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Abstract

Modelling multivariate failure times in a competing risks setting is often
performed by assuming independence between risks. However, by wrongly
assuming independence, seriously biased parameter estimates may result.
The aim of this paper is to evaluate a test for independence previously
proposed in the literature. The test is an information matrix test which
is evaluated by Monte Carlo methods. The basic duration model used in
the simulations is of the mixed proportional hazards type with Weibull
distributed latent failure times.

We find the sampling distribution of the test statistic to deviate from
the anticipated asymptotic one. However, by applying bootstrap methods
it seems that proper critical values can be obtained. Further, the power of
the test is found to be highly asymmetrical with respect to the sign of the
correlation between risks.
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1. Introduction

Duration models are often used in micro economic studies of unemployment spells.
The data usually includes information on different exit destinations which con-
stitute possibly dependent competing risks. Nevertheless, many applied stud-
ies assume independence between such risks, see for instance Han and Hausman
(1990), Narendranathan and Stewart (1993) and Carling et al. (1996). It seems
likely, though, that the assumption of independence stems more often from con-
venience rather than solid knowledge about the true dependence structure. The
consequence of not properly account for the dependence being that heavily bi-
ased parameter estimates may result. However, some studies do explicitly specify
models to capture possible dependence between risks, e.g. Heckman and Walker
(1990) and Van den Berg et al. (1994).

Dependence between competing risks can be modelled in several ways (Hougaard,
1987). One such approach, usually applied by econometricians, is to assume that
only a subset of relevant explanatory variables is observed. The unobserved set
of covariates are in the econometric literature mostly referred to as unobserved
heterogeneity while biometricians more often use the term frailty. Dependence
between risks is introduced by assuming that the unobserved heterogeneity com-
ponents are dependent across risks. Consequently, it is possible to construct a
test for dependence between risks by examine the dependence structure between
unmeasured heterogeneity components.

Lancaster (1990) suggests one such test where the resulting test statistic turns
out to be an Information Matrix Test (IMT) statistic (The IMT test procedure
was developed by White, 1982). The test statistic is a function of generalized
residuals defined in the Cox and Snell (1968, 1971) sense. However, as noted by
Lancaster (1990), the properties of such a test based on generalized residuals is
not well understood.

The aim of this is paper is to evaluates the performance of the test proposed by
Lancaster (1990). Our method for evaluation is based on Monte Carlo simulations.
The basic duration model used in the simulations is of the mixed proportional
hazards type, with cause specific failure times specified as Weibull distributed.

We find that the sampling distribution of the test statistic heavily departs
from the anticipated chi-square distribution. Nevertheless, by applying bootstrap
methods we are able to correct the reference distribution and thereby obtain a test
size close the nominal one. Our main finding is that the test has a highly asym-
metrical power. This is in accordance with a related study in the area performed



by Carling (1996).

The paper is organized as follows. In the next section the duration model is
introduced while the third section presents the IMT and its version applied. The
fourth section present the results from the Monte Carlo study. Finally, the fifth
section closes the paper by a discussion.

2. The Duration Model

The basic duration model used in the simulations is a mixed proportional hazards
model, with latent failure times following the Weibull distribution. Several au-
thors, e.g. Van den Berg et al. (1994) and Carling (1996), have previously applied
the same model. In this paper we focus on two latent failure times, denoted t;
and t,, with associated matrix of observed explanatory variables x. Related to
each latent failure time is an unobserved heterogeneity component, assumed inde-
pendent of x, and symbolized by V; and V5 respectively. V; and V; are introduced
in the duration model as multiplying the hazard function, which imposes a non-
negativity restriction upon them. The cause specific conditional hazard functions
can be written as

htx,v1,01) = ayt$ o e (2.1)
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where 0; = (a;, ﬁi)l i = 1,2 are vectors of unknown parameters. If x includes a
constant term, the mean of V4 and V5 can be normalized to one without loss of
generality as any departures from mean one will be captured by the constant. The
basic assumption is that ¢1|x and ¢5|x are related only through the dependence
structure between V; and V5. The bivariate conditional density of the latent failure
times, ¢; and to, will in the following be denoted f (t1,t2|x, 0, v1,v2). This model
can also be written in the form of a simultaneous regression model as below

arln(ty) = —pf—x"F] —In (V1) + &1, (2.2)
asln (ty) = —fy—x"F5 —In(V3) + &s.

