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Abstract

This paper studies performance of both point and interval predictors of technical

ine�ciency in the stochastic production frontier model using a Monte Carlo experiment.

In point prediction we use the Jondrow et al. (1980) results, while for interval prediction

the Horrace and Schmidt (1996) and Hjalmarsson et al. (1996) results are used. When ML

estimators are used we �nd negative bias in point predictions. MSEs are found to decline

as the sample size increases. The mean empirical coverage accuracy of the con�dence

intervals are found to be signi�cantly below the corresponding theoretical con�dence levels

for all values of the variance ratio.
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1. Introduction

This paper deals with estimation of technical ine�ciency in the stochastic production

frontier models developed by Aigner et al. (1977) and Meeusen and van den Broeck (1977).

We examine the nature of uncertainty associated with ine�ciency estimates used in the

empirical literature using a Monte Carlo approach. The issue of alternative estimators

of parameters in the stochastic production frontier model has been previously addressed

(Olsen et al. (1980) (henceforth OSW), Coelli (1995)). Here we focus primarily on technical

ine�ciency prediction { both point and interval predictors.

Jondrow et al. (1982, henceforth JLMS) suggested a technique to estimate1 technical

ine�ciency speci�c to each observation (producer-speci�c technical ine�ciency in a cross-

sectional model). Uncertainty associated with such point estimates has been addressed

by Horrace and Schmidt (1996) (henceforth HS) by constructing con�dence intervals for

technical e�ciency estimates. Both the point estimates given by JLMS and the con�dence

intervals proposed by HS are based on the fact the \true values" of the parameters associ-

ated with the production frontier and distributions of the error terms (technical ine�ciency

and statistical noise) are known. Since estimates of these parameters can only be known,

another uncertainty (arising from replacing the true parameter values by their estimates)

is added to the problem of predicting technical ine�ciency. The e�ect to this uncertainty

on technical ine�ciency estimates cannot be assessed analytically. Here we do a Monte

Carlo analysis to assess the e�ect of parameter uncertainty on the estimates of technical

ine�ciency.

Previous Monte Carlo studies in the stochastic production frontier models by OSW

(1980) and Coelli (1995) focused mostly on performance of di�erent estimators such as the

corrected OLS, ML, and method of moments. Coelli (1995) reported some results on the

estimates of technical e�ciency. Our focus here is exclusively on the performance of point

and interval estimators of technical ine�ciency.

The rest of the paper is organized as follows. In Section 2 we introduce the point and

interval estimators of technical ine�ciency. Design of the Monte Carlo study is discussed

in Section 3. Results are reported in Section 4. Finally, Section 5 summarizes the main

1
Here we use estimate and predict interchangeably. Similar is the case with estimator and predictor.
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�ndings of the paper.

2. The Model

The stochastic production frontier model proposed by Aigner et al. (1977) and

Meeusen and van den Broeck (1977) can be written as

yi = xi� + vi � ui; i = 1; : : : ; N (1)

where y and xi are logarithms of output and inputs, and � is the unknown parameter vector.

Technical ine�ciency is represented by the one-sided term ui � 0, technical e�ciency by

exp(�ui) < 1, and the stochastic noise component by vi which is two-sided. In a cross-

sectional data model the parameters are mostly estimated by the ML method based on

ui � i:i:d:N(0; �2u) truncated at zero from below, and vi � i:i:d:N(0; �2v). Furthermore,

ui and vi are assumed to be independent of each other, and also independent of the input

vector x.

In 1982 JLMS proposed a method to estimate technical ine�ciency for each obser-

vation. This result opened up the use of stochastic frontier models to empirical applica-

tions widely. They showed that uij"i � N(��i ; �
2
�

) truncated at zero from below, where

��i = �
"i, 
 = �2u=(�
2
u + �2v), �

2
�

= 
 (1� 
)�2, �2 = �2u + �2v, and "i = ui � vi. Based

on this result they suggested two point predictors of technical ine�ciency (ui). These are

the mean and the mode of the conditional distribution of uij"i, viz.,

ûi � E(uij"i) = ��i + �
�

��(���i =��)
�(��i =��)

	
; (2a)

~ui �Mode(uij"i) =
�
��i if ��i � 0,
0 otherwise,

(2b)

where �(:) and �(:) are the probability density and distribution functions, respectively, of

a standard normal random variable.

