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Abstract

This paper suggests a new and more flexible framework for studying
the existence of rational bubbles in stock prices. The present value model
provides the robust no rational bubbles restriction of a stationary price-
dividend ratio. The validity of this restriction has previously been investi-
gated, but we extend the test procedure to allow for fractionally integrated
alternatives. Thus, the price-dividend ratio may be a stationary process,
where the mean-reversion is at a much slower (persistent) rate than that
of stationary ARMA specifications. This pesistence may be hard to detect
using traditional random walk tests. Indeed, when testing the no rational
bubble restriction on US and Swedish data this distinction is important.
For Sweden we conclude that the price-dividend ratio is ruled by a frac-
tionally integrated process (no rational bubble), whereas it follows a unit
root process for the US (a rational bubble). Using Dickey-Fuller type tests
the unit root hypothesis cannot be rejected for any of the markets.
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1. Introduction

During the last decade the existence or non-existence of rational bubbles in stock
prices has been discussed extensively in the academic literature. The present
value model states that the price of a stock is determined by the expected value
of discounted future dividends. The term ”bubbles” is a general expression for de-
viations from the fundamental price, that is in a rational expectations equilibrium
the stock price equals the fundamental price and a possible "rational” bubble.

Several approaches have been suggested to empirically test for rational bub-
bles. In this paper we follow the line of work initiated by Campbell and Shiller
(1987) who presents a (no rational bubbles) cointegration restriction between
prices and dividends under the assumption of a constant discount factor. As an
extension, Crain (1993) suggests a robust no rational bubbles restriction that al-
lows for a stochastic discount factor. If the discount factor and dividend growth
are stationary stochastic processes, then the fundamental price/dividend ratio is
stationary and hence mean-reverting. Consequently the null hypothesis of rational
bubbles may be investigated by testing for a unit root in the price/dividend ratio.
Using US data and the Dickey-Fuller (1979) test, Crain concludes the possible
existence of rational bubbles.

In the direction of Baillie (1996), this paper suggests a more flexible frame-
work, to analyze the rational bubbles hypothesis by allowing for fractionally inte-
grated alternatives. This flexibility permits fractionally integrated processes that
are mean-revertings in the sense that the effect of a shock dies out at a slower
hyperbolical rate compared to the geometric ARMA decay considered in earlier
studies. We test for a fractional difference using the periodogram regression test
of Geweke and Porter-Hudak (GPII, 1983).

The rational bubbles hypothesis is tested on annual price and dividend data
from the US and Swedish stock market covering the years 1871 to 1997 and
1918 to 1996 respectively. The Dickey-Fuller test cannot reject the unit root
null hypothesis for any of the markets. Furthermore, the GPH test concludes
the possibility of a rational bubble for the US data, whereas, it rejects the unit
root null hypothesis for Sweden and thus suggests a mean-reverting behavior.
Therefore, we find no support for a rational bubble in the Swedish stock market.

The paper unfolds as follows: Chapter 2 presents the theory of rational bubbles
and Chapter 3 the testing procedure. The fourth chapter contains the empirical
investigation and Chapter 5 concludes the paper.



2. A Testable Restriction for Present Value Models

This section gives a brief introduction to the theory of stock prices and derives a
testable restriction of no rational bubbles.

In general, the fundamental value of a stock P can be defined as the expected
value of the sum of the discounted future dividends Dy, ;,j =1, ..., J, accordingly,
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where F is the expectations operator, my; the (possibly stochastic) discount
factor at time t-+k and €2; the information set available to the investor at time ¢. To
assure that only discounted dividends contribute to the transversality condition,
the following relation
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must hold. If stock prices are determined in a rational expectations equilibrium,
the stock price P, is the discounted value of the price plus the next period dividend,
that is

Py = Elmyy { Py +dea b Q] (2.3)

Solving equation (2.3) recursively gives
P, =P+ By,
L.e., the price of the stock at time ¢ is determined by the fundamental value P}

J
and, possibly, a rational bubble, By = E |I] my:Pry ]Qt] For the bubble to be

a viable outcome it is expected to continue to expand in the next period,
B =FE [mt+1Bt+1 ’Qt]

In the light of the fact that the bubble must expand to survive, a decomposi-
tion of the market price into the fundamental price and a bubble is not hard to
justify. However, as Crain (1993) points out, if the fundamental price P} is non-
stationary a robust decomposition is very hard indeed. Moreover, Crain suggests
the following procedure to derive a robust testable restriction under the assump-
tion of no rational bubbles. Divide the fundamental price F; with the current
dividend process gives

