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Abstract
Many clinical trials are in progress which involve the collection of patient-level data on both
the health outcome and resource use consequences of the health care interventions under
evaluation. The overall aim of many such evaluations will be to undertake a cost-effectiveness
analysis, which will often result in a cost-effectiveness ratio summarising the value for money
of the intervention in question. In this paper, we explore the issues surrounding the design and
analysis of such studies. At the design stage of an analysis, we propose an improved sample
size formula for cost-effectiveness analysis that allows for covariance between cost and effect
differences. This approach is based on the 'net benefits' approach to the analysis of uncertainty
in cost-effectiveness analysis. At the analysis stage of an evaluation, we explore the
differences and similarities of the 'net benefit' approach to analysing cost-effectiveness
information and the traditional approach based on cost-effectiveness ratios. Despite the
apparent differences, we show that the two approaches are exactly equivalent when it comes
to estimating the probability that the intervention is cost-effective under alternative values of
the ceiling cost-effectiveness ratio appropriate for decision-making purposes.
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Introduction

Clinical trials of alternative health care interventions are increasingly collecting patient-level

data on both the health outcome and resource consequences of the interventions under

evaluation. Where a new intervention is both more costly and more effective than an

alternative, it is appropriate to consider whether the additional cost is justified by the

additional health benefits produced.  In such situations, it is the incremental cost effectiveness

ratio (ICER) that summarises the value for money of the new intervention. Much attention in

the recent literature has been devoted to problems of estimating confidence limits for ICERs

at the data analysis stage of an evaluation. A number of commentators have highlighted that,

at the design stage, sample size calculations should be based not only on the clinical endpoints

of the trial but also on the economic endpoints (Drummond and O'Brien, 1993; O'Brien et al.

1994; Sacristan et al.  1995; Coyle, 1996). In a recent paper, it was demonstrated how a

sample size formula for cost-effectiveness analysis can be derived from the independent

confidence intervals on cost and effect differences (Briggs and Gray, 1998). One of the

acknowledged weaknesses of the approach is that it fails to allow for the covariance between

the cost and effect differences.

In this paper, we demonstrate how a sample size formula, based on the net-

benefit approach to interpreting cost-effectiveness results (Tambour et al.  1998; Stinnett and

Mullahy, 1998) allows for covariance and is therefore more efficient than that originally

proposed by Briggs and Gray.  It is shown that the sample size formula proposed by Briggs

and Gray is a special case of the general formula presented in this paper.  We then go on to

demonstrate how, at the analysis stage, the net benefit approach to decision making is

formally equivalent to decision-making based on the cost-effectiveness plane.  We suggest

that the appropriate way to represent uncertainty in the decision-making process is through

cost-effectiveness acceptability curves (van Hout et al.  1994), rather than by confidence

intervals around either net-benefit values or cost-effectiveness ratios.

Cost-effectiveness and decision rules

Suppose that two treatments are to be compared in a clinical trial setting. One treatment

represents the currently provided (or control) therapy and the other represents an experimental

(or treatment) therapy. The true (but unobservable) health outcome effects of the two

therapies are denoted by ECET µµ and for the treatment and control therapies respectively.

Similarly, the true (but unobservable) resource costs associated with the two treatments are
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denoted CCCT µµ and . O’Brien and colleagues identify four situations that can arise in relation

to the incremental cost and effectiveness of two therapies:(O'Brien et al.  1994)

1. ;; ECETCCCT 00 >µ−µ<µ−µ dominance - accept new treatment as it

is both cheaper and more effective than the existing therapy.

2. ;; ECETCCCT 00 <µ−µ>µ−µ dominance - reject new treatment as it

is both more expensive and less effective than the existing therapy.

3.  ;; ECETCCCT 00 >µ−µ>µ−µ  trade-off - consider magnitude of the

additional cost of the new therapy relative to its additional effectiveness.

4. ;; ECETCCCT 00 <µ−µ<µ−µ  trade-off - consider magnitude of the

cost-saving of the new therapy relative to its reduced effectiveness.

These four situations correspond to the four quadrants of the cost-effectiveness (CE)

plane, which has been proposed for presenting cost-effectiveness results (Anderson et al.