In (2.2) By and [, represent the intercepts in the regression vectors while £; and
g9 are independent Extreme Value distributed errors (Kiefer, 1988). Suppose now



that a researcher specify the following (incorrect) model

arln(ty) = =B —x"0] + €1, (2.3)
aln(ts) = —Fy — X035+

instead of the true model in (2.2). From the representation in (2.2), it can be seen
that this misspecification will introduce random variation into the constant terms.
That is, the true intercepts consists of the random quantities 37, = 5, + In (V1)
and (3, = Oy + In (V2) instead of the 3, and [y. Moreover, if the variation in
B1o and 35, is dependent, the latent failure times will be dependent.

It can be noted that by wrongly basing the specification on (2.3) instead of
(2.2), two kinds of misspecification can occur. First, as each separate cause specific
risk is misspecified, all parameter estimates generally will be biased towards zero
(Lancaster, 1990). Secondly, if the unobservables is dependent, additional bias
will be inflicted upon parameter estimates. The aim of this paper is only to test
for the second type of misspecification. Our general strategy is to wrongly basing
the likelihood on (2.3) and then apply the IMT to test for dependence. Generally
our specification will suffer from the first type of problem, however, the applied
version of the IMT is only intended to detect the second one.

3. The Information Matrix Test

The IMT was first proposed by White (1982) and builds upon a result from stan-
dard likelihood theory, namely the information matrix equality. Loosely speaking,
the equality states that in a correctly specified model the Hessian of the likeli-
hood function and the corresponding outer product of the gradient vector should
asymptotically be equivalent. This is generally not true, however, for a misspeci-
fied model. Following the notation of White (1982), define the following matrices:

82 lOg f t127 t22|xlu )

1 V3
A, (0) = ,
n ; 0006
1 & 0log f (thi, tailxi, 0) Olog f (thi, tailxi, 0)
B, (0) = - ,
n ; 00 00

where n is the sample size and f (£1, t2|x, 0) the relevant density function depend-
ing on the p dimensional parameter vector §. The IMT investigates the statistical



significance of departures from A, (0) + B,, (0) = 0. As A,, (0) + B, (0) is a sym-
metric matrix it has at most ¢ = p(p + 1) /2 unique non-zero elements. These
unique non-zero elements are, by using White’s terminology, called indicators.
The most general form of the test is based on all ¢ indicators, but a more direc-
tional test for misspecification can be obtained if a specific subset is used.

To apply the test correctly it is necessary to check that included indicators are
not identically equal to zero due to the specification of the likelihood. Such an
identity may in some cases be difficult to detect because of algebraic complexity
and/or numerical imprecision. Basing the test on indicators that actually are
zero would mean that the probability of detecting misspecification decreases. Nor
should linearly dependent indicators be used.

The test can be outlined as follows. In the most general form of the test we
would use all ¢ = p(p + 1)/2 indicators and arrange them in the g x 1 vector

1 3 0?log f (ts, tos| x4, 0) N Dlog f (t1;, tas]|xs,0) Olog f (tis, tailxs, 0)
n 2 26,00, a6, a6,

1

n

> " dy (ths, tag]xi, 0)

where r =1,...,q, j = 1,....,p, © = j,...,p. Other matrices to define are the ¢ x p
vector

lzn: tlthz’Xza )
1L i=1
an the p x 1 gradient vector

lialogf t127t22|xlu )
pr— n 0 .

i=1

In a correctly specified model White showed that the asymptotic sampling distri-
bution of \/nD,, (9), where 6 equals any consistent estimate of 6, is multivariate

normal with mean zero and asymptotic covariance matrix V' (#). The asymptotic
covariance matrix, V (6), may be estimated by several consistent estimators. One
such estimator is given by

7 (0) =5 2w @) 0] )

where



Equation (3.1) is the original estimator proposed by White, other versions of the
test are obtained by replacing D,, (5) and A, (5) by other asymptotically equiv-
alent estimators. Using the quantities defined above (and supposing ¢ indicators)
the test is performed by computing the IMT statistic w as

AN\ [~ N —1 A~
o=, (3 [V 6)] " . (3
which has an asymptotic chi-square sampling distribution with ¢ degrees of free-
dom (x7).