2|0 (2.4)



Expression (2.4) then states a very robust restriction for the fundamental price
dividend ratio, which depends on the process for the discounted dividend growth,
Mtk Deyj/Di—14. Note that the ratio P}/ Dy is a real-valued measurable function
of the driving process. Therefore, it follows that if the discounted dividend growth
rate is stationary, so is also P}/ Dy (see e.g. Durret (1996, p.336)). The restriction
does not require a specified discount factor, but merely a stationary discount rate
and a stationary dividend growth rate.

3. Testing

Crain (1993) tests the stationarity restriction (2.4) empirically by performing unit
root tests on price-dividend ratios for aggregate US stock indices. This test can
also been interpreted as a CI(1,1) cointegration test for prices and dividends with
the cointegrating vector preset to (1,-1). Using the Dickey-Fuller (1979) test,
Crain cannot reject the unit root null at the five percent level for any of the series
analyzed. The failure to reject may be an effect of the Dickey-Fuller tests’ quite
low power against fractional alternatives, see Diebold and Rudebusch (1991). Al-
ternatively, as Baillie (1996) indicates, is that a form of CI(1,1-d) fractional cointe-
gration is appearant, that is the equilibrium error follows a fractionally integrated
process, still with the cointegrating vector (1,-1). We investigate that more flex-
ible alternative to the null, namely that the price-dividend ratio is fractionally
integrated.

The idea of fractional integration extends the common ARMA methodology.
Consider the ARMA specification

¢ (B)x, =0(B)ay, (3.1)

where the members of the sequence {a;} are iid with finite variance. The process
is stationary, and thus mean-reverting, if all roots of the autoregressive polyno-
mial ¢ (B) is outside the unit circle. When a process is stationary in the levels,
the process is said to be integrated of order zero (denoted I (0)), and if it is sta-
tionary in the first differences the process is I (1). Instead of using the knife-sharp
distinction between I (0) and I (1) we may consider fractional integration, that
is allowing for non-integer differencing powers. A fractionally integrated ARMA,
ARFIMA', process {x;} is generated by

¢p (B) (1 — B)' 2, =6,(B)ay, (3.2)

where a; again is #d, and d is allowed to assume any real value. Let all roots of
¢, be outside the unit-circle, if d > 0 the process is ruled by long memory. When

IThe properties of the fractionally integrated ARMA model are presented by Granger and
Joyeux (1980) and Hosking (1981).



d < 1, the process is mean-reverting and when d < 0.5, the process is covariance
stationary. Compared to ARMA processes, shocks to an ARFIMA process die
out slowly, i.e. they are persistent.

In this study we test for a fractional difference using the test of Geweke

and Porter-Hudak (GPIH, 1983). The GPII test is based on the following non-

parametric periodogram regression equation:
In {1, (w)} = @ — dIn {dsin® (w;/2) +1;}, j=1,...9(T), (3.3)

where I, (w;) is the periodogram across the harmonic frequencies w; = 275 /7.
If the number of ordinates g (T') is chosen properly, the ordinary least squares

(OLS) estimator of d is consistent and the distribution of (JOLS — d) /SE (JOLS)

asymptotically normal. We use the known variance of 7, that is 72/6, to increase
the efficiency of the test and g (T') =TV, v = 0.5 and 0.9. ¢ (T) = T maximizes
the power of the test, see Table 5.2 in Appendix.

4. Empirical Evidence

This section presents the results of price-dividend ratio unit-root tests on annual
data for the US and Swedish stock markets. The US data, ranging from 1871 to
1997, are the well-known Standard and Poor 500 (S&P500) index. To approximate
movements in the Swedish market we use an index constructed by Frennberg and
Hansson (1992), which includes most of the stocks quoted on the Stockholm Stock
Exchange and covers the period 1918 to 1996. The log of the equity price and
dividend series are shown in Figures 5.1 and 5.2.

Table 5.1 presents the results of unit root tests against stationary autoregres-
sive alternatives. According to the test statistics, the unit root hypothesis can
not be rejected, even at the 10 percent level of significance, no matter of selected
augmentation lag. Therefore, we cannot, using ADF tests, rule out the existence
of a bubble in any of the stock indices.

