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Abstract

When testing the null hypothesis of linearity of a univariate time series against
smooth transition autoregression (STAR), standard asymptotic distribution re-
sults do not apply since nuisance parameters in the model are unidentified under
the null hypothesis. The prevailing test of Luukkonen, Saikkonen and Terésvirta
(1988) is based on a linearization, which may adversely affect its power. This
paper discusses an alternative procedure, based on a parametric bootstrap of a
likelihood ratio test statistic, and investigates its size and power properties by
a small simulation study. The results, however, indicate that the power of the
bootstrap test is inferior to that of the existing test.
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1 Introduction

Testing hypotheses about parameters in econometric models when one or more
nuisance parameters are not identified under the null hypothesis requires non-
standard methods, since the standard distribution results for the classical test
statistics (the likelihood ratio, Lagrange multiplier, and Wald tests) do not ap-
ply. The problem arises in many situations in applied work. For instance, when
the null of linearity of a time series is tested against a smooth transition au-
toregressive (STAR) model (or against any one of a number of other nonlinear
alternative specifications) some of the parameters are unidentified under the
null hypothesis.

Among the different solutions to this general statistical problem suggested in
the literature, the method proposed by Terdsvirta (1994) is the most commonly
utilised one in STAR modelling. However, since this test procedure circumvents
the identification problem by an appropriate linearisation (see, e.g., Luukkonen,
Saikkonen and Ter#isvirta (1988) for details) information about the nonlinear
structure under the alternative is lost and the power may be adversely affected.
If so, it might be worthwhile to consider other tests. While this test is based on
standard asymptotic distribution theory, solutions suggested by other authors in
practice rely on computational statistical methods for establishing critical values
for the test statistics. In this spirit, Hansen (1996) developed a technique for
establishing critical values for test statistics derived by Andrews and Ploberger
(1994) but his method is computationally very demanding.

Desirable properties of any competing method include reasonable computa-
tional costs and, above all, at least as good power properties as the linearisation-
based procedure mentioned above. The present paper is a first attempt at inves-
tigating whether bootstrapping a likelihood-ratio test of linearity against STAR
meets these requirements and therefore merits further research.

The rest of the paper is organised as follows: In Section 2 the STAR model
and the linearity test are introduced, the identification problem is discussed,
and some previously suggested general solutions are briefly reviewed. Section
3 describes the bootstrap test and Section 4 the simulation study. Section 5
concludes.

2 Testing linearity against STAR
2.1 The STAR model

A smooth transition autoregression, STAR, model of order p is defined as

yr = 0'wy + (7'we) F (ye—a; v, €) + ur, (1)
where u; ~ nid (O,Ui) , 0= (60,01, ... ,01,)/, T = (mo, T, ... ,7rp)/, and w; =
(L, y—1, ... ,yt_p)’. Model (1) is called a logistic smooth transition autoregres-
sion, LSTAR, model, if the transition function F (y;_q;7,c) is defined as

F(yea;v0) = (1 +exp{—y(@ma—0c}) ' ,7>0 2)
and an exponential, ESTAR, model, if
F(y—a;7,¢) =1 —exp {*’Y(ytfd - 6)2} ;7> 0. 3)



Early discussions of smooth transition (auto)regression models can be found in
Bacon and Watts (1971), Goldfeld and Quandt (1972) and Maddala (1977, p.
396). More recently, STAR models have received attention in both theoreti-
cal and applied work. Terdsvirta (1994) and Eitrheim and Terésvirta (1996)
present a modelling cycle for STAR models inluding testing linearity against
STAR, specifying and estimating a STAR model if linearity is rejected, and
evaluating the estimated model by a number of diagnostic tests. An overview
of the modelling cycle, as well as applications and references, can be found in
Terésvirta (1998).

The first step of the modelling cycle, testing the null hypothesis of linearity
against the proposed nonlinear model, is crucial; clearly, nonlinear modelling
should not be attempted if a linear model is an adequate representation of
the data. However, devising a test of linearity against the STAR model is
complicated by the fact that (1) is not identified under the null hypothesis.
The next subsection describes the problem of hypothesis testing when nuisance
parameters are not identified under the null hypothesis.

