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Abstract

We demonstrate that panel unit root tests can have high power
when a small fraction of the series are stationary and may lack power
when a large fraction is stationary. The acceptance or rejection of the
null is thus not sufficient evidence to conclude that all series have a
unit root or that all are stationary.
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1 Introduction

The univariate Dickey-Fuller (DF) and Augmented Dickey-Fuller (ADF) tests
for stationarity have been extended to panel tests for stationarity under mod-
els with various degrees of heterogeneity by, e.g., Levin and Lin (1992) and
Im, Pesaran and Shin (1997). One main motivation for the development and
application of panel unit root tests is that the power of the tests increase with
an increase in the number of panel series as compared with the well-known
low power of the standard DF and ADF unit root tests against near unit
root alternatives for small samples. The proposed panel tests have found use
in various studies, mainly focusing on tests of the existence of purchasing
power parity. See, e.g., MacDonald (1996), Oh (1996), Wu (1996), Coakley
and Fuertes (1997) and Papell (1997). Other studies include Culver and Pa-
pell (1997) who apply panel unit root tests to the inflation rate, Song and
Wu (1998) investigate hysteresis in unemployment and McCoskey and Selden
(1998) test for units roots in health care expenditure and GDP.

The panel tests differ in the degree of heterogeneity between individuals
that is allowed for under the various approaches. The model considered by
Quah (1994) is the most restrictive and it is assumed that all individuals
in the panel have a common AR parameter and a common intercept. The
model by Levin and Lin (1992, LL) allows for individual specific intercepts,
but retain the assumption of the common AR parameter. The tests proposed
by Quah and LL are based on pooled estimates using least squares and thus
implicitly also assumes a common residual variance for the individuals.

The panel model by Im, Pesaran and Shin (1997, IPS) allows complete
heterogeneity between individuals. In the IPS setup ADF equation is esti-
mated separately for each individual and thus allows for differing parameter
values, residual variance and even different lag lengths. The test statistics
are then the average across individuals of the LM unit root test (LM-bar)
and the usual Dickey-Fuller 7 statistic (t-bar). IPS also advocates studentiz-
ing the statistics to obtain statistics (I';37 and I';) that are asymptotically
distributed as N (0, 1).

One primary motivation for the use of the panel versions of the unit root
tests is that the additional cross-sectional dimension in the panel lead to
better power properties of the panel tests as compared with the low power of
the standard individual-specific ADF test against near unit root alternatives
for small samples.

The null hypothesis in all panel unit root tests is that each series in the
panel contains a unit root, and thus is difference stationary. The alternative
hypothesis is somewhat more ambiguously specified. In the earlier papers
(Quah and LL) the alternative is that all individual series in the panel are



stationary. In IPS, the alternative is that at least one of the individual
series in the panel is stationary. IPS show that the proposed LM-bar test is
consistent if the limiting fraction of stationary series is non-zero as N — oo.
They do, however, not investigate the small sample power of the tests when
only a fraction of the series are stationary. It is also reasonable to expect
the LL tests to have some power against alternatives where a fraction of the
series are stationary:.

The presence or absence of power against alternatives where a subset of
the series are stationary has serious implications for empirical work. If the
tests have high power, a rejection of the unit root null can be driven by a
few stationary series and the whole panel may erroneously be modelled as
stationary. If, on the other hand, the tests have low power it may erroneously
be concluded that the panel contain a common unit root even if a majority
of the series are stationary.

To shed some light on these issues we investigate the small-sample power
properties of the LL and IPS panel unit root LM-bar and t-bar tests by Monte
Carlo simulations. Specifically, the power of the tests are investigated under
data generating processes where the fraction of stationary series in the panel
are varied in the 0 — 100% interval (0% gives the size of the tests whereas a
fraction strictly greater than 0% gives the power of the test).

The paper unfolds as follows: Section 2 gives a brief presentation of the
dynamic panel data models and the panel unit root tests considered in the
paper. Section 3 presents the design and the results of the conducted Monte
Carlo simulations study.

2 The panel tests

2.1 The Levin and Lin tests
The LL model is given by

p
Ayir = p; + Byie—1 + Z oYk Tyt tEn =1, Nyt =1,..T. (1)
k=1

Corresponding to the maintained hypothesis of common dynamics the null
hypothesis and alternative hypothesis are given by

Hy:B3=0,H:53<0.



