA model
is better than the ARMA.
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