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Abstract

The paper compares the search for structural breaks in Sweden’s GDP conducted with X-11
seasonally adjusted data, with seasonally undajusted data, and with temporally aggregated data.
As a structural break (in 1980) is found only in the X-11 adjusted data, it is plausible to conclude
that this break is due to data distortions (particularly, distortions caused by the application of the
filter). However, this interpretation is only plausiblea posteriori: had the seasonally unadjusted
data not been available, the break found in the adjusted series could be just as well interpreted as
a break in the economyand not as a break in the data. The study suggests that seasonally
adjusted data should not be used when the unadjusted version is also available.
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A Tale of Three Seasonal Adjustment Procedures:
The Case of Sweden’s GDP

1.  Introduction

Three econometricians receive the task of investigating whether the changes and events
occurred in the Swedish economy after 1980 (social conflicts in the early 80’s, financial
deregulation in the mid 80’s, the crash of the property market and the recession of the early 90’s,
etc.) are reflected in significant structural breaks in Sweden’s gross domestic product (GDP). To
perform this task, each econometrician is instructed to follow a different procedure. One of the
three econometricians is given a series of quarterly GDP already seasonally adjusted by
Sweden’s statistical office through application of the Census X-11 ARIMA filter. Another
econometrician is given the original seasonally unadjusted quarterly series of GDP, and is
instructed to seasonally adjust the series through direct modelling. The third econometrician is
also given the original seasonally unadjusted series, but is instructed to seasonally adjust the
series by temporally aggregating it to (quarterly) annual values. Figure 1 reports the unadjusted
seriesLY, its temporal aggregationLYta, and the X-11 adjusted seriesLYsain natural logarithms,
and their overlap, from 1970 (1) to 1997 (3).

The purpose of this paper is to report the results obtained by the three econometricians, and
to draw some conclusions from their comparison. To avoid possible prejudice (or even secret
collusion between the investigators!), the three econometricians were told to follow a pre-
specified common modelling strategy. This common strategy is described in section 2. The
results of the exercise can be summarized as follows: (i) the econometrician working with
seasonally adjusted GDP,LYsa, finds one unit root, and by taking first differences, finds that the
best congruent model is a random walk from the beginning of the sample to 1980.II and an
AR(1) with negativeautoregressive coefficient after 1980; the latter remains stable until the
present date; (ii ) the econometrician working directly with the seasonally unadjusted GDP,LY,
finds three roots on the unit circle, at+  1 and± i; by taking the appropriate data transformation
to eliminate these three unit-circle roots, the best model is found to be an AR(3) with centered
seasonal dummies, and is found to be stable throughout the sample; (iii ) the econometrician
working with the temporally aggregated GDP,LYta, finds a unit root in the data, and by taking
first differences - which is equivalent to taking fourth differences of the original series - the best
congruent model is found to be an AR(1) model withpositiveautoregressive coefficient, and this
model is found to be stable throughout the whole sample. Note that, had the second
econometrician also found the root -1 in the original data, the two latter procedures would have
produced the same final model. A discussion on these three different results, and their
implications for economic inference, follows in section 6.
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Two main conclusions can be drawn from the exercise: (i) as regards the search for structural
breaks in GDP, only the procedure based on the X-11 seasonally adjusted data revealed a
structural break in the model - apart from three outliers in 1977(1), 1980(2) and 1992(4)
highlighted by all three procedures; (ii ) the manifest recession of the early 90’s (see figure 1) is
not reflected in any structural break. These findings raise two issues: (a) by comparing these
three procedures, it seems plausible to conclude that the break in the X-11 adjusted data is due to
data distortions (perhaps the change in base year, or a change in the adjustment filter); (b) had
the seasonally unadjusted data not been available (as it is, for example, the case for most US
series), the break found in the adjusted series could be just as well interpreted as abreak in the
economyand not as a break in the data. Overall, the study suggests that seasonally adjusted data
should not be used when the unadjusted version is also available.

The paper is organized as follows. Section 2 describes the common modelling strategy.
Section 3 reports on the model with seasonally adjusted data. Section 4 reports on the direct
modelling of seasonally unadjusted data. Section 5 reports on the modelling of the temporally
aggregated series. Section 6 discusses and compares the results.