1986; Black, 1990). The CE plane is presented in Figure 1.  Where one intervention is

simultaneously cheaper and more effective than the other (situations 1 & 2 above and

quadrants II & IV on the CE plane) it is clearly the treatment of choice since it dominates the

alternative intervention.  However, where one intervention is both more effective and more

costly (situations 3 & 4 above and quadrants I & III on the cost-effectiveness plane) then the

decision is no longer clear.  Rather, a judgement must be made concerning whether the

difference in effectiveness resulting from a switch in therapy is justified given the difference

in costs that such a switch would bring about.   In order to aid such judgement, an incremental

cost-effectiveness ratio (ICER) should be calculated which provides a summary of the cost-

effectiveness of one intervention relative to the other:

ECET

CCCTICER
µ−µ
µ−µ=

In the absence of the simple case of dominance, the decision over which is the appropriate

treatment to implement cannot be determined unless a cut-off value, or maximal willingness

to pay for additional health effect ( )cR , has been specified (Karlsson and Johannesson, 1996).

This ceiling value of the ICER can be represented by the (slope of the) dashed line on the CE
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plane of Figure 1.  If the incremental costs and effects are plotted to the right of this line on

the CE plane then the treatment is considered cost-effective, while points to the left of this

line represent cost-ineffective interventions.1

In terms of the ICER, the decision rule is that the new treatment should be

implemented instead of the standard treatment if:

c
E

C

ECET

CCCT R<
µ
µ

=
µ−µ
µ−µ

=
∆

∆ICER . (1)

In a trial situation, on the basis of data collected from two groups of patients receiving

the alternative therapies, the ICER can be estimated by:

E

C

EE

CC
R̂

CT

CT

∆
∆=

−
−= (2)

where TC  and CC  are the mean costs in the treatment and control arms of the trial

respectively and TE  and CE  are the mean effects.

Due to the uncertainty associated with sampling variation, many would argue

that the decision rule to implement the new treatment should be based on the requirement that

the observed ICER from Equation 2 be significantly less than the ceiling cost-effectiveness

ratio, cR , appropriate for decision making purposes.  In other words, it is appropriate to test

the null hypothesis cEC R:H >µµ ∆∆0  against the alternative hypothesis cEC R:H <µµ ∆∆1 .

Although the underlying cost and effect data may not follow a well-behaved

distribution in general, the central limit theorem states that the sample mean costs and effects

in Equation 2 will approach a normal distribution with increasing sample size.  Hence, with

sufficient sample size, the distribution of the relevant estimators can be approximated by

normal distributions with the following mean and variance:

                                                
1 In principle, a new treatment might be introduced if it was less effective than the existing treatment, but was
sufficiently less costly to compensate for that loss of effect (i.e. to the right of the line representing the ceiling
ratio in the third quadrant of the CE plane).  In reality, such a policy might raise ethical objections from those
who believe it unjust to withdraw a treatment that has formerly been available.  Since, at a design stage, it is
unlikely that a trial will be undertaken to show an experimental therapy to be less effective than an existing
therapy, we assume that only new treatments that are thought to be more effective than existing treatments will
progress to evaluation.
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where 2σ represents the true population variance for (subscripts) costs (C) and effects (E) for

the treatment (T) and control (C) groups.

As it is known that the sum of two normal variables is itself normally distributed, we

can assume that the estimates of the incremental costs and effects, the numerator and

denominator of the estimated ICER from Equation 2, are distributed:

).,(N~C

),(N~E

CCCCT

EECET

2

2

∆

∆

σµ−µ∆

σµ−µ∆

where:2

.
nn

nn

C

CC

T

CT
C

C

EC

T

ET
E

22
2

22
2

σ+σ=σ

σ+σ=σ

∆

∆

(3)

As a ratio of two asymptotically normal variables, the ICER suffers from the problem

that its moments may not be defined, due to the non-negligible probability that the

denominator of the ratio could take a zero value.  Given the intractable nature of the variance

of the ratio, many papers have focussed on possible of estimating confidence limits for the

ICER which do not involve on a measure of variance (O'Brien et al.  1994; Wakker and

Klaassen, 1995; Chaudhary and Stearns, 1996; Willan and O'Brien, 1996).