As noted above, unobserved heterogeneity can be interpreted as if the inter-
cepts in the regression vectors, incorrectly, has been specified as fixed instead of
random quantities. Moreover, dependence between latent failure times follow if
these random quantities are correlated. Consequently, the indicator of interest
in a test for independence between risks, is based on the cross-derivative term
between the intercepts.

Finally, by noting that only ¢ = min (¢, ¢3) is observed the relevant log likeli-
hood function, in the absence of unobservables, equals

n
InL=3In [(altf‘l‘lexlﬂl)cl (agt?‘lexi%)“‘” e—ti”exlﬂl—t?e%]
i=1

where ¢ = I (t; < t3). The indicator of interest is then calculated as

D, (‘9) -

(3.2)
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which can be shown to have expectation zero in the absence of unobservables.
However, if the specification is contaminated with unobserved heterogeneity the
expectation of (3.1) no longer needs to be zero, unless V; and V5 is independent.

As mentioned above the asymptotic sampling distribution of the IMT statistic,
w, is chi-square with degrees of freedom equal to the number of indicators. How-
ever, several papers have indicated that the IMT may have a size problem as it
tends to reject a true null hypothesis too often, unless the sample size is large. See
Kennan and Neuman (1987); Orme (1987); Chesher and Spady (1988). Horowitz
(1994), suggests the use of bootstrap based critical values instead of asymptotic
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ones as a solution to the small sample size problem. In agreement with the au-
thors above, we also find the IMT test to reject the true null hypothesis too often.
However, this effect seems not to be associated with the small sample problem.
Nevertheless, our solution is, in accordance with Horowitz, to rely on bootstrap
based critical values.

4. Experimental design

As the aim of this paper is to evaluate the performance of the IMT, the focus
naturally is on the size and the power of the test. To judge the power of the
test it is desirable to have a benchmark to which the IMT could be compared.
Furthermore, a comparable test should ideally be of equal generality as the IMT. A
previous study performed by Carling (1996) can be used for this purpose. Carling
(1996) applies the mass-point technique to test for independence between two
latent failure times. His primary target is to study the asymptotic behavior of
the non parametric Maximum Likelihood estimator (Heckman and Singer, 1984).
In addition, he also provides size corrected power estimates which we use as a
benchmark for the IMT. As Carling (1996) is chosen as a benchmark for power
comparisons, the experimental design in this study is made to closely follow the
one used in his paper. However, the studies differ somewhat in the sample sizes
applied.

The data generating process can be described as follows. The matrix of ex-
planatory variables, x, is defined as n x 3 where the first column consists of a
vector of ones. The remaining columns contains two variables drawn from the
bivariate Normal distribution with variance equal to five, mean equal to zero and
the correlation coefficient, p, set equal to 0.3. Referring to (2.2) the heterogene-
ity components W; = In(V;), ¢ = 1,2, are drawn from the bivariate standard
Normal distribution, N (0,1), with correlation coefficient chosen from the set
p* € (—0.6,—0.2,0,0.2,0.6). New heterogeneity components, explanatory vari-
ables and errors, ¢, are generated in each replicate. The parameter vectors are
set to 0; = (al,ﬁm,ﬁn,ﬁm)/ = (1.1,0,0.5,0.5)/ for the first failure time and
to 0y = (aa, By, Ba1, Baz) = (0.9,0,0.8,—0.3) for the second failure time. This
setup yields prob (t; < t3) to be approximately equal to 0.5. By using (2.2) the
latent failure times are generated as t;; = exp ((—x;0; — wi; +&45) /ou), 1 = 1,2,
j =1,..,n. Finally, the observed failure time, ¢, and the censoring indicator, ¢, is
obtained as t = min (¢1,%) and ¢ = I (¢; < t3). The sample sizes considered are
100, 500, 1000 and 2000. The experiments cover all combinations of these sample



sizes and p*. Throughout, the number of replicates used are 1000, except other-
wise stated. Finally, when critical values are obtained by bootstrap methods we
use 500 bootstrap samples from each replicate data set to estimate the 90:th, 95:th
and 99:te percentile of the empirical distribution. Estimates of the percentiles are
obtained by ordering the bootstrap statistics as @Wpoot; < -+ < Whootse, aNd USING
Whootssy s Dhootsrs AN Whootses aS percentile estimates respectively.