2.  The Modelling Strategy

The modelling strategy was set as follows (for further discussion and details, see among
others Hendry [1995] and Ermini [1998]):

(i) search for congruent models: the search is restricted to pure autoregressive univariate
models in levels, AR(p), with order p high enough to capture the inversion of possible
(invertible) moving average components. The purpose of the search is to find an AR
representation of the seriesxt , such that the residuals

ût = â (B) xt + Φ̂ Dt (1)

behave as close as possible as innovations; here ˆ indicates estimated values, anda (B) is a

polynomial of orderp in the lag operatorB, that isa (B) = 1 -
j =1
Σ
p

 aj  B
j , with B such thatBj  xt =

xt − j ; Dt is a vector of deterministic components (namely, a constant, a trend and dummies,
seasonal and nonseasonal) andΦ is a row vector of parameters.

The three defining properties of innovations are zero-mean, orthogonality with the past and
constant unconditional variance. An AR(p) model is said to becongruentif its residuals (1)
satisfy these properties. Given the convenience of normality for standard inference, normality is
added to the definition of congruence, though strictly speaking is not a requirement of
innovations. Recall that normality implies conditional homoskedasticity; thus, to check the
possibility that rejection of normality may be caused by autocorrelated square residuals, a test
for autoregressive conditional heteroskedasticity, or ARCH (Engle [1982]) is added to the list.
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The tests for congruence (that is, residual autocorrelation, normality, unconditional
heteroskedasticity, and ARCH) are described in section 3. Note that, as the polynomialâ(B)
may have unit-circle roots,t-statistics related to the coefficients of the model do not have
standard distributions; thus, inference on the model will not be made at this stage. The presence
of unit-circle roots, however, does not invalidate the congruence tests on the residuals, as long as
these are stationary.

Possible causes of normality rejection are conditionally heteroskedastic innovations (ARCH
effects) and the presence of strong outliers. If ARCH effects are not present, the investigator
proceeds to verify the possibility that the rejection of normality is directly related to the presence
of outliers. Note, however, that the presence of outliers can bias the ARCH test toward rejection;
see, for example, Franses and Van Dijk [1997]. If the elimination of outliers through impulse
dummies does not restore normality, the investigator may ignore the rejection of normality on
the grounds (or hope) that the residuals admit a central limit theorem.

In practice, the search starts with a relatively high AR orderp0; if AR(p0) is not congruent,
one need to re-start with a higher value. If AR(p0) is congruent, it may be that lower-order AR
models are also congruent; in this case, the search continues by sequential reduction of the order
p until congruence is lost. When this is the case, the modelling strategy moves on to the next
step. The starting value is chosen asp0 = 7.

(ii) select a congruent model: if more than a congruent model is found, the final model is
chosen as the one that minimizes a given selection criteria. The following selection criteria will
be considered: the ML estimator of the residual standard error (σ̂u), the Schwarz criterion (SC),
the Hannan-Quinn criterion (HQ), and the Final Prediction Error (FPE) (for further details, see
Judge, Griffith, Hill, Luetkephol and Lee [1985], and Hendry and Doornik [1996]). The final
model will be chosen as the model that receives the highest consensus from these four selection
procedures. Note that, as a consequence of possible unit-roots in the polynomialâ(B), selection
procedures based, for example, on sequences oft-tests applied to the highest-lag coefficient of
the congruent models cannot be adopted here.

(iii) test the final model for structural breaks in parameters: firstly, the chosen final model is
re-estimated over the full sample to exploit as many degrees of freedom as possible; the
sequential search for congruent models, in fact, uses a constant sample size ofT - p0, p0 being
the number of observations lost in estimating the initial AR(p0); as p*  ≤ p0, the final model
AR(p*) can be re-estimated by using the larger sample sizeT - p*. Before re-estimation, the
final model is tested for roots on the unit circle (seasonal and non-seasonal), to separate the
stable autoregressive component. The re-estimation is then applied only to the latter to benefit
from standard inference, and it is done with recursive methods to test possible structural
instability in the coefficients of the autoregressive component, as described below.
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3.  Modelling the X-11 Seasonally Adjusted GDP