2.2 The identification problem

Testing linearity against STAR in (1) with (2) or (3) amounts to testing Hp :
v = 0 against H; : v > 0. However, under the null hypothesis, both 7 and c are
nuisance parameters that can take any value without affecting the likelihood.
Thus the model is identified only under the alternative but not under the null
hypothesis and the standard x? asymptotic theory of the three classical tests
does not hold. The presence of an identification problem is also seen by noticing
the fact that the testing problem could equally well be formulated in terms of
the lag parameters of the 'nonlinear part’ of the model, i.e., testing Hy : 7 = 0
against Hy : m # 0.

The general problem of hypothesis testing when a nuisance parameter vec-
tor, 3, is not identified under the null hypothesis was first discussed by Davies
(1977, 1987), who suggested that a test statistic, S (0), be first derived un-
der the assumption that the nuisance parameter vector is fixed, 8 = 8*. The
actual test statistic is then defined as supg..5 S (8*) (assuming a right-tailed
test). Covering the 'worst case’, this procedure is clearly conservative. The first
econometric application of this idea was Watson and Engle (1981). The asymp-
totic null distribution of the supremum test statistic is not generally known
analytically.

Luukkonen, Saikkonen and Ter#isvirta (1988) and Saikkonen and Luukkonen
(1988) suggested a technique that may be viewed as being similar in spirit to
the solution of Davies (1977). Here, the transition function is replaced by a
Taylor approximation around Hg and the model is reparameterised in order
to obtain an auxiliary linear regression where certain parameters equal zero if
v = 0, thereby circumventing the identification problem. This test has been
used in a number of applied studies (see Teréisvirta (1998) for examples). In a
comparative simulation study in Hansen (1996) the Taylor approximation based
test performed well against a self-exciting threshold autoregression (SETAR)
model.

Andrews and Ploberger (1994) derived optimal versions of the three classical
tests for a situation where one of the nuisance parameters affects the likelihood
only under the alternative hypothesis. However, these average exponential tests



require that the investigator specifies a weight function over the possible val-
ues of the unidentified nuisance parameter. From a Bayesian point of view the
weight function may be seen as a prior, and the tests are asymptotically equiv-
alent to Bayesian posterior odds ratios. Andrews and Ploberger do not discuss
how critical values for the test statistics should be obtained in practice.

Hansen (1996) developed a procedure for computing simulated critical val-
ues for, e.g., the Davies and the Andrews and Ploberger test statistics. If the
nuisance parameter that is not identified under the null belongs to a continuous
parameter space, the investigator in practice has to select a number of discrete
values for the parameter. In every replicate of the simulation a test statistic is
then calculated given each one of these parameter values, and one of the meth-
ods suggested by Davies or Andrews and Ploberger is applied to arrive at a
single test statistic for the replicate. The decision is then based upon the com-
parison of the original test statistic, in the form of a p-value, to the simulated
distribution. The combination of simulating the distribution and the need for
selecting a set of values for the nuisance parameter makes the method compu-
tationally intensive. Furthermore, Hansen (1996) explicitly discussed only the
case where one nuisance parameter is unidentified under the null hypothesis. In
the STAR case, whichever way the test is parameterised, the testing problem
generally involves at least two such parameters. In practice, a generalisation to
more than a single nuisance parameter would considerably increase the already
substantial computational burden. It should also be noted that the power of
the test is dependent on the selected set of values for the nuisance parameter
(or parameters).

Given the statistical problems briefly described above and the increasing in-
terest in simulation-based methods, reflected in part by the works cited above,
it seems natural to consider using a bootstrap procedure to establish the em-
pirical distribution of a linearity test. In the next section a bootstrap test that
should be less computationally intensive than the one described in the previous
paragraph is outlined, and its size and power properties are discussed in the
subsequent section.

