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Abstract

This note proposes a tool to investigate and demonstrate the ad-
equacy of the central limit theorem in small samples. The suggested
testing procedure provides a method to investigate if the mean esti-
mator is approximately normally distributed, given data and sample
size at hand. This is important when deciding upon inference proce-
dure, i.e. is parametric inference possible or do we have to settle for
nonparametrics. The procedure is well-suited for teaching in under-
graduate statistics classes.
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1 Introduction

To make statistical inference, several assumptions about the data must be
fulfilled. When performing a test for the mean we often assume that the
sample mean estimator is approximately normally distributed, due to large
enough sample size and the central limit theorem. This note introduces
a procedure to test, given a sample of n observations, if this is the case.
We provide not only a test of the validity of the central limit theorem, the
procedure and its results may be employed to demonstrate the distributional
convergence. Furthermore, the test is very useful in empirical applications
and is well-suited for teaching. The paper unfolds as follows: Section 2
explains the testing procedure and some examples are given in Section 3.



2 The Testing Procedure

The role of the central limit theorem in statistical inference is an impor-
tant one. The central limit theorem states the following; assume that the
stochastic variables X7, ..., X, are independently and identically distributed
with mean p < oo and variance 02 < oo. The distribution of the ratio
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where the random variables X and & are the sample mean and standard
deviation, then approaches a standard normal when the sample size n goes
to infinity. The result of the central limit theorem motivate the use of para-
metric inference, but if the sample is not big enough and the variable is
nonnormal, we must do nonparametrics. For practical purposes however,
the theorem says nothing about the sample size required for approximate
normality.

A test for normality, given a sample on X, may be performed by the
Jarque-Bera statistic

IB=n { (sk:ew)2 N (kurt — 3)2 } 7 )

Z, (1)
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which distribution is tabulated by Bera and Jarque (1981). The test can
not be used on the sample mean since we cannot calculate the skewness and
kurtosis from the only available sample point. There are of course other tests
for normality, e.g. the Kolmogorov-Smirnov test and the y? goodness of fit
test, but they are also not feasible. However, the following procedure may
easily be applied to any normality test.

Our task is to estimate the distribution of a test for normality of the
sample mean. Assume that

X = (21, %2..., Tp)

are realizations of a random sample and let F' denote the empirical distribu-
tion of x. A bootstrap resample x* is then defined to be a random sample
drawn from F , that is the n members of x* are drawn with replacement from
the collection x. We can create a large number, say B, of bootstrap samples
and calculate the statistic of interest (here X ) for each of the resamples.
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Thus, we may retrive B estimates of the sample mean (73, Z3, ..., %), which
in turn allow us to estimate the skewness and kurtosis of X, denoted respec-
tively by sk* (z) and k* (Z). Furthermore, the bootstrap procedure provides
a value of the statistic (2) for the sample mean accordingly,

JB (%) = B{ [Sk*é@ | @ _3]2}.
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For further readings on the bootstrap please consult Efron and Tibshirani
(1993) .

3 An example

In this example we construct three artificial samples of size m = 500. The
first sample is drawn from a standard normal distribution, the second from a
t (5) distribution, having excess kurtosis, and the third sample is generated by
a skewed x? (1) distribution.! For each sample we use the last n observations,
for which we create B = 1000 bootstrap samples and calculate the skewness,
kurtosis and J B statistic. By letting n = 5, ..., 500 we compute the quantities
using different amount of information (sample sizes).

The sample skewness and kurtosis is presented in Figure 1. For normally
distributed data the sample mean is also normally distributed, and subse-
quently the skewness and kurtosis fluctuate about the (expected) values zero
and three. The normality is also supported by the JB statistic, see results
in Figure 2. When the data are symmetric, but exhibit excess kurtosis, the
skewness and kurtosis of the sample mean are also close to zero and three.
Despite a few rejections, the JB statistic indicates normality of the mean
estimator already at small sample sizes. The convergence of the mean to a
normal distribution is much slower if the observations origin from a skewed
distribution. The skewness is inherited by the sample mean and the kurtosis
is (for small samples) notably larger than three. The behavior of the JB
statistic supports the slow convergence and stress the need for large samples
when the true data generating process is skewed.

The results above are known to statisticians, but the procedure provides
a method for the testing and demonstration of one of the most fundamental

LA Fortran program for the excercise is available on request from the author.



assumptions in statistical inference. The procedure is so simple that it can
easily be used in under-graduate statistics classes.
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Figure 1: Estimated skewness and kurtosis of the sample mean.
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The data are N(0,1) distributed.
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The data are t (5) distributed.
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The data are x? (1) distributed.
The figures present the estimated skewness and kurto-
sis of the sample mean. The bootstrap involves 1,000
replicates.




Figure 2: Bootstrap Jarque-Bera normality test statistics for the sample
mean.
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The figure presents the value of the JB statistic associated with
the skewness and kurtosis reported in Figure 1.