Starting withp = 7, the OLS estimation of the X-11 seasonally adjusted series in levels, with
the vectorDt including a constant, a trend and three centered seasonal summies, produced the
following diagnostics (p-values in square brakets)2

AR(5) : F (5,87)= 1.627 [0.161]
Normality : χ2(2) = 14.633 [0.000]
UncH : F (19,72)= 0.389 [0.988]
ARCH(4) : F (4,84)= 0.771 [0.547] ,

where (for further details, see Hendry and Doornik [1996]):

(i) AR(r): is the the Lagrange-multiplier test for the significance of the AR(r) model for the
residuals (1); under the null of orthogonal residuals, the statisticT R2, whereT is the sample
size, is distributed asχ2(r ) in large samples; for small samples, it is preferable to use the
equivalentF-form R2 (T − k − r )/(1 − R2)r which is distributed asF (r,  T − k − r ), wherek is
the number of parameters in the model, i.e.p plus the dimension ofΦ;

(ii) Normality χ2(2): is the normality test based on theχ2(2) statistic of Doornik and Hansen
[1994], which is better suited for small samples. Under the null, the test has zero skewness and a
kurtosis equal to 3;

(iii) UncH: is the unconditional heteroskedasticity test of White’s [1980]. The test is
conducted by regressing the squared residuals against the levels, the square values of the
regressors, and the cross-products of the regressors. Under the null that all the coefficients are
jointly insignificant, the statistic is distributed asF (n,  T−p−n) with n = p + p (p +1)/2;

(iv) ARCH(r): is the test for the autocorrelation of the squared residuals, that is a test for the
joint significance of the coefficients of the regression ofût

2
on its firstr lags,ût −1

2
,..., ût −r

2
. Under

the null of no ARCH effects, the statisticT R2 is asymptotically distributed asχ2(r ); the
equivalentF-form is reported here.

As normality is rejected but ARCH effects are not present, the investigator proceeds to detect
possible outliers through recursive estimation. Figure 2 reports: the recursive estimates of the
constant term with± twice the standard error; the estimated residuals with± 2 σ̂u,t ; the one-step
ahead Chow test (that is, the test that the model estimated withn observations, withn ≤ T, is not
statistically different from the model estimated withn - 1 observations); and the break-point
Chow test (that is, a test that the model estimated withn observations is not statistically different
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from the model estimated over the entire sampleT). Note that, although the latter two graphs
include a straight line to denote 5% level of significance, the actual level of significance for
these two Chow tests is much higher due to the sequential nature of the recursive tests; thus,
these tests should only be used as informative about thelocation of possible breaks rather than
informative about their significance.

The recursive estimation reveals the presence of a huge outlier at 1980(2), which also
appears to be responsible for the jump in the residual variance at the same date. Based on this
observation, an impulse dummy dated 1980(2) is added to the vectorDt in (1); upon re-
estimating the AR(7) model, the problem of non-normality disappears with aχ2(2) statistic of
2.393 and ap-value of 0.302 (for the other diagnostics, see table 1). The tests of congruence for
the sequence of AR(p) models for 0 ≤ p ≤ 7, with Dt including constant, trend, three centered
seasonals and an impulse dummy at 1980(2), are reported in table 1.

TABLE 1. Congruence Tests for the X-11 Seasonally Adjusted GDP,LYsa

p = 7 p = 6 p = 5 p = 4 p = 3 p = 2 p = 1 p = 0

AR(5) 0.282 0.962 1.560 1.209 1.445 1.255 0.771 76.615*
[0.922] [0.446] [0.180] [0.312] [0.215] [0.290] [0.573] [0.000]

Normχ2(2) 2.393 2.473 3.646 3.311 2.962 3.108 1.777 0.708
[0.302] [0.290] [0.162] [0.191] [0.227] [0.211] [0.411] [0.702]

UncH 0.561 0.576 0.680 0.741 0.939 1.143 0.446 2.391*
[0.927] [0.905] [0.805] [0.727] [0.512] [0.341] [0.890] [0.034]