More recently, two papers have highlighted the 'net-benefit' approach to handling

uncertainty in cost-effectiveness analysis (Tambour et al.  1998; Stinnett and Mullahy, 1998).

The decision rule of Equation 1 can be rearranged to give a measure of 'net-benefit' and an

associated decision rule that the new therapy should be implemented only if the net-benefits

are positive.  Two alternative formulations of net-benefit have been suggested based on a

                                                
2 Note that implicit in this assumption of the variance of the cost and effect differences in Equation 3 is that the
data where generated from independent groups in a randomised trial.  However, for non-randomised trial
designs, such as, for example, a before and after study, the independence assumption may not be justified and the
above expressions should incorporate a covariance term.
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simple rearrangement of Equation 1, such that the new therapy should be implemented over

the existing treatment if:

0NB >µ−µ= ∆∆ CEcC R (4)

or, equivalently, if:

0NB >µ−µ= ∆∆ cCEH R (5)

In Equation 4, the net-benefits are measured in monetary terms (Tambour et al.  1998), while

in Equation 5, the net-benefits are measured in terms of health (Stinnett and Mullahy, 1998).

The advantage of the net-benefits approach is that the ( )%α−1  confidence

interval for net-benefits can be easily determined in the standard fashion, as:

2
2 NB/zB̂N σ± α

where B̂N , is the estimated net-benefit measure, with variance 2
NBσ , and 2/zα is the critical

value from the standard normal distribution.  In contrast to a ratio, whose variance may not be

defined, the variance of net-benefits is simply a linear combination of two asymptotically

normal variables and can therefore be defined as:

)C,Ecov(R)Cvar()Evar(R)B̂Nvar( ccC ∆∆−∆+∆= 22 (6)

in terms of the monetary net-benefit measure of equation 4, or:

)C,Ecov(
R

)Cvar(
R

)Evar()B̂Nvar(
cc

H ∆∆−∆+∆= 21
2

(7)

for the net health benefit measure of Equation 5.

Sample size for cost-effectiveness analysis

We now show how the net-benefits approach can be used to generate a sample size formula

for cost-effectiveness analysis.  In this section, the monetary version of net-benefits from



6

equations 4 and 6 is employed.  However, an exactly equivalent formula, which generates the

same sample size can be derived using the net health benefit approach from Equations 5 and

7.

An observed net benefit is significantly positive providing:

02
2 >σ−∆−∆ α NB/c z)CER( .

Although it is tempting to base the sample size calculation on the numbers of patients required

to show an observed difference as significant sample size calculations should be based on the

hypothesised cost and effect differences (denoted C~,E~ ∆∆ ) such that the study has the

appropriate power to detect the net benefit as different from zero.  In algebraic terms:

2
2

2
NB/NBc zz)C~E~R( σ>σ−∆−∆ αβ (8)

where βz  is the critical value from the standard normal distribution corresponding to a

required power of β−1 .

Noting that the )yvar()xvar()y,xcov( ρ=  (where ρ  is the correlation

coefficient) the variance of net benefits from Equation 6 can be expressed in terms of the

variance of the cost and effect differences from Equation 3:






 σ+σ⋅




 σ+σρ−




 σ+σ+




 σ+σ=
C
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T

CT

C

EC

T

ET
c

C
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T

CT

C

EC

T

ET
cC nnnn

R
nnnn

R)B̂Nvar(
22222222

2 2

Substituting the above expression for the variance of net benefits into Equation 8 and

assuming equal sample sizes for each arm of the trial gives the sample size formula (after

rearranging on n) as:

[ ]
2

2222222222
2 2

)C~E~R(

))((R)()(R)zz(
n

c

CCCTECETcCCCTECETc/

∆−∆
σ+σσ+σρ−σ+σ+σ+σ+

> βα

(9)

It is straightforward to show (see appendix) that the sample size formula

generated by Briggs and Gray (1998) is simply a special case of the general formula in

equation 9 above when the correlation between cost and effect differences is set to -1.  This is
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because the sample size formula in their paper was based on the 'confidence box' approach to

confidence interval estimation for an ICER (O'Brien et al.  1994) which implicitly assumes

that cost and effect differences are perfectly negatively correlated such that the combination

of the 95% confidence limits on cost and effect differences generates a 95% confidence limit

for the ICER.  Where cost and effect differences are not perfectly correlated, the confidence

box method will produce a confidence interval for the ratio that is greater than the nominal

95% level.  Moreover, the required sample size will be overstated when using the confidence

box method if 1−>ρ , since it can be shown that the sample size formula is a decreasing

function of the correlation (see appendix).