3 The bootstrap test

It is possible to construct a parametric bootstrap likelihood ratio test of linear-
ity against STAR. The empirical distribution for the test statistic is established
through resampling from time series generated using the estimates of the param-
eters under the null hypothesis and normally distributed random errors whose
variance equals the estimated residual variance of the model. For a general dis-
cussion of bootstrap tests with examples and applications the reader is referred
to, e.g., Davidson and MacKinnon (1996).

In order to obtain an empirical distribution of the test statistic, model (1) is
assumed to be completely specified under the null and under the alternative, i.e.,
the parameters p (the autoregressive order), the form of the transition function
F (LSTAR (2) or ESTAR (3)), and d (the delay parameter of the transition
function) are assumed to be known and only the values of the parameters in
the vector ¢ = [9', 7., c] /, and 02, are unknown. In practice, neither the form
of the transition function nor the value of the delay parameter d is typically
known and has to be selected using the data. However, before considering the



test in this more complicated situation, its performance in the simplest case has
to be investigated. The sample data set is denoted y = [y1,...,y7r]". The test
procedure consists of the following steps:

1.

10.

Estimate_the model under Hg, i.e. a linear AR model. The estimates are
denoted @ and 52 and the value of the likelihood function is L2

max-*

. Estimate the model under Hy, i.e. the STAR model. The estimates are

~ ~ /
denoted ¢ = [9/, 7,4, é] and 63 The value of the likelihood function is

L .

Compute the value of the LR statistic 7 = —2log (L, 4,/ L az)-

Generate T'g R pseudo random numbers, uy , ~ N (O, &z) t=1,...,Tg,r =
1,...R, T <T.

. Generate R time series of length T’z using the estimated model under Hy,

~/
* * *
Y =0 wi 4+ ug,.

For each time series, 7 = 1,... R, estimate the model under Hy, i.e. a

lincar AR model. The estimates are denoted 6 and 5:721“
of the likelihood function is L3°

rymax”

and the value

For each time series, r = 1,... R, estimate the model under Hy, i.e. the

~ ~ /
STAR model. The estimates are denoted qﬁ: = [9:/, a4k er| and (}:QU

The value of the likelihood function is L*!

Tymax

For each time series, r = 1,... R, compute the value of the LR statistic
T = —2log (L;ﬁgnam ! )

r,mazx

Compute the estimated bootstrap p-value function (see, e.g., Davidson
and MacKinnon, 1996) as the ratio

where # (7) > 7) is the number of times over the R series that 7} > 7,
r=1,...,R.

If p* (7) < «, where « is the selected significance level, the null hypothesis
of linearity is rejected.

Note that Tp < T, i.e. the bootstrap replicate series is shorter than the
original time series. This choice is based on the theoretical considerations in
Bickel, Gotze and van Zwet (1997); asymptotically, Tg/T — 0 as T, T —
00. (See also Rydén, Teréisvirta, and Asbrink (1998) for a discussion and an
application.)

In practice it may happen that the nonlinear least squares estimation of
the STAR model in step 2 or 7 above converges to a local optimum rather
than the global, or simply fails to converge at all. Convergence to a local
optimum due to a flat likelihood function cannot be controlled, but since only
the estimated value of the likelihood function, and not the estimated parameter



vector, enters the test statistic, the effects of a flat likelihood should not be
too severe. If the numerical optimisation frequently fails to converge at all,
however, the results become difficult to interpret. To mitigate this problem,
the optimisation is restarted with a new set of initial values for the parameters
whenever the first attempt fails to converge within a certain limit on computing
time or on the number of iterations. Only if optimisation starting from, say,
three or four different initial parameter vectors fails to yield convergence the
simulation replicate (if the problem appears at step 2) or the bootstrap replicate
(if the problem occurs at step 7) is dropped. In the simulations reported below,
the problems of non-convergence turn out to be very small.