The bootstrap samples are generated by first computing residuals in the Cox
and Snell (1968, 1971) sense from the replicate data set in question as

éi; = 1 — exp(—t& %) (4.1)

where i = 1,2 defines each cause specific risk and j = 1, ...,n. By solving (4.1) for
t;; and inserting a resampled residual coming from the relevant cause specific risk
we construct a bootstrap data set. The observed failure time is again obtained
by min (¢1,%;) and the censoring indicator, ¢, is defined in the same manner as
when the replicate data set was created. The basic idea behind this resampling
procedure is that if the latent failure times are dependent, it is mirrored in the
residuals. By randomly pairing resampled residuals from the two cause specific
risk the dependence structure will be eliminated.

Details of the bootstrap method applied are now given. The cause specific
residuals e; and ey, are assumed to be iid random variables having cumulative
distribution functions F; end F, respectively. As we have an incomplete data
set due to censoring the resampling procedure only resample uncensored resid-
uals. The problem here is to assign the proper resampling probabilities to the
uncensored residuals. One possible way to solve this problem is to estimate F}
and F, by F=1- 32-, 1 = 1,2, where S; equals some estimate of the associated
survival function. S; are in this paper obtained by the Nelson-Aalen estimator
(for a discussion of this estimator, see for instance Andersen et al., 1993).

To be able to estimate F; we need to distinguish between complete and cen-
sored observations. In the following we denote each uncensored residual by e,
where each marginal has r; such residuals. It follows that n = r{ 4+ 5. We define

Y; (efj) as the number of observations larger than or equal to €j;, i.e. the size of

! Another possible estimator is the Kaplan-Meier estimator (Kaplan and Meier, 1958). How-
ever, some informal experiments showed that the Nelson-Aalen estimator had a superior perfor-
mance.



the risk set at ef;. F} is based on the Nelson-Aalen estimator and is computed as

Fy(u) =1 — exp —Z# i=1,2 (4.2)
ejj<u Yi (e;kj )

In (4.2) we use the variable u instead of ¢ to emphasize that the time scale has
been changed due to the transformation in (4.1). To each uncensored residual a
resample probability equal to F; (ejj) = F (e;‘j) — F (e;‘j_l) is calculated from
the ordered residuals, 0 < ef} < ... < e€j;_; < ¢€j; < ... < ¢j... In summary our
resample procedure consists of the following steps.

1. For each cause specific risk calculate residuals according to (4.1).

2. For each cause specific risk estimate F; by (4.2).

3. To each uncensored residual attach a resample probability P, (e;‘j).

4. Draw one uncensored residual from each cause specific risk according to the
probabilities given by P; and P,. Denote this first pair of resample residuals
el and e} 5.

5. Repeat step four n times, where n is the required sample size. Finally, hold-
ing x fixed, new latent failure times and the censoring indicator are gener-
ated R as

7("”1*%3)) i=1,24=1,

ti; = exp ...;n. Observed failure times are

(&7

then obtained as t; = min (¢1;,%2;) and ¢; = I (t1; < to ).

For a general discussion of resampling censored data see, e.g. Efron (1981),
Reid (1981) and Akritas (1986).

The computer programs employed in the study are written in GAUSS code
(Gauss, 1992). Maximization is done by the algorithm in Berndt et. al. (1974)
and iterations are terminated when the relative gradients of estimated parameters
are less than 0.0001. Finally, all calculations are performed by means of analytical
expressions.



Table 5.1: Empirical size computed by asymptotic critical values

Empirical size of nominal

Sample size 0.10-level test 0.05-level test 0.01-level test

* — 0
P 100 0.153 0.084 0.019
500 0.159 0.085 0.023
1000 0.218 0.124 0.034
2000 0.821 0.706 0.425
5000 0.992 0.981 0.909
5. Results

We start by evaluating the size properties of the test using asymptotic critical val-
ues. Table (5.1) presents the result obtained by letting the correlation coefficient,
p*, of V; and V5 be equal to zero, that is a true null hypothesis. The number of
replicates for each sample size is 10000. From the table it can be seen that asymp-
totic critical values provide a test size larger than the nominal one for all sample
sizes. Moreover, as the sample size increases, the empirical test size apporaches
one. This is not in lines with previous findings, e.g. Kennan and Neuman (1987);
Orme (1987); Chesher and Spady (1988), which indicates that the IMT test has
a size problem at small or medium sample sizes. On the contrary, in the present
case the size problem of the test gets worse as the sample size increases.