A numerical example: the design stage

In order to illustrate the sample size calculations outlined above, we present a numerical

example based on the same as that employed by Briggs and Gray (1998).  Their example

assumed that a randomised trial was planned, based on an effect difference in favour of a new

therapy of 0.8 life-years at an additional cost over standard therapy of £1,200 (i.e., a

hypothesised ICER of £1,200/0.8 = £1,500 per life year gained).  The assumed standard

deviations for the effects and costs (assuming they were the same in each arm) were 4.04 and

8,700 respectively.  First we assume that cost and effect differences are independent, such that

the correlation coefficient is zero and the correlation term from Equation 9 can be ignored.  In

order to employ the power calculation formula of Equation 9, we have only to estimate the

appropriate cost-effectiveness ceiling ratio from which we want to have the power to be able

to detect the observed cost-effectiveness ratio as significantly different from.  Since no such

universally accepted ceiling ratio exists for decision-making purposes we suggest that analysts

plot the sample size requirements as a function of the maximum cost effectiveness ratio, for

different levels of study power (and perhaps even significance).  Figure 2 shows such a

presentation for the example detailed above and is directly comparable to Figure 7 of the

Briggs and Gray paper.  Sample size requirements are shown for values of the maximum cost-

effectiveness ratio between approximately £3,000 per life year and £30,000 per life year and

for study power of 50-90%, assuming conventional 5% significance.  Also shown is the

sample size based only on the effectiveness outcome (the horizontal line at n=536) and the

equivalent 90% power sample size calculation (dotted line) based on the Briggs and Gray

sample size formula (i.e., assuming that the correlation is equal to -1).
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From Figure 2 it appears that the sample size required for a trial is a decreasing

function of Rc.  Intuitively, this seems reasonable since, a higher ceiling ratio indicates a

greater willingness to pay for health benefits which in turn implies a greater net-benefit

suggesting less observations are required to establish the net-benefits as significant.

However, this is not always true.  Consider Figure 3 which shows the sample size

requirements based on different assumptions concerning the correlation between cost and

effect differences for the example, based on 90% power and 5% significance.  The figure

shows that very strong positive correlation between cost and effect differences may actually

cause the sample size to be an increasing function of Rc in the example.  In general, whether

sample size is increasing or decreasing in Rc will depend on both the sign and the magnitude

of the covariance.  It can be shown that there will be a critical value of the correlation between

cost and effect that will mean that the sample size requirement for the clinical study and the

sample size requirement for an economic study based on the same effectiveness measure will

be equal (see appendix)3.  For example, it is clear from Figure 3 that the sample size for

economic evaluation will exceed that for clinical evaluation unless the correlation coefficient

is very high.  In general, it is likely that sample sizes for economic analysis will exceed those

for clinical analysis where a new treatment is hypothesised to be both more effective, but also

more expensive.  The extremely high correlation coefficients required to make sample size

increasing in Rc are unlikely to be observed in practical application.

Cost-effectiveness ratios or net-benefits?

Using the net-benefit approach at the design stage would seem to imply that at an analysis

stage the outcome of interest in the economic analysis is the net-benefit measure rather than

the cost-effectiveness ratio.  While some authors have suggested the net-benefit approach as a

way to avoid the problems associated with confidence intervals around ratios (Tambour et al.

1998) others have gone further, suggesting that net (health) benefits themselves may be a

more appropriate framework in which to examine the results of cost-effectiveness analyses

(Stinnett and Mullahy, 1998).  They list the main advantages of the net (health) benefits

approach over cost-effectiveness ratios as improved interpretability, more straightforward

statistical inference, and clearer analysis of multiple comparisons.  It is not our purpose to

                                                
3 Since the correlation coefficient must lie between -1 and +1 by definition, critical values of the coefficient
outside of this range indicate that there is no covariance between cost and effect differences that would lead to
the sample size requirements for the clinical and economic evaluations in question being equal.
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rehearse those arguments here, indeed, in the main we agree with the authors that there can be

significant problems associated with the unthinking interpretation of the cost-effectiveness

ratio.  However, few would argue the results of cost-effectiveness analysis be presented

simply in terms of ICER.  Indeed, many commentators have advocated the presentation of the

results of economic evaluations on the cost-effectiveness plane (Anderson et al.  1986; Black,

1990) as outlined above and shown in Figure 1.