ARCH(4) 0.991 1.365 1.361 1.177 1.149 1.541 0.986 36.88*
[0.417] [0.253] [0.254] [0.326] [0.212] [0.197] [0.419] [0.000]

σ̂u 0.0111# 0.0113 0.0114 0.0115 0.0115 0.0114 0.0116 0.0265
SC -8.549 -8.556 -8.562 -8.582 -8.615 -8.658 -8.674# -7.056
HQ -8.747 -8.737 -8.729 -8.734 -8.751 -8.800# -8.780 -7.147
FPE (10−3) 0.139 0.142 0.144 0.145 0.144 0.141# 0.143 0.740

The values in square brackets are thep-values of the various statistics; * indicates 5%-level
significance and # indicates minimum value. The sample size isT = 103. Note that congruence
is lost at p = 0. As regards the choice of the final model, the AR(2) model receives higher
consensus than AR(1), and it is thus selected as the model to be studied next.

_______________

2. All the estimations were done by using the software package PcGive version 9.0 (Hendry and Doornik [1996]).
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The ADF unit root test with one lag of first-differences (corresponding to the AR(2) in levels
previously found) does not reject the presence of unit root, with a statistic of -2.235 against an
ADF critical value of -3.453. The final model is thus taken to be an AR(1) model in first
differences; recall that these are the growth rates of X-11 s.a. GDP.

As in re-estimating the AR(1) model in first differences with the full sample the three
centered seasonals and the trend turned out to be highly insignificant, the model was re-
estimated with only a constant, an impulse dummy at 1980(2) and lagged first differences; table
2 reports the results. The statistic HCSE is White’s [1980] heteroskedastic-consistent standard
error of the model parameters; a noticeable difference between HCSE and the usual standard
error - as in the case, for example, of∆LYsat −1 - may indicate that the associated coefficient is
likely to be unstable. The sample size is nowT = 109.

TABLE 2. AR(1) model for∆LYsawith impulse dummy

Variable Coefficient Std. Error t-value HCSE Partial Corr.

Constant 0.0053 0.0012 4.388 0.0013 0.154
∆LYsat −1 - 0.117 0.0858 - 1.364 0.118 0.017
Impulse 1980(2) -0.054 0.012 -4.508 0.003 0.161

ModelR2 0.189 σ̂u 0.0118 RSS 0.015 DW 1.93

AR F(5,102) 0.628 Norm.χ2 1.948 UncH 1.787 ARCHF(4,99) 1.500
[0.678] [0.377] [0.154] [0.208]

Figure 3 reports the corresponding recursive statistics. We see that the elimination of the outlier
at 1980(2) makes the variance of residuals noticeably more stable; that there remain two
significant outliers at 1977(1) and 1992(4); and that the model is overall stable, even though the
coefficient of lagged first differences appears to be unstable but insignificant. Note that the
instability of this coefficient is also signalled by the big difference between its HCSE and its
usual standard error, as reported in table 2. By adding the two impulse dummies at 1977(1) and
1992(4), the model improves further, as its standard error decreases from 0.0118 to 0.0111, and
the R2 goes from 0.189 to 0.296; moreover, the coefficient of∆LYsat −1 appears less stable, but
still insignificant. Before eliminating from the model the latter regressor, however, it might be of
interest to investigate whether the overall insignificance of its coefficient could be the result of a
break of value in early 1980, as suggested by its recursive estimate of figure 3.

To include this break, the following model was re-estimated

∆LYsat = α0 ∆LYsat −1 + α1 ∆LY*sat −1 + d + d 1 + d 2 + d 3 + ut , (2)

where∆LY*sat −1 is obtained by multiplying∆LYsat −1 by the step dummy that is equal to zero up
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to 1980(2) and equal to one from 1980(3) on; and whered1, d2 andd3 are the three impulse
dummies for 1977(1), 1980(2) and 1992(4), respectively. By estimating model (2), the coefficient
α0 was found to be insignificant at the 5% level (p-value of the t-statistic 0.47), but the
coefficientα1 was found to be significant (p-value of thet-statistic 0.022). To obtain a more
parsimonious model, the insignificant regressor is eliminated, obtaining the model reported in
table 3. This is the model chosen as the final model of the investigation with the X-11 seasonally
adjusted series.