To further check the asymptotic properties of the test, some simulations, not
reported though, were performed without unobservables in the specification. In
these simulations, the test statistic did converge to the correct asymptotic sam-
pling distribution, however, slowly.

Consequently, given that the suggested test statistic is to be maintained, crit-
ical values must be obtained otherwise. A natural and relatively simple way is to
apply bootstrap methods.

To evaluate our suggested bootstrap method we now perform two experiments.
In the first experiment we evaluate the size properties of the test under the null
hypothesis, that is, the case of independence (p* = 0). Table (5.2) present the
results from the first experiment. As can be seen in the table the bootstrap based
critical values seem to provide the correct size of the test. In none of the cases can
it be concluded that the empirical size significantly deviates from the nominal test
size. However, at the sample size 100 there is a slight indication of a less satisfying
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Table 5.2: Empirical size computed by bootstrap-based critical values

Empirical size of nominal

Sample size 0.10-level test 0.05-level test 0.01-level test

* — 0
P 100 0.113 0.069 0.016
200 0.101 0.055 0.011
1000 0.091 0.044 0.011
2000 0.093 0.051 0.009
5000 0.088 0.044 0.015

Note: A test for equivalence between empirical and nominal size
was performed. In none of the cases the test rejected the hypothesis
of equality at the 0.01 level. Statistical significance was determined
using the binomial distribution.

performance. Probably this a consequence of somewhat poorer estimates of F}
and F; due to the small sample size.

The second experiment concerns the power of the test.

In table (5.3) power estimates of all considered sample sizes and correlations
are presented. Due to the heavy computational burden we restrict the sample sizes
to 100, 500, 1000 and 2000 in this experiment. A striking feature is the extremely
asymmetrical power. This effect was also reported by Carling (1996). We agree
with his conclusion that a plausible explanation for this result is that the variance
of min (¢1,¢2) becomes much smaller when the correlation between heterogeneity
components is negative. Surprisingly, though, this asymmetrical effect is reversed
for the smallest sample size 100. Further, comparing the empirical power estimates
in table (5.3) with the ones reported by Carling (1996) we find that for negative
correlations the IMT test provides lower power throughout. Surprisingly, the
power is reduced as the sample size increases.

Turning to the results for positive correlations the IMT test seems to provide
higher power at the sample size 1000 and lower power at the sample size 2000. For
sample sizes below 1000 no comparison is possible as Carling (1996) used 1000 as
the minimum sample size.

6. Discussion

In the present paper we have examined a test of dependence between competing
risks that utilizes the correlation between cause specific residuals. We find that
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Table 5.3: Empirical power computed by bootstrap-based critical values

Empirical power

Sample size 0.10-level test 0.05-level test 0.01-level test

p*=0.6 100 0.246 0.147 0.041
500 0.479 0.340 0.127

1000 0.661 0.505 0.250

2000 0.775 0.664 0.432

pt=0.2 100 0.158 0.081 0.022
500 0.188 0.077 0.021

1000 0.228 0.117 0.031

2000 0.267 0.161 0.044

pt=-0.2 100 0.106 0.052 0.010
500 0.065 0.031 0.005

1000 0.039 0.016 0.005

2000 0.016 0.009 0.002

pt=—-0.6 100 0.336 0.193 0.051
500 0.020 0.011 0.005

1000 0.008 0.005 0.000

2000 0.002 0.000 0.000
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the sample distribution of the test statistic deviates from the anticipated asymp-
totic chi-square distribution. The exact reason for this, however, is unknown.
Nevertheless, by constructing a proper bootstrap method we were able to obtain
a correct test size from the sample. The power of the test was found to be highly
asymmetrical, a phenomenon also found in a related study performed by Carling
(1996). For a positive correlation structure and at the sample sizes 100, 500, and
1000 there is some evidence that the IMT has higher power than the masspoint
technique examined by Carling (1996). On the other hand, at larger sample sizes,
it seems that the test provides a somewhat lower empirical power. A negative cor-
relation structure between latent failure times produced very low empirical power
estimates at all sample sizes applied, with one surprising exception. The power
structure was almost equal for positive and negative correlations at the sample
size 100.

The results from both experiments show that a bootstrap procedure can be
used to obtain a correct test size. The power in the presence of a positive correla-
tion structure between risks is reasonable good, especially at the smallest sample
sizes applied. On the other hand, the power of the test is poor for negative
correlations.
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