For the US data, the fractional integration tests, see also Table 5.1, support the
result of the Dickey-Fuller tests and hence we conclude the possibility of a rational
bubble. However, for the Swedish series the unit-root null hypothesis is rejected at
the five percent level. Moreover, also the hypothesis of d = 0 is rejected in favor
of a fractional process. Subsequently, the GPH tests suggest that the Swedish
price-dividends ratio is ruled by a mean-reverting fractionally integrated process.
The hypothesis of a rational bubble, therefore, is not supported in the data.



5. Conclusions

This paper investigated the existence of rational bubbles in stock prices by testing
for a unit root in the price-dividend ratio. If the expected present value model
holds this ratio should, imposing minimal structure, be stationary and failure to
reject the null of a random walk suggests the possible existence of a rational bub-
ble. In contrast to previous studies that assume a stationary ARMA alternative to
the unit root null, our test incorporates fractionally integrated processes. Hence,
we allow for the equilibrium relation between stock prices and dividends to revert,
to its long run mean, at a very slow rate.

Using long annual data series from the US and Swedish stock markets we
cannot rule out the possible existence of a rational bubble using an ordinary unit
root test. However using the more flexible framework proposed in the paper,
we find the Swedish price-dividend ratio to be ruled by a fractionally integrated,
mean reverting, process and thus conclude the non-existence of a rational bubble,
whereas the unit root hypothesis holds still for the US.
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Table 5.1: ADF tests for unit roots.

ADF & = GPI, 4

0 1 2 3 4 6 8 d>0 d<1

S& P500 =277 -267 -205 -221 -225 -199 -2.01 8.31 -0.03
Stockholm -1.88 -257 -1.77 -1.00 -0.93 -0.66 -0.25 7.39 -2.23

For the ADF test, the table reports the t-statistic for p = 0 in the equation
Alog(p/d) = a + Bt + plog(p/d)t—1 + > v log(p/d)t—r + et, k is the augmen-
tation lag and the numbers in bold face are the lag selected by the AIC. GPH test;
the table presents the t-statistic for d=0 vs d>0 and d=1 vs d<1. The periodogram
regressions are based on T ordinates. The critical values are given in Tables 5.3
and 5.4 (Appendix).



Figure 5.1: S&P500 annual stock price and dividend series 1871-1997.
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Figure 5.2: Swedish annual stock price and dividend series 1918-1996.
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Table 5.2: Power of the GPH test.

T =179 T =127
v v

d S0 65 R0 .90 S0 65 R0 .90
.95 6.5 &80 9.0 99 6.3 &80 98 11
.85 8.8 148 221 26.2 11.3 194 32.2 3R8.0
75 13.6  26.0 46.0 52.4 18.0 36.9 653 744
.65 197 415 715 77.6 279 60.1 90.5 94.8
.55 271 588 KR89 92.6 40.7 789 985 99.5
45 345 73.7 969 98.0 5L.2 90.7 999 100
.35 42,9 83.2 99.1 99.6 60.5 95.7 100 100
.25 494 89.5 99.7 99.9 67.3 977 100 100
15 54.3 93.2 999 99.9 71.9 986 100 100
.05 56.6 94.3 100 100 726 98.8 100 100
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Table 5.3: Critical values for the ADF and GPH tests, T=T9.
ADF
level 0 1 2 3 4 6 8
1 -413 -424 -416 -4.20 -4.23 -4.27 -4.29
5 -3.52 -356 -3.53 -3.56 -3.58 -3.59 -3.63
10 -3.21 -323 -3.21 -3.25 -3.23 -3.26 -3.32

GPH
d=0 vs d>0 d=1 vs d«1
1 2.57 -2.68
5 1.82 -1.79
10 1.44 -1.33

The critical values are obtained through 50,000 replicates.
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Table 5.4: Critical values for the ADF and GPH tests, T'=127.
ADF
level 0 1 2 3 4 6 8

1 411 -411 -4.06 -4.17 -4.12 -4.13 -4.10
5 -348 -350 -350 -3.51 -3.50 -3.52 -3.54
10 -3.18 -3.21 -3.19 -3.19 -3.18 -3.20 -3.23

GPH
d=0 vs d>0 d=1 vs d«1
1 2.49 -2.65
5 1.81 -1.80
10 1.43 -1.36

See note to Table 5.3.
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