The fixed-effect model (1) is easily estimated using the within estimator or

the LSDV estimator and the LL test statistic is based on the usual ¢-statistic
5
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LL propose two transformations of the t-statistic ¢z that are asymptoti-
cally normally distributed as N and T" — oc:

1. LL; = v/1.25t5 + v/1.875N = N (0,1) (as vN/T — 0); and
\/NMT
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2. LL, = /125 [tﬁ -

fror =5+ ¢ T2

] = N (0,1), with p; = —1 — 27! and

Note that since pyp = —4 + 0 (T') and pyp = & + o (T)) the two tests LL;
and LLs coincide asymptotically, but in finite samples they will differ.

2.2 The Im, Pesaran and Shin model

The heterogeneous panel data model of IPS is given by

Pi
Ayie = pt; + Biyjiemr + O b p Ay + it +eayi=1,.. Nyt =1,...,T.
k=1
(3)

The maintained hypothesis of common dynamics is relaxed and the relevant
hypotheses are

Due to the heterogeneity each equation is estimated separately by OLS
and the test statistics are obtained as (studentized) averages of the test statis-
tics for each equation.

2.2.1 The t-bar statistic

The IPS t-bar statistic for is simply defined as the average of the individual
Dickey-Fuller 7 statistics as

_ 1
t:NZTi, Ti:/a\'A (4)
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Assuming that the cross-sections are independent, IPS propose to use the
following standardized ¢-bar statistic

o \/N(f—E(Ti’ﬁiZO))
Y Ve =0)

The means F (7;|3; = 0) and variances Var (7;|3; = 0) are obtained from
Monte Carlo simulations. IPS conjecture that the standardized t-bar statistic
['; converge weakly to a standard normal distribution as N and T" — oo.
Hence the panel data unit root inference can be conducted by comparing
the obtained I'; statistic to critical values from the lower tail of the N (0, 1)
distribution.

(5)

2.2.2 The LM-bar statistic

The individual unit root LM-statistic LM, for testing the hypothesis that
B, = 0 for series i is defined as

LM, = ,
Ay M,Ay, (6)

where the projection matrices M; =1 — Q; (Q;Qi)_l Q) and P, = M,y; 1
(yé,,lMiyi,q)_l yi 1M, are T' x T' idempotent matrices of rank 7" — p; — 2
and 1, respectively. Q; = (¢, t,Ay; —1,... ,Ayi_p,), ¢ is a vector of ones, t is
the time trend, Ay; = (Ayi1, Ayia, ..., Ayir) and yi 1 = (Yio, Yits - Yir—1) -

The TIPS LM-bar panel unit root statistic is defined as the average of the
individual LM statistics as

. 1 &
LM:NZLM. (7)

i=1

Assuming that the cross-sections are independent, IPS propose to use the
following standardized LM-bar statistic

VN (LM — E (LM;|3; = 0))
VVar (LM;|8; =0)

E(LM;|B;,=0) and Var (LM;|3; =0) are obtained from Monte Carlo
simulations and IPS conjecture that the standardized LM-bar statistic I'g37
converge weakly to a standard normal distribution as N and 7' — co. Hence
the panel data unit root inference can be conducted by comparing the ob-
tained I'z37 statistic to critical values from the upper tail of the N (0,1)
distribution.

(8)
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For computational reasons the 7; and LM; statistics are computed using
partitioned regression. Let u; be the residuals from a regression of Ay; on
Q; and €; the residuals from a regression of y; _; on Q,. The LM; statistic
is then obtained as LM; = TR?, where R? is the R? from a regression of U;
on €;, and 7; is obtained as the t-statistic for the coefficient on e;.