TABLE 3. Final Model for∆LYsa

Variable Coefficient Std. Error t-value HCSE Partial Corr.

Constant 0.0059 0.0011 5.497 0.0011 0.225
∆LY*sat −1 - 0.274 0.099 - 2.77 0.111 0.07
d1 - 0.033 0.011 - 3.01 0.001 0.08
d2 - 0.058 0.010 - 5.30 0.001
d3 - 0.033 0.011 - 3.01 0.001 0.08

ModelR2 0.327 σ̂u 0.0109 RSS 0.012 DW 2.06

AR F(5,99) 0.760 Norm.χ2 1.103 ARCHF(4,96) 0.916 Unc 0.462
[0.581] [0.576] [0.458] [0.804]

The main conclusion from this investigation is that, apart from three outliers, the X-11
seasonally adjusted series is well fitted by a random walk between 1970 and 1980 and by an
AR(1) with negativecoefficient thereafter.

4.  Modelling the Seasonally Unadjusted GDP

The fundamental assumption in modelling seasonality is that whatever the nature of the
seasonal component in the series, this component persists forever, in the sense that its
expectation in the distant future is not zero. Given persistence, the modelling of seasonality
mirrors exactly the same dichotomy that the investigator faces when modelling long-term
growth, that is whether the persistence of seasonality is deterministic or stochastic. In the former
case, seasonality is modelled by seasonal dummies added to a series which is "stationary" at the
seasonal frequencies (i.e., has no unit-circle roots at these frequencies); in the latter case,
seasonality is modelled by the presence of unit-circle roots at these frequencies. With quarterly
data, the deterministic case entails the addition of four (or three centered) seasonal dummies,
whereas the stochastic case entails the presence of unit-circle roots± i and -1, corresponding to
the seasonal frequenciesπ/2 andπ, respectively.
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To discriminate between the two cases, one can conduct an HEGY test (Hylleberg, Engle,
Granger, Yoo [1990]), whose null is the presence of the roots± 1 and± i, or equivalently the
presence of the factor 1 -B4, in the autoregressive component of the series (thus the
distributions of the test statistics are non-standard). We should emphasize that this test has low
power when the true DGP has factor 1 -α B4 with α close to 1; for further discussion on this
test, see Franses [1996] and the references therein. Depending on the test outcome, the
investigator eliminates from the series whichever unit-circle root has been found by applying
appropriate data transformations on the series: if all four roots are found (and none is repeated),
these are eliminated by fourth differencing, i.e. by transforming the data as (1 − B4) xt ; if only
roots at 1 and -1 are found, these are eliminated by second-differencing, i.e. by transforming the
data as (1 +  B)(1 − B) xt = (1 − B2) xt ; and so forth.

As regards the modelling strategy specified in section 2, the HEGY test is performed in place
of the ADF test for non-seasonal unit root, and steps (i) and (ii ) are performed as described
above. Before entering into the modelling details, it is interesting to look at some sample
properties. Figure 4 reports the autocorrelogram, the spectrum and the density function for the
seasonally unadjusted series in levels, in first-differences, in second-differences, and in fourth-
differences. Without risk of prejudging the outcome of the HEGY test, we observe that the
autocorrelograms remain remarkably persistent in all cases except in fourth-differencing, where
it appears to attain stationarity.

Table 4 reports the results of the search for congruent models of the series LY (seasonally
unadjusted Sweden’s GDP in logs), fromp = 7 to 3; as before, the vectorDt contains a constant,
a trend and three centered seasonal dummies. Congruence is lost atp = 4, and normality is never
rejected; the model chosen for the next step - the HEGY test - is thus the AR(6) model. Note
once again that, due to the possible presence of unit-circle roots, inference on the model
parameters cannot be done at this stage.