Horrace and Schmidt (1996) derive expressions for (1� �) � 100% con�dence intervals

for technical e�ciency TEi = exp (�ui) : These con�dence intervals are based on mono-

tonic transformations of the �=2 and (1� �=2) quantiles of the distribution of ui j"i . A

(1� �) 100% con�dence interval (Li; Ui) of ui j"i is given in Hjalmarsson et al. (1996)
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(henceforth HKH)
Li = ��i + zL ��;

Ui = ��i + zU �
�
;

(3)

where zL = ��1 f1� (1� �=2)� (��i =��)g , zU = ��1 f1� (�=2)� (��i =��)g :
The point estimators in (2) and con�dence interval estimators in (3) are derived

under the assumption that the \true" parameter values are known (which implies that

"i = yi � xi� are also known). So the question is whether estimates of ine�ciency (point

as well as interval estimates) are biased in one way or the other, when the true parameter

values are replaced by their estimates, and " is replaced by the residuals from (1). JLMS

noted that the sampling variability due to replacing the true values by their estimates will

disappear asymptotically. We examine this from a Monte Carlo experiment. In addition

to the sample size we also examine whether the parameter values (mainly the 
 parameter)

has any role in getting somewhat precise estimator of technical ine�ciency.

3. Design of the Monte Carlo Study

We follow the same design of the Monte Carlo study as used by Coelli (1995). The

sample space of the experiment is �; �2; 
; N and X = (x1; :::; xN). Due to the invariance

results noted by OSW (1980) only one value of the variance �2 is considered (�2 = �2u+�
2
v =

1:0). The sample space is further reduced (following Coelli and OSW) by including only

an intercept as a regressor which is set at � = 1:0.

As in Coelli (1995) we control for the variance ratio 
� that re
ects the percentage con-

tribution of the variance of u to the total variance of the error term " = v�u in the data gen-
erating process. This variance ratio is de�ned as 
� = (1� 2=�)�2u=

�
(1� 2=�)�2u + �2v

	
:

Eleven variance ratios 
� = 0:0; 0:10; : : : ; 1:0 and six sample sizes N = 25, 50, 100, 200,

400, and 800 are considered in the study. In each of the 66 combinations of the variance

ratio and sample size the simulations involve 1000 Monte Carlo replications, giving a total

of 66000 generated data sets.

The random terms vi; i = 1; : : : ; N , are generated from vi � i:i:d:N(0; (1 � 
)) and

the technical ine�ciency terms ui; i = 1 ; : : : ; N , are generated from ui � i:i:d:N(0; 
)

truncated at zero from below. Note that �2 = 1) �2u = 
 and �2v = (1� 
). Once u and

v are generated, the y values are calculated from yi = 1:0 + vi � ui; i = 1; : : : ; N .
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The numerical maximizations are done using the DFP-algorithm with numerical gra-

dient. The expressions for the likelihood function and the gradients can be found in Battese

and Coelli (1993).

In each Monte Carlo replicate, we keep track of whether the �rm-speci�c con�dence

intervals for technical ine�ciency cover the true ine�ciencies ui or not by de�ning an

indicator variable. The simulated estimate of the �rm-speci�c empirical coverage accuracy

is obtained from the average of the indicator variable over the 1000 Monte Carlo replicates.

The total of N �rm-speci�c empirical coverage accuracies are �nally summarized by using

the average of the N �rm-speci�c coverage accuracies (as well as the minimum, maximum,

and standard deviation). Furthermore, we calculate the bias, variance, and MSE of the

point-predictors of technical ine�ciency.

In addition to the above-mentioned features of the con�dence interval coverage accu-

racy and the point predictors, we also calculate the bias, variance, and MSE of the ML

parameter estimates which were examined both in OSW (1980) and Coelli (1995).

4. Results

Properties of the ML and some other estimators have been investigated quite exten-

sively in studies by OSW and Coelli (1995). The reader is referred to these studies for a

detailed discussion on this issue. Our results on the bias, variance, and MSE of the ML

parameter estimates are similar to those in Coelli (1995) and OSW (1980). Because of this

similarity we are not reporting these results.2 Instead, here we focus our attention to the

results regarding the con�dence intervals and point predictors of technical ine�ciency.