The presentation of the net (health) benefits by Stinnett and Mullahy leaves the

impression that the approach is different from cost-effectiveness ratios in some important

respect.  However, we would argue that the only practical way to interpret net benefit

measures (whether cost or health based) is in terms of the cost-effectiveness ratio.  We show

how, in terms of decision-making, a net benefit approach is equivalent to decision making on

the cost-effectiveness plane where the summary results are presented in terms of ratios, by

means of an example.

A numerical example: the analysis stage

Consider Table 1, which presents the results from a (hypothetical) clinical trial in terms of the

cost and effects of two alternative interventions.  As the new treatment is both more effective

and more costly it is necessary to calculate an incremental cost-effectiveness ratio.  This

shows the cost-effectiveness of the new treatment relative to the control treatment as £4,836

per unit of health effect.  Whether the new treatment should be implemented depends on the

maximum willingness to pay for additional health effect, Rc.  Suppose this is known to be

£10,000.  It would appear that the new treatment should be implemented since its cost-

effectiveness is below the ceiling ratio.  Table 1 also shows the net benefit values estimated

using the willingness to pay figure of £10,000 per unit of health effect.  This puts the net-

benefit of implementing the new treatment at 0.38 units of health effect (from Equation 5) or,

equivalently, £3,806 (from Equation 4).

However, this analysis is based purely on point estimates of observed cost and effect.

In order to allow for sampling variation, confidence limits for the ICER and net-benefit

statistics could be calculated and the new treatment only implemented if the treatment is

found to be significantly cost-effective.  An undoubted advantage of the net-benefit statistics

are that they have a mathematically tractable variance and have asymptotically normal

sampling distribution, which means that for sufficient sample sizes, the confidence intervals

are straightforward to calculate using standard methods.  By contrast, the variance of a ratio
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statistic is intractable and its sampling distribution is undefined.  Although parametric

methods, such as Fieller's theorem, have been suggested for estimating confidence limits for

ratio statistics, in this example we employ the non-parametric method of bootstrapping since

this allows us to 'visualise' uncertainty due to sampling variation more clearly.  The bootstrap

approach has been advocated by a number of commentators for estimating confidence limits

for ICERs (O'Brien et al.  1994; Chaudhary and Stearns, 1996; Obenchain et al.  1997; Briggs

et al.  1997) and has also been suggested by advocates of the net-benefit approach.

The bootstrap approach can be characterised as a simple four step process:

1.  Sample with replacement nT cost/effect pairs from the sample of patients who

received the new treatment and calculate the bootstrap estimates *
TC  and *

TE  for the

bootstrap sample;

2.  Sample with replacement nC cost/effect pairs from the sample of patients receiving

the control treatment and calculate the bootstrap estimates *
CC  and *

CE  for the

bootstrap sample;

3.  On the basis of these four means, estimate the cost and effect differences, *C∆  and

*E∆ .

4.  On the basis of these cost and effect differences calculate either the bootstrap ICER

or the bootstrap net-benefit.

This process is then repeated a large number of times to build up the empirical estimate of the

sampling distribution of the relevant statistic.  Straightforward confidence limits can then be

estimated using the 2.5th and 97.5th percentiles of the ordered list of bootstrap replications4.

The confidence limits based on the bootstrap percentile approach are reproduced in

Table 1 adjacent to the appropriate statistic.  Since both the net-benefit intervals include zero

and the upper limit of the ICER confidence interval is greater than £10,000, it cannot be

concluded that the new treatment is cost-effective at the conventional 5% significant level.