3 The Simulation Study

The underlying data generating process in the simulations is given by:!
Yir = (1 - pz) + PilYit—1 + Eity = _507 _49a "'7Ta 1= 17 sy N7 (9)

with p; ~ N (0,1), &4 ~ N (0,0%) where 0? ~ U [0.5,1.5]. A subset of the
equations are stationary and the remainder have unit roots. More specifically,
pi=p<1l,1=1... Ny=6Nandp,=117= Ns+1,... ,N. p; and
o? are generated once and then fixed in all replication for a given proportion
0. The 50 initial observations are discarded to remove dependence on initial
observations. The I';5; and I'; statistics are based on the simple Dickey-Fuller
regressions

Ayz’t = a; + biyi,tfl + Eit, t= 1, ,T,Z = 1, ceny N. (10)

We consider all combinations of N € {5, 10, 25, 50, 100, 200}, T €
{5, 10, 25, 50, 100, 200}, and p* € {0.9, 0.7, 0.5} for the proportion of
stationary series 6 € {0.0, 0.1, ..., 1.0}. For each combination of N, T', § and
p® the number of replication are set to 10000.2 The moments needed for the
calculations of the standardized t-bar and LM-bar tests, i.e., E (7;|3; =0),
Var (r;168,=0), E(LM; |3, =0) and Var (LM, |3, = 0), are obtained using
stochastic simulations based on 250000 replicates.

3.1 Results

For the sake of brevity, we only present results for p* = 0.9 and a subset
of sample sizes.®> As seen from the results in Figure 1 and 2 the power
of the panel tests for panels with small time-series dimension (7" = 10) is
fairly low, even as the number of series NV in the panel increases. For panels

IThis is, with the exception that we allow p; to take different values, the same experi-
mental design used for the no serial correlation case in Im, Pesaran and Shin (1997), Table
5.

2Based on this number of replicates 95% confidence intervals of the simulated size and
power of the tests have a maximum length of £1.96,/0.52/10000 = +0.0098.

3The complete set of results can be obtained from the authors upon request.

6



Figure 1: Power of I';57, I';, LL; and LL, tests for p°* = 0.9
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with all series stationary, the power is about 0.10, for N = 10 and about
0.20 — 0.48 for N = 100 and the power is even lower when only a fraction
of the series are stationary. On the other hand, given the cross-sectional
dimension N, the power increase dramatically for all tests as the time-series
dimension increases. For instance, for N = 10, the power increases from
about 0.10 — 0.18 to unity as 7" increase from 10 to 100. The power increase
resulting from increased time-series dimension is even more pronounced for
larger N and already for a fairly small proportion of stationary series in the
panel the power approaches unity as 7' increases.

For commonly encountered panel sizes in empirical applications, such as
panels of OECD countries (N = 25, T' = 50), the power of the tests are fairly



Figure 2: Power of I';57, I';, LL; and LL, tests for p°* = 0.9
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high. Specifically, the power is about 0.40 with 10 stationary series in the
panel and about 0.90 with 20 stationary series.!

From the results it appears that the IPS-tests outperform the L L-tests
for large-T" panels (with 7" > 100). It also appears that the larger the cross-
section, the larger is the power advantage of the IPS-tests. For small-T
panels, the LL-tests exhibit size-distortions. For 7" = 10, N = 10, the LL;-
test is over-sized and LL, is under-sized for 7' = 10 and N > 25. With
T =10 and N > 25, LL; has correct size and is the most powerful test.

Taken together, our main findings are that the power increases monotoni-
cally with: (1) an increased number N of series in the panel; (2) an increased

4The results for p* = 0.7 show a power of near unity for this range of stationary series.



time-series dimension 7" in each individual series; and (3) an increased pro-
portion ¢ of stationary series in the panel. Furthermore, as expected, the
results indicate that, for a given proportion 6 of stationary series in the
panel, the power increase due to an increase in the time-series dimension
is larger than the corresponding increase in N. The not displayed results
for AR parameters p® smaller than 0.9 for the stationary series show that a
larger deviation from a unit root for the stationary series increase the power
of the test.

To conclude, the results imply the following two major implications for
applied work: For large-T" panels, there is potential risk that the whole panel
may erroneously be modelled as stationary. This is due to the high power
of the panel tests for small proportions of stationary series in the panel. For
small-7T" panels, on the other hand, there is a potential risk that the whole
panel may be erroneously modelled as non-stationary, due to the relatively
low power of the tests even for large proportions of stationary series in the
panel. In other words, researchers should be cautious and not impose sta-
tionary or non-stationary homogeneity properties of the panel cross-sections
solely based on panel unit root test results. Instead, a careful joint analysis
of both the individual and the panel unit root test results are called for to
fully assess the stationarity properties of the panel data.
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