Monte Carlo estimates of bias and MSE for the point predictions of technical inef-

�ciency are based on the JLMS predictor given in (2a). These predictors are calculated

based on (i) the true parameter values and (ii) the ML parameter estimates. In calculating

bias, E(uij"i) in (i) is obtained from (2a), while in (ii) we use the same formula for E(uij"i)
but 
 is replaced by the ML estimate of 
 and "i are replaced by the residuals from (1).

Bias is calculated for each Monte Carlo replicate. The reported bias is the average of the

1000 Monte Carlo replicates. Similarly, Var(û) is calculated based on known and MLE of

2
These results can be obtained from the authors upon request.
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the parameters. Finally, MSE of û is obtained by adding the variance and squared bias of

û, in both (i) and (ii).

Table/Figure 1a and 1b present bias and MSE results for û based on the true parameter

values and Table/Figure 2a and 2b present bias and MSE results for û based on the

ML estimates of the parameters. From Table/Figure 1a we see that the mean technical

ine�ciency predictions based on true parameters are almost zero. This result follows from

the law of iterative expectations (E(E(uij"i)) = E(ui)).

Although mean bias is almost zero for all values of 
� between 0:1 and 0:9,3 the

variance of the point predictor based on the true parameters is not necessarily zero or

close to zero. This is because E(uij"i) cannot extract all the information about ui given

"i = vi � ui. The size of the variance (which is not reported here because the variance is

the same as MSE, EfE(uij"i)g being equal to E(ui)) is re
ected in the MSE reported in

Table/Figure 1b.

It can be seen from Table/Figure 1b that MSE �rst increased for 
� = 0:1 to 0:4 and

then decreased monotonically from about 0.13 associated with 
� = 0:4 to about 0:03 for


� = 0:9. The pattern is almost identical for all sample sizes.

Table/Figure 2a shows that technical ine�ciency predictions based on ML estimates

are negatively biased except for the variance ratio 
� = 0:0 (for all sample sizes) and


� = 0:1 (for all sample sizes except for N = 800). When 
� = 0 there are no technical

ine�ciency in the true model, and thus a non-negative predictor of u will naturally be

positively biased. The magnitude of biases (in absolute value) is much higher compared to

the case when the parameters are assumed to be known. Although the MLEs are consistent,

the point predictor of u is not. Thus, the bias in estimating technical ine�ciency is not

likely to vanish with large sample. However, we see a few patterns which are worth

mentioning. Barring the case when 
� = 0 the biases (in absolute value) tend to get

smaller when N gets larger. This is true for all values of 
�. In particular, when N = 800

and 
� takes values between 0:5 and 0:9 the magnitude of bias (absolute value) varies

within the range 0:003 to 0:008 (not in ascending or descending order of 
�). The evidence

of smaller bias with large N might be due to the fact that MLEs approach to the true

3
Note that the point predictions are not de�ned for variance ratio 
�= 
=0 or 1:0 as can be seen from

equation (2a). For this reason no bias and MSE are reported for 
� =0 and 1.
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parameters as N gets larger. Thus, the source of uncertainty associated with unknown

parameters is reduced when N is increased. This phenomenon is re
ected in the MSE of

technical ine�ciency estimates as well.

It can be seen from Table/Figure 2b that MSEs for the technical ine�ciency predictors

based on MLEs follow a hump-shaped pattern. For each sample size, the MSE reaches a

maximum at the variance ratio (
�) that approximately maximizes (absolute) bias of the

technical ine�ciency predictor. Furthermore, similar to the bias, MSEs decrease with an

increase in the sample size for each variance ratio. The MSE of technical ine�ciency is

higher for each sample size when compared to the case of known parameters. We also �nd

that the bias squared component in MSE is less than the variance part. Furthermore, the

bias squared part declines with an increase in N faster than the variance part.

We now report results associated with con�dence intervals of technical ine�ciency

predictors. We calculate empirical coverage accuracies based on whether the calculated

interval includes the true value of u for con�dence levels 0:80, 0:90, 0:95 and 0:975, re-

spectively. These interval calculations are based on both true and estimated parameters.

When evaluated at the true parameter values the mean coverage accuracies are always

equal to the con�dence level for all sample sizes and irrespective of variance ratio 
�.