The HEGY tests entails the application of ordinary least squares to the auxiliary regression

D (B) ∆4 xt = Φ Dt +
j =1
Σ
4

π j xj,t −1 + εt , (3)

whereD (B) is an autoregressive polynomial of orderp - 4 (in our case, of order 2), and where
the auxiliary regressors are defined as:
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TABLE 4. Congruence Tests for the Seasonally Unadjusted GDP,LY

p = 7 p = 6 p = 5 p = 4 p = 3

AR(5) 0.121 0.108 2.277 7.371* 9.342*
[0.987] [0.990] [0.054] [0.000] [0.000]

Normχ2(2) 5.03 5.188 5.474 4.726 6.816*
[0.081] [0.075] [0.065] [0.094] [0.033]

UncH 0.499 0.414 0.385 0.582 0.773
[0.955] [0.978] [0.979] [0.862] [0.666]

ARCH(4) 0.381 0.313 0.955 0.778 0.448
[0.822] [0.868] [0.436] [0.542] [0.774]

σ̂u 0.0140 0.0140# 0.0147 0.0164 0.0174
SC -8.119 -8.162# -8.098 -7.908 -7.820
HQ -8.300 -8.328# -8.249 -8.044 -7.941
FPE (10−3) 0.220 0.216# 0.236 0.293 0.328

x1,t = (1 + B + B 2 + B 3) xt (4)

x2,t = − (1 − B + B2 − B3) xt

x3,t = − (1 − B2) xt

x4,t = x 3,t −1 .

The test for the root 1 is a one-sided test on thet-statistic ofπ1, which is zero under the null, and
less than 1 under the alternative of stable root at frequency zero; similarly for the test of the root
-1, which is a one-sided test on thet-statistic ofπ2. The test for± i is instead anF-test on the
joint significance of bothπ3 and π4. Note that theF-test of the joint significance of all four
parametersπ j , j = 1,..., 4 is equivalent to an ADF test (for further details and comments, see
Franses [1996]).

Table 5 reports the test results for the two cases whereDt includes a constant (C), a trend (T)
and centered seasonal dummies (CD), or only constant and seasonal dummies. The sample size
is T = 105; * indicates 5% significance, and the values in parenthesis are the critical values taken
from Franses [1966, p.67] for a sample size of 80 and 120, respectively. As the test does not
reject a unit root at 1 and± i but it does reject the root at -1, the modelling process moves on to
re-estimating the transformed seriesyt , obtained as (1 +  B2)(1 − B) xt . As this filter is a third-
order polynomial and the congruent model forxt is AR(6), the seriesyt is re-estimated with a
third-order polynomiald (B); according to the outcome of the HEGY test, the latter supposedly
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TABLE 5. HEGY Tests for Seasonally Unadjusted GDP,LY

(C, T, CD) (C, CD)

test statistic 5% (T = 80) 5% (T = 120) statistic 5% (T = 80) 5% (T = 120)

t (π1) -3.233 -3.37 -3.40 -1.109 -2.81 -2.83
t (π2) -3.722* -2.81 -2.83 -3.546* -2.80 -2.82
F (π3, π4) 4.995 6.57 6.66 5.227 6.62 6.70
F (π1,.., π4) 9.229* 6.47 6.41 6.46* 5.70 5.67

does not contain unit-circle roots. Upon re-estimation, the trend is found to be insignificant, with
p-value of thet-statistic equal to 0.49, but the same three outliers identified in the previous
section are significant. Thus, table 6 reports the estimates of the AR(3) model without trend but
with the three impulse dummiesd1, d2 andd3 defined above.

TABLE 6. AR(3) Model foryt = (1 + B 2)(1 − B) LYt

Variable Coefficient Std. Error t-value HCSE Partial Corr.

Constant 0.0055 0.002 2.946 0.002 0.084
yt −1 - 0.294 0.091 - 3.234 0.103 0.10
yt −2 0.580 0.082 7.105 0.080 0.347
yt −3 0.184 0.086 2.082 0.093 0.044
CD1 - 0.11 0.030 - 3.071 0.035 0.13
CD2 0.003 0.004 0.82 0.004 0.007
CD3 - 0.114 0.030 - 3.86 0.035 0.136
d1 - 0.05 0.015 - 3.37 0.003 .107
d2 - 0.03 0.015 - 1.95 0.003 0.04
d3 - 0.04 0.015 - 2.47 0.003 0.06

