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Abstract

The LM type linearity test for STAR nonlinearities is severely dis-
torted when the process is governed by conditional heteroskedasticity.
In order to correct the test we propose a parametric bootstrap. It is
shown, by means of Monte Carlo methods, that the bootstrap test is
almost exact.
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1 Introduction

A nonlinear behavior of an economic variable is intuitively appealing. For
example, it is plausible that unemployment rates react differently in periods
of contraction and expansion, due to labor market regulations and employ-
ment costs, such as training and advertisement. Similarly, business cycles
may also be argued to exhibit nonlinear features.

The first step in a nonlinear modeling procedure is to test the hypothesis
of linearity. Due to the complexity of the nonlinear world, a specific type
of nonlinearity generally constitutes the alternernative hypothesis. One al-
ternative model family is smooth transition autoregressions (STAR), which
may be regarded as two state autoregressive models with smooth transi-
tions between the states. The modeling procedure is described by Terdsvirta
(1994a).



When testing for a STAR type nonlinearity it is important that the second
moment is correctly specified. For instance, Lundberg and Terisvirta (1998)
demonstrate that conditional heteroskedasticity distorts the test and that a
robustified version of the test statistic suffers from a severe power loss. As
an alternative, we introduce two bootstrap procedures in order to adjust the
critical values. The bootstrap testing approach is expected to be close to
exact, both for independent and heteroskedastic errors, and still have power
against STAR alternatives.

It is demonstrated that the procedure works well if the parametric ap-
proximation of the second moment structure is reasonably close to the true.

The paper is outlined as follows. Section 2 provides a brief introduction
to STAR models and the linearity test, while Section 3 presents the bootstrap
test. A Monte Carlo simulation in Section 4 investigates the properties of
the tests and a concluding section ends the paper.

2 Smooth Transition Autoregression Models

A pth-order smooth transition autoregressive (STAR) model has the general
form

Yr = O + 0w + (¢ + ¢'we) F (7, yias ¢) + ay, (1)
where a; is an iid error process, E(a;) = 0, E(wa;) = 0, Var(a;) = o2,
and where w; = (Y¢—1,... ,¥—p) enters the model with constant parameter
vectors 0 = (01,0s,...,0,) and ¢ = (¢1, Dy - - . ,qﬁp)/. The nonlinearity is
introduced by the transition function F(-). Two common parametrizations
of F' are considered, namely the exponential, yielding an ESTAR model,

F(7,4-a;¢) = 1 = exp {=y(ph-a = ¢)*} , 7> 0 (2)
and the logistic, LSTAR,

B 1
14 exp(—y(%—a — ©))

F(77yt—d7 C) y Y > 0. (3)
The fact that the model is linear when F' = 0 is utilized when performing the
linearity test. Under the null hypothesis, the problem with unidentified pa-
rameters are circumvented using a three-term Taylor expansion of F' around
~v = 0, implying that the test can be performed via the auxiliary regression
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Y = Bo + Bwy + Swey—a + Shweyi g + S5wiyp g + . (4)

The linearity test, proposed by Terisvirta (1994b), corresponds to testing
Hy : 6y = 63 = 63 = 0 in (4), and has power against both LSTAR and
ESTAR alternatives. Thus, the test can not only detect nonlinearity in the
data, but also suggest the type of nonlinearity, see Terisvirta (1994a,b).

3 The Bootstrap Testing Procedure

The bootstrap, described by Efron and Tibshirani (1993), provides a feasible
method for estimation of the small-sample distribution of a statistic. The
basic principle is to approximate this distribution by a bootstrap distribution,
which is retrieved by simulation. If the exercise is bootstrap hypothesis
testing the bootstrap samples must obey the null hypothesis and, as far as
possible, resemble the real sample.

3.1 The Bootstrap Test

Asymptotic theory is only exact if the p-value is independent of the actual
data generating process and sample size, which is usually not the case. A
small sample solution is to replace the p-value by the bootstrap counterpart,
which can be estimated as

i (f) = RS (57> 7). (5)

where R is the number of bootstrap replicates, I (-) the usual zero/one in-
dicator function, f a realized value of the test statistic f based on a sample
y ={v1,..,yr} and f.* the value of the same test statistic, based on the
bootstrap sample y* = {y%, ...,y }.