Because of this we are not reporting empirical coverage accuracies based on the true pa-

rameter values. The standard deviations of the coverage accuracies can easily be obtained

from
p
(p(1� p)=N � 1000) for various con�dence levels (0:80, 0:90, 0:95 and 0:975, etc.,)

and sample sizes (N = 25, 50, 100, 200, 400, and 800). The standard deviations of the

simulated coverage accuracies are found to be quite small. For example, when the sample

size is 25 the standard deviation of the 95% con�dence interval is slightly below 0:0014.

(The corresponding standard deviation for N = 50 can be obtained similarly by dividing

these numbers by
p
2, and so on for other N .) From this result, we conclude that a 95%

con�dence interval for the simulated coverage accuracy has a width of only 0.54%. This

indicates the high precision in the coverage accuracies obtained from the simulation study.

The intervals based on the MLEs show a clear tendency to undercover, i.e., the (aver-

age) empirical coverage accuracy of the con�dence intervals are clearly below the theoretical

con�dence level. The undercoverage is maximum for N = 25 and the con�dence interval

is 0:80. When N increases coverage accuracy tends to increase for each value of 
�. This
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result is expected from the consistency of the ML estimators. Figure/Table 3a presents

the results for the 95%4 con�dence interval. It can be seen from the table that for N = 400

or more mean coverage accuracy is very close to the theoretical con�dence levels for 
�

between 0:6 and 0:9.

In addition to the mean values of coverage accuracies, we also present the correspond-

ing standard deviations of the simulated coverage accuracies in Table 3b. The standard

deviations of the con�dence interval coverage accuracy for various combinations of sample

sizes and variance ratios 
� are calculated from
p
(p̂(1 � p̂)=(N � 1000), where p̂ denotes

the estimate of coverage accuracy. From the results in Table 3b we see that the standard

deviations are basically constant for variance ratios 
� > 0, and for all sample sizes. The

standard deviations reach a maximum of 0:003, for the smallest sample size N = 25, and

tend to decrease for larger samples. For the largest sample size N = 800, the smallest stan-

dard deviation is 0:0002 for 
� > 0. These standard deviations can be used to construct

con�dence intervals of coverage accuracies, and/or to test hypotheses regarding coverage

accuracies, e.g., testing whether empirical coverage accuracies are equal to the theoretical

con�dence level. For instance, a 95% con�dence interval for the coverage accuracy estimate

is given by p̂�1:96 �
p
(p̂(1� p̂)=(N �1000)), based upon which one can conduct hypothesis

tests (at the 5% level of signi�cance) whether the simulated coverage accuracy equals the

theoretical con�dence level or not. From the standard deviation results in Table 3b, we

can reject the null hypothesis that the simulated empirical coverage accuracy equals the

theoretical con�dence level for all variance ratios, and all sample sizes.

These results reveal that there is a potential risk in drawing inference on technical

ine�ciency using the con�dence interval procedure outlined in HS and HKH especially

when the sample size is small (below 200), and the estimated value of 
� is small (below

0.5).

5. Conclusions

This paper studies performance of both point and interval predictors of technical

ine�ciency in the stochastic production frontier model. In point prediction of technical

4
We only include the results for the 95% con�dence intervals to economize space. The results for the other

con�dence levels are similar and can obtained from the authors upon request.
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ine�ciency using the JLMS result we �nd that, on average, there is no bias if the parameters

are known. So the MSEs are entirely from the variance part which tends to decline with an

increase in the sample size. When the MLEs are used instead of the true parameters, we

�nd negative biases for values of the variance ratio 
� > 0:2, and in all sample categories.

These biases tend towards zero as sample size increases. In general, there is a declining

trend in MSE with higher values of the variance ratio. This is true for all sample categories.

In interval estimation, mean coverage accuracies are always equal to the correspond-

ing con�dence level when the true parameters are used. The standard deviations of the

coverage accuracies are quite low. The mean coverage accuracy of the con�dence intervals

are below the theoretical con�dence level when the MLEs are used. However, the standard

deviations are small and quite stable for all values of the variance ratios.

Based on these results we conclude that there is a high risk in both point and con�-

dence interval prediction of technical ine�ciency when the parameters are not known. We

�nd that biases play smaller role in the MSE of the point predictors.
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