However, suppose a decision has to be made concerning which of the two treatments should

be provided for the patients in question.  Given that the baseline results from Table 1 indicate

that the new treatment is cost-effective, the decision maker may be interested in the overall

                                                
4 Alternatively, more efficient methods of calculating confidence intervals, such as the bias-corrected (BC) and
bias-corrected-accelerated (BCa) methods (Efron and Tibshirani, 1993) can be applied.  However, these are not
discussed here in order to keep the example simple and because the need for these corrections comes from the
problems associated with confidence intervals for ratio estimators.
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confidence that can be attached to a decision to implement the new therapy, even if that

confidence does not reach conventional levels.

The cost and effect differences, from 1,000 repetitions of the first three steps of

the bootstrap process based on the raw data summarised in Table 1, are presented in Figure 4.

Note that in this example, the bootstrap replications fall into three of the four quadrants of the

cost-effectiveness plane.  In quadrant II and quadrant IV of the cost-effectiveness plane, the

bootstrap replications of cost and effect will generate negative ratios.  However, the negative

ratios in quadrant II are associated with the new treatment dominating the old, whereas the

negative ratios in quadrant IV are associated with the old treatment dominating the new

treatment.  However, in a rank ordering of cost-effectiveness ratios - all negative ratios are

grouped together and are not distinguished by which quadrant of the cost-effectiveness plane

they fall into.  This illustrates the problems associated with negative ratios and gives us good

reason to be wary of bootstrap based confidence limits when some replications fall into the IV

quadrant of the plane (i.e., when effect differences are negative).

This problem does not arise with the net-benefit approach.  Positive net benefits

are favourable to the new treatment and negative net benefits are prejudicial to the new

treatment.  Hence, simply calculating the proportion of positive net-benefit observations in the

bootstrap replications gives an estimate of the probability that can be given to the new

treatment being cost-effective.  In the example illustrated above, this probability is 82.4%.

Hence, even though the confidence limits for net-benefits include zero at the 5% significance

level, a decision-maker may decide that an 82.4% probability that the new treatment is cost-

effective gives sufficient confidence in the new treatment to recommend implementation.

However, if we recognise the need to base decision-making on the cost-

effectiveness plane, rather than purely on confidence intervals for cost-effectiveness ratios, we

get the same results as the net-benefit approach.  Figure 4 shows 19 of the bootstrap

replications in quadrant IV, favouring the control treatment, and 20 in quadrant II favouring

the new treatment.  The remaining 961 bootstrap replications are in quadrant I and are

associated with a positive bootstrap ICER.  Of these positive ICERs, 804 are below the ceiling

cost-effectiveness ratio of £10,000.  Therefore, (804+20)/1000 = 82.4% of the bootstrap

replications lie to the right of the line with slope equal to the ceiling ratio.

So far, we have assumed that the maximum willingness to pay for additional health

effect is known.  However, as the advocates of the net-benefit approach recognise, in fact

considerable uncertainty remains concerning the ceiling ratio.  One approach is to plot the net-

benefit, together with confidence limits, as a function of the ceiling ratio (Stinnett and
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Mullahy, 1998).  An alternative, and we believe more informative approach, is to present the

cost-effectiveness acceptability curve, first advocated by Van Hout and colleagues (1994).

This shows the probability that the treatment under consideration is cost-effective as a

function of the ceiling ratio.  Figure 5 shows the cost-effectiveness acceptability curve for the

above example based on the bootstrap replications of the cost and effect differences.  Note

that the cost-effectiveness acceptability curve is exactly the same, no matter whether it is

calculated using the net-benefit or the cost-effectiveness plane approach.  This is because the

decision rules for both approaches are the same.  Hence, if we move away from the debate

about confidence intervals (either for net-benefits or ICERs) and accept that cost-effectiveness

acceptability curves generate the appropriate information for decision-makers, it does not

matter which approach we adopt.

Conclusions

The net-benefit approach to cost-effectiveness analysis is a powerful approach.  The

properties of the net-benefit statistic mean that it has many practical advantages over the

ICER statistic when it comes to representing uncertainty in the form of confidence intervals.