ModelR2 0.994 σ̂u 0.0143 RSS 0.019 DW 2.07

AR F(5,90) 0.488 Norm.χ2 0.674 UncH 0.969 ARCHF(4,87) 0.110
[0.784] [0.714] [0.979] [0.515]

We see that the HCSE’s of the lagged regressors appear close to the usual standard errors, thus
signalling structural stability. In fact, by adding to the model the regressory*t −1 defined to be
zero up to 1980(2) and equal toyt −1 from 1980(3) on (compare with a similar setting in (2)), the
latter was found insignificant (p-value of thet-statistic of 0.376), as opposed to the finding of the
previous section. Thus, with seasonally unadjusted data there is no significant break in the
model. The model of table 6 is taken to be the final model of the investigation of the second
econometrician.
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5.  Modelling the Temporally Aggregated GDP

There are two main reasons to conduct this third investigation: one is the low power of
HEGY test, and thus the possibility that with a relatively small sample of about 100 observations
its outcome is in fact indeterminate. The second reason is rooted on a legacy of the past: before
the appearance in the literature of the HEGY test for seasonal unit roots, the common practice in
modelling stochastic seasonality was to model the fourth differences of the data (for a discussion,
see for example Granger and Newbold [1986]). As fourth-differencing is equivalent to summing
up first differences, i.e. 1 − B4 = S(B) (1 − B) where S(B) = 1 +  B +  B2 +  B3, the third
investigator is instructed to model first the temporally aggregated seriesLYta = S(B) LY, so to
leave open the possibility of a non-seasonal unit root.

Starting withp = 4 (i.e. 7 minus the order ofS(B) which is 3), the tests for congruence of the
AR(p) models forLYta, with Dt including constant, trend and centered seasonal dummies, are
reported in table 7.

TABLE 7. Congruence Tests for the Temporally Aggregated GDP,LYta

p = 4 p = 3 p = 2 p = 1

AR(5) 1.164 0.973 1.939 16.638*
[0.333] [0.439] [0.095] [0.000]

Normχ2(2) 3.215 3.330 2.964 6.128*
[0.200] [0.189] [0.227] [0.047]

UncH 1.019 1.236 1.142 0.691
[0.467] [0.236] [0.327 [0.770]

ARCH(4) 0.676 0.695 1.350 7.588*
[0.610] [0.597] [0.258] [0.000]

σ̂u 0.0156 0.0155# 0.0158 0.021
SC -8.016 -8.059# -8.049 -7.51
HQ -8.153 -8.180# -8.155 -7.600
FPE (10−3) 0.263 0.258# 0.267 0.470

Unsurprisingly, the chosen model is AR(3), as it corresponds to the model AR(6) chosen in the
previous section; note also that normality is not rejected for congruent models. Furthermore, the
ADF test does not reject the hypothesis of unit root with a statistic of -3.102 against a 5%-level
critical value of -3.454. As in re-estimating this model with the full sample the three seasonal
dummies, the trend and the second-lag regressor turned out to be insignificant, the model was
re-estimated recursively with constant and one lagged regressor only, obtaining the values
reported in table 8. Figure 5 reports the associated recursive statistics. Note that the model
parameters are fairly stable (as also confirmed by the small differences between HCSE’s and
standard errors in table 8), and that an outlier at 1984(1) appears which was not present in the
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TABLE 8. AR(1) Model for∆4LY

Variable Coefficient Std. Error t-value HCSE Partial Corr.

Constant 0.0059 0.0020 2.93 0.0022 0.077
∆4LYt −1 0.629 0.075 8.38 0.086 0.41

ModelR2 0.41 σ̂u 0.0163 RSS 0.028 DW 2.1

AR F(5,99) 1.97 Norm.χ2 0.50 UncH 1.14 ARCHF(4,96) 1.30
[0.09] [0.779] [0.28] [0.325]

X-11 s.a. data. To obtain a better fit, the following three outliers were added,d1 = 1982(2),d4 =
1984(1) andd3 = 1992(4), obtaining the results of table 9.

TABLE 9. Final Model for∆4LY

Variable Coefficient Std. Error t-value HCSE Partial Corr.