4 Size and power properties

In this section, the power and size properties of the proposed procedure are
illustrated by means of a small Monte Carlo study. Since the nonlinear least
squares estimation of the STAR model in the second and seventh steps of the
test procedure described in the previous section is rather time-consuming, and
given scarce computing resources, only a very limited simulation study has been
possible at this stage, and the results should be regarded as indicative.

4.1 The simulation setup
In the size simulations, the data are generated by
Ye = 1.3ys—1 — 0.5y5—2 + uy (4)

where u; is a pseudo random number, u; ~ nid (0,02), with 0% = 0.0004 or
02 =0.001. In the power simulations, data are generated either by the LSTAR
model

v = 18yi_1 — 1.06yi—2 + (0.02 — 0.9y,_1 + 0.795y,—2) (5)
X (14+exp{—7(yt-1 — 0.02)})71 + ug

where v = 20 or v = 100 (cf Terdsvirta 1994, eq. 4.1-4.2) or by the ESTAR
model

ye = 1.8y;—1 —1.06y; 2+ (0.02 —0.9y; 1 + 0.795y;_2) (6)
X (1 — exp {—’y (ye—1 — 0.02)2}) + uy

with v = 100 or v = 1000 (cf Terésvirta 1994, eq. 4.1 and 4.6). In both
cases, uy ~ nid (0,0%) , with 6% = 0.0004. Two different sample sizes are used,
T = 100 (with Tg = 90) and T" = 500 (with Tp = 450). As noted above,
due to computation time constraints, the simulation study is rather limited in
scope: R = 200 bootstrap replicates are used throughout, and the simulations
are all based on 500 replicates. For comparison, the empirical size and power
of the linearity test of Terdsvirta (1994) have been calculated for the same data
generating processes. In these simulations, however, 10000 replicates were used.
A nominal significance level of a = 0.05 is applied throughout.

The simulation study is programmed in Gauss for Windows (using the Opt-
mum package for all numerical optimisation) and executed on personal comput-
ers. Since the equipment used varies considerably with respect to, e.g., processor



type and speed, no systematic evaluation of the computing time is made, but
run times for one simulation experiment range approximately from 30 hours to
200 hours (on PCs with frequencies between 200 and 350 MHz).

4.2 Simulation results

The results of the simulations are given in Tables 1-4. Tables 1 and 2 indicate
that the bootstrap test is fairly well-sized, making a power simulation meaning-
ful. The Taylor approximation based test is slightly conservative. The empirical
power of the bootstrap test is lower than or equal to that of the Taylor approx-
imation based test in all investigated cases except for the ESTAR model with
the sharper transition where the bootstrap test has better power. On the other
hand, the ESTAR model with the smoother transition is the case that favours
the auxiliary regression based test the most. As v — oo the ESTAR model
approaches a linear model (with probability one) and the ESTAR realisations
become more difficult to distinguish from linear ones since the 'nonlinearity’
involves a very small number of observations in the sample. This is illustrated
by the power results for the ESTAR data generating process with v = 1000;
with a very sharp transition, there is power to be gained by not omitting infor-
mation about the nonlinear structure through linearisation. The problems of
non-convergence seem to be manageable in the present setting.

5 Conclusions

The simulation study of this paper suggests that the bootstrap likelihood ra-
tio test of linearity against STAR has good size properties but is generally
less powerful than the auxiliary regression based test suggested by Luukkonen,
Saikkonen and Teréisvirta (1988). The simulation results concerning the latter
test accord well with previous studies. Thus the simulations do not indicate that
the latter should be abandoned in favour of the bootstrap test. Furthermore, it
should be noted that only testing against a fully known alternative model has
been considered here. The auxiliary regression based test has the advantage
that it is generally powerful against LSTAR and ESTAR simultaneously if the
order of the Taylor expansion is at least two. This property is a useful one in
STAR model building; see, for example, Terdsvirta (1994).

References

Andrews, D. W. K. and W. Ploberger (1994). Optimal tests when a nuisance
parameter is present only under the alternative. Econometrica, 62, 1383-
1414.