We show how, at a design stage of a trial intending to collect both health outcome effect and

resource cost data, the net-benefits approach can be employed to generate a more efficient

sample-size formula for cost-effectiveness analysis, and that the previously suggested formula

based on cost-effectiveness ratios is simply a special case of our more general formula.  At the

analysis stage of an economic analysis, it is natural to report point estimates of cost-

effectiveness using the ICER rather than net-benefits as we believe this statistic remains the

most straightforward to interpret.  Rather than presenting confidence intervals for either cost-

effectiveness ratios or net-benefits, we believe that cost-effectiveness acceptability curves

offer more information to the decision-maker, since they make no assumptions concerning the

appropriate level of significance or the maximum-willingness for an additional unit of health

effect appropriate for decision-making purposes.  Using the non-parametric approach of

bootstrapping, we show that cost-effectiveness acceptability curves can equivalently be

calculated using either a net-benefit approach or a cost-effectiveness approach to decision-

making.  However, due to the desirable properties of the net-benefit statistic, the calculation

of cost-effectiveness acceptability curves is much more straightforward using a net-benefits

approach.
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Proposition 1:  The Briggs and Gray sample size formula is a special case of our more general formula
Setting the correlation coefficient in Equation 9 to -1 gives:

[ ]
2

2222222222
2 2

)C~E~R(

))((R)()(R)zz(
n

c

CCCTECETcCCCTECETc/

∆−∆
σ+σσ+σ+σ+σ+σ+σ+

> βα

The term in the square brackets is simply the square of 2222
CCCTECETcR σ+σ+σ+σ simplifying the expression to:

[ ]
2

2
22222

2

)C~E~R(

R)zz(
n

c

CCCTECETc/

∆−∆
σ+σ+σ+σ+

> βα

which is exactly the same as Equation 9 in the paper by Briggs and Gray (1998).

Proposition 2:  The required sample size is decreasing in the correlation
Treating the sample size formula of Equation 9 as an identity and differentiating with respect to the correlation coefficient gives:

( )
2

22222
22

)C~E~R(

))((R)zz(
n

d

d

c

CCCTECETc/

∆−∆
σ+σσ+σ+

−=
ρ

βα .

Since Rc, the power and significance levels, the variances and the denominator term must all be positive, the partial derivative above is always
negative and the sample size is therefore a decreasing function of the correlation coefficient.
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Proposition 3:  The required sample size may be increasing in Rc

Treating the sample size formula of Equation 9 as an identity and differentiating with respect to Rc gives:
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
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Setting this partial derivative to zero and rearranging on the correlation coefficient gives:

)()(
E~
C~

R

)()(
E~
C~

R

CCCTECETc

CCCTECETc

2222

2222

σ+σσ+σ






∆
∆+

σ+σ+σ+σ
∆
∆

=ρ

Hence, this expression gives the value for the correlation coefficient at which the sample sizes generated by a formula based just on effectiveness
and a formula based on cost-effectiveness are equal (for the same effectiveness measure).  Where the correlation coefficient is greater than that
given by the identity above, the sample size will be an increasing function of the ceiling ratio.  Of course, since 11 <<− ρ , it will not always be
the case that there exists a correlation coefficient such that the sample sizes required for cost-effectiveness analysis and clinical evaluation are
equal.
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Table 1
(Hypothetical) Results from a trial based economic analysis

Control Group Treatment Group Difference
Statistics Effect Cost Effect Cost Effect Cost

n 20 20 20 20 n/a n/a

Mean 8.89  £   25,080 9.62  £28,645 0.74  £  3,564

St.dev. 1.14  £    4,734 1.02  £  6,355 n/a  n/a

S.E. 0.26  £    1,058 0.23  £  1,421 0.34  £  1,772

ICER:

NBH
*

NBC
*

 £  4,836

0.38

£3,806

(95%CI: -£772 to £24,646)**

(95%CI: -0.36 to 1.06)**

(95%CI: -£3,644 to £10,563)**

*Assuming maximum willingness to pay of £10,000 per unit of health effect
** Based on the 2.5th and 97.5th centiles of 1,000 bootstrap replications
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Figure 1
Decision rules and the cost-effectiveness plane
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Figure 2
Power and sample size by the willingness to pay for additional health effect (at 5%
significance)
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Figure 3
Sample size by willingness to pay for additional health effect for different values of the
correlation between cost and effect
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Figure 4
1,000 bootstrap replications of cost and effect differences on the cost-effectiveness plane
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Figure 5
Cost-effectiveness acceptability curve showing the probability that the new intervention is
cost-effective as a function of the ceiling ratio
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