The theory of bootstrap testing is developed by Davidson and MacKin-
non (1996,1999a). It is shown that if the test statistic is (asymptotically)
pivotal, that is independent of nuisance parameters, the size-distortion re-
finement is of order 7-'/? when using the bootstrap p-value compared to
the corresponding asymptotic. A further refinement, usually also of order
T-1/2 is obtained whenever the test statistic is independent of the bootstrap
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DGP. Moreover, the power of a bootstrap test, based on a pivotal statistic,
is generally close to the size-adjusted asymptotic test. Even if the statistic
is only close to pivotal this is true in most cases.

To achieve an exact test the number of bootstrap replicates must be cho-
sen such that o (R 4 1), where « is the desired level, is an integer. Davidson
and MacKinnon (1999b) demonstrate that a small number of bootstrap repli-
cates imply a loss in power and that at least R = 399 is required to guarantee
a power loss of no more than 1% at the 0.05 level. The size of a bootstrap
test is less sensitive to the number of replicates.

3.2 Construction of the Bootstrap Samples

For the construction of the bootstrap samples we use a model-based ap-
proach, which is natural since a well-defined model constitutes the null hy-
pothesis. The bootstrap B,, which is constructed to preserve ARCH(1)
dependence in the residuals, is conducted as follows:

1. Estimate the AR(p)-ARCH(1) model
(1 — ¢1B — ... ¢po) (.fEt — /,L) = 0, Ay ‘It,1 ~ N (0, Wt) (6)
wi = PBo+ P,

which clearly obeys the null-hypothesis. The autoregressive order p is
determined by the Akaike information criterion (A/C') and the parame-
ters are estimated through maximization of the log-likelihood function.

2. Due to the assumed normality of the disturbances a; in (1), the boot-
strap residuals {a;} are constructed accordingly; let £f be an indepen-
dent draw from a N (0, 1) distribution, then the bootstrap residuals are
computed as

O = Bo+ B

* * [~
a, = &\ Wy

3. The bootstrap samples x7, r = 1, ..., 399, are created recursively by the
equation

T =0+9(B) a4,
where ¢ (B) is the estimated polynomial of (6).
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Of course, the procedure is not limited to ARCH(1) errors, it can easily be
extended to GARCH processes and the lag-orders may be selected from data,
e.g. by some information criterion. The reason for only considering ARCH
processes and a pre-specified lag-order is purely time saving, bootstrap-Monte
Carlo studies are computationally demanding.

For the sake of comparison, a simple bootstrap version, which ignores the
ARCH, is also included. This resampling, denoted Bg, draws residuals a;}
independently direct from a normal distribution with mean zero and variance
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4 Properties of the Tests

The properties, that is the size and power, of the tests are investigated by
means of a Monte Carlo simulation. The study involves 10000 replicates
(series), where each series is tested against STAR using the asymptotic test
and the different bootstrap tests. The rejection frequencies of the nonlinear
null hypothesis are calculated and evaluated.

4.1 Size

The empirical size of the tests are computed for first order autoregressions

Yt :¢yt—1+at7 t= 17"'7T7 (7)

where the serial length T is set to 50, 100 and 200, and the parameter
¢ is selected as {0.0,40.2,+0.6,£0.9}. To reduce the initial value effect
an additional 100 observations are generated and discarded. The errors
are constructed to display independence or conditional heteroskedasticity
of ARCH(1) type. In the independent case, a; is normally distributed with
zero mean and unit variance. The ARCH disturbances are conditionally dis-
tributed as ay—1 ~ N (0,w;), where w, = 02(1 — )+ fa;_; and § < 1. If 02
is set to unity, the parametrization implies that the unconditional variance
of a; equals unity, and the parameter 3 is selected as 0.5 and 0.9.

Table 1 presents the sensitivity, at a nominal five percent level of signif-
icance, of the empirical size with respect to AR parameters when the true
disturbance process is normally distributed. The estimated size is close to
the nominal for the asymptotic test already at sample size 50. Moreover, the
simple bootstrap test Bg is at least as accurate as the asymptotic test and



the routine By, which accounts for (non-existing) ARCH effects, is some-
what conservative. However, as the serial length grows the size approaches
the desired five percent.

The estimated sizes when the error term is conditionally heteroskedastic
are reported in Table 2. The asymptotic test is seriously distorted when
the ARCH effect is governed by # = 0.5, and the empirical size diverge
from the nominal. This behavior is inherited by the simple bootstrap test.
When allowing for ARCH in the resamples, the bootstrap test works very
well in the sense that the empirical size is close to the nominal. All tests
react similarly for generated 8 = 0.9 processes. However the distortion of
the asymptotic and simple bootstrap tests are enhanced and at 7' = 200
they peak at almost 80%. The ARCH bootstrap test is slightly over-sized at
T =50, 6 < & < 7.10, but the distortion is corrected for in larger samples.
For the largest sample the test is close to exact. The results demonstrate
that a correctly specified bootstrap testing procedure works extremely well,
in the sense that its empirical size is close to the nominal.

4.2 Power

The experiment examining the power of the tests covers the specification

yr = 1.8y, 1 — 1.06y; o + (0.02 — 0.9y, 1 + 0.795y; o) F'(7,0.02, 4 1) + ay,
(8)

where the transition function assumes the forms (2) and (3). As Terisvirta
(1994), from whom the specifications are borrowed, we set the v to 20 or 100
for the ESTAR, and to 100 or 1000 for the LSTAR model, and the members
of {a;} are generated as independently and normally distributed with mean
zero and variance 0.0004. Moreover, we also generate disturbances that are
conditionally heteroskedastic, as above, with an unconditional variance of
0.0004. The empirical rejection frequencies, that is the estimated power, is
studied for series of length 7" = 50, 100,200 and 400.

The rejection percentage, i.e. the empirical power of the tests, for gener-
ated STAR processes are reported in Figure 1. Given uncorrelated errors, the
asymptotic test has high estimated power already at small sample sizes. For
the LSTAR specification, the rejection frequencies increase with 7, whereas
the opposite is found for ESTAR processes. This is anticipated considering
the shape of the transition functions. The empirical power of the simple



bootstrap test is close to the asymptotic test, and the ARCH bootstrap ex-
hibit a (often marginally) lower power. This is explained by the conservative
behaviour of the procedure.

When the disturbances are conditionally heteroskedastic we only exam-
ine the power of the ARCH bootstrap, since the other tests are seriously
distorted. The results suggest that the rejection frequencies decrease as the
ARCH parameter 3 becomes larger. However, the test still shows ability to
reject the linearity null hypothesis, at least when there is 400 observations
at hand.

5 Conclusions

The asymptotic test for smooth transition autoregressive nonlinearities ex-
hibit a seriously distorted size, whereas, the concept of bootstrap testing
works extraordinarily well. If the significance level is calculated by a boot-
strap procedure an exact test is almost always the result. However, the
resampling algorithm must incorporate conditional heteroskedasticity when
the true disturbance process in governed by ARCH. When the errors are iid
normally distributed the choice of resampling scheme is not very important.

The simulation results suggest that the bootstrap testing procedure has
power against STAR alternatives, even if the disturbance process is condi-
tionally heteroskedastic.

If prior information, such as theory or test results, suggests that the series
at hand do not have ARCH, the asymptotic test has nice size properities and
highest possible power. Otherwise, the test requires a ARCH preserving
bootstrap.
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Table 1: Rejection percentage of the STAR tests when the data follow an
AR(1) process with normal errors.

¢
Test -0.9 -06 -02 0.0 0.2 0.6 0.9
T =50
Asy 5.41 487 479 4.29 4.21 3.79 5.03
Bg 4.76 476 5.14 5.01 490 4.66 5.34
By 4.00 3.45 3.36 3.23 3.07 3.12 3.91
T =100
Asy 5.39 5.08 4.74 4.31 4.47 3.90 4.54
Bgs 4.81 479 491 465 504 489 4.74
By 4.17 3.45 3.21 3.88 3.86 3.46 3.81
T =200
Asy 504 5.70 521 485 5.18 4.42 461
Bgs 501 4.61 5.01 494 5.05 520 5.15
B 4.47 4.19 3.28 3.43 3.63 4.10 4.43
The number reported is the rejection percentage of the lin-
earity test. Bold face denotes a significant deviation from
the nominal (5%) size, based on the 95% acceptance inter-
val (4.6,5.4). Asy denotes the asymptotic test and Bg and
B4 the bootstrap testing procedures respectively.




Table