Bacon, D. W., and D. G. Watts (1971). Estimating the transition between two
intersecting straight lines. Biometrika, 58, 525-534.

Bickel, P. J., F. Gotze and W. R. van Zwet (1997). Resampling fewer than
n observations: gains, losses, and remedies for losses. Statistica Sinica, 7,
1-31.



Davidson, R. and J. G. MacKinnon (1996). The size distortion of bootstrap tests.
Queen’s University, Institute for Economic Research Discussion Paper No.
936.

Davies, R. B. (1977). Hypothesis testing when a nuisance parameter is present
only under the alternative. Biometrika, 64, 247-254.

Davies, R. B. (1987). Hypothesis testing when a nuisance parameter is present
only under the alternative. Biometrika, 74, 33-44.

Eitrheim, @. and T. Terdsvirta (1996). Testing the adequacy of smooth transi-
tion autoregressive models. Journal of Econometrics, 74, 59-75.

Goldfeld, S. M. and R. Quandt (1972). Nonlinear methods in econometrics.
Amsterdam: North-Holland.

Hansen, B. E. (1996). Inference when a nuisance parameter is not identified
under the null hypothesis. Fconometrica, 64, 413-430.

Luukkonen, R., P. Saikkonen, and T. Terésvirta (1988). Testing linearity against
smooth transition autoregressive models. Biometrika, 75, 491-499.

Maddala, D. S. (1977). Econometrics. New York: McGraw-Hill.

Rydeén, T., T. Teréisvirta, and S. Asbrink (1998). Stylized facts of daily return
series and the hidden Markov model. Journal of Applied Econometrics, 13,
217-244.

Saikkonen, P. and R. Luukkonen (1988). Lagrange multiplier tests for testing
non-linearities in time series models. Scandinavian Journal of Statistics, 15,
55-68.

Teréisvirta, T. (1994). Specification, estimation, and evaluation of smooth transi-
tion autoregressive models. Journal of the American Statistical Association,
89, 208-218.

Terdsvirta, T. (1998). Modeling economic relationships with smooth transition
regressions. In Ullah, A. and D. E. A. Giles (eds.), Handbook of Applied
Economic Statistics, 507-552. New York: Dekker.

Watson, M. W. and R. F. Engle (1985). Testing for regression coefficient stability
with a stationary AR(1) alternative. Review of Economics and Statistics,
67, 341-346.



Table 1. Empirical size for sample size = 100, and numbers of simulation
replicates discarded due to non-convergent estimation (in square brackets)

Data generating process Bootstrap test Approximation
Alternative model Alternative model based test
LSTAR (eq. 5) ESTAR (eq. 6)

AR (eq. 4) o2 =0.0004 0.058 [0] 0.038 0] 0.039
02 =001  0.052]6] 0.052 [6] 0.039

Table 2. Empirical size for sample size = 500, and numbers of simulation
replicates discarded due to non-convergent estimation (in square brackets)

Data generating process Bootstrap test Approximation
Alternative model Alternative model based test
LSTAR (eq. 5) ESTAR (eq. 6)

AR (eq. 4) =0.0004 0.050 [0] 0.056 [0] 0.041

2
(TU
02 =001  0.048[2] 0.054 [11] 0.041

Table 3. Empirical power for sample size = 100

Data generating process Alternative model
LSTAR (eq. 5) ESTAR (eq. 6)
Bootstrap  Approx. Bootstrap  Approx.
test based test test based test
LSTAR (eq. 5) ~v=20 0.328 0.391
v=100 0.848 0.947
ESTAR (eq. 6) ~ =100 0.754 0.907
~ = 1000 0.942 0.873

Table 4. Empirical power for sample size = 500

Data generating process Alternative model
LSTAR (eq. 5) ESTAR (eq. 6)
Bootstrap  Approx. Bootstrap  Approx.
test based test test based test
LSTAR (eq. 5) ~v=20 0.802 0.994
v=100 0.978 1.000
ESTAR (eq. 6) ~ =100 0.996 1.000
~ = 1000 1.000 1.000