Constant 0.0061 0.0019 3.27 0.0022 0.096
∆4LYt −1 0.636 0.071 8.96 0.080 0.44
d2 - 0.45 0.015 - 2.91 0.003 0.08
d4 - 0.035 0.015 2.61 0.002 0.06
d3 -0.035 0.015 - 2.30 0.003 0.05

ModelR2 0.51 σ̂u 0.0150 RSS 0.023 DW 2.1

AR F(5,96) 0.875 Norm.χ2 0.08 UncH 0.995 ARCHF(4,93) 0.575
[0.50] [0.96] [0.43] [0.68]

This latter model is taken to be the final model of the investigation of the third econometrician.

6.  A Comment and Conclusion

The results of the three investigations can be summarized as follows:

(i) using X-11 seasonally adjusted data (LYsa), the search for structural breaks reveals three
outliers at 1972(1), 1982(2) and 1992(4) and a break in the model at 1980(3); before this date the
best fit is obtained with a random walk model, and after this date with an ARI(1,1) model with
negativecoefficient.

(ii ) using seasonally unadjusted data (LY) and performing an HEGY test to detect the
presence of unit-circle roots, the search for structural break reveals the same three outliers, but
no break in the model. Having found roots at 1 and± i, and eliminating them by transforming
the data asyt = (1 − B)(1 +  B2) LYt , the best fit is found with an AR(3) with three centered
seasonal dummies. This model is stable throughout the sample.
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(iii ) using temporally aggregated data (LYta), the search for structural break reveals two of
the same outliers revealed in (i) and (ii ), namely 1980(2) and 1992(4), and an additional outlier
at 1984(1), but no break in the model. The best fit is found with an AR(1) in fourth differences
with positivecoefficient. This model also is stable throughout the sample.

Having received the three separate reports from the three investigators, the natural question
to ask is which model should we consider to analyze possible economic implications. The latter
two models use the same seasonally unadjusted data, and their difference lies on whether the
seasonal persistence manifest at frequencyπ (figure 2) is deterministic or stochastic in nature. In
the former case, the persistence is modelled with seasonally dummies (model (ii )); in the latter
case with a root at -1 (model (iii )). The choice between these two models depends on the
credibility of the HEGY test, that is on whether one believes that with 100 observations the
HEGY test has enough power to discriminate between these two possibilities. Notice that an
accurate analysis of the residuals of both models reveals that nothing is "wrong", although from a
theoretical point of view if the root -1 is not present in the data (that is, of the outcome of the
HEGY test is right), then the residuals of model (iii ) should exhibit a significant autocorrelation
of 0.5 at lag one, as fourth differencing would introduce the factor 1 +  B into the moving average
component. By noting that model (iii ) is more compact and thus more interpretable than model
(ii ), and for lack of better criteria, between the two models we prefer to choose model (iii ) as the
better way to model seasonally unadjusted Sweden’s GDP.

The next question is the choice between model (i) and model (iii ). The answer to this
question differs, depending on the use that is made of the chosen model. If the model is used, say,
for forecasting, then model (i) could be preferred, having a lower standard deviation (0.011
against 0.015). If the model is used instead to infer the existence of some structural change in the
Swedish economy - which is in fact the original purpose of the study - then the two models are
no longer comparable, as they offer two completely different results: although both models deny
structural change in correspondence with the recession of the early 1990’s, model (i) reveals an
important change in early 1980, whereas model (iii ) is stable throughout.

Several conclusions can be drawn from this study. Firstly, by comparing the outcomes of the
three procedures, it is plausible to conclude that the break in the X-11 adjusted data is due to
data distortions (for example, the result of the change of base year, or a change of the X-11
filter). However, this interpretation is only plausiblea posteriori: had the seasonally unadjusted
data not been available (as it is, for example, the case for most US series), the break found in the
adjusted series could be just as well interpreted as abreak in the economyand not as a break in
the data. It follows that, as a rule, some caution should be spent in interpreting structural breaks,
especially when using seasonally adjusted data; a corollary to this conclusion is that seasonally
adjusted data should not be used when the unadjusted version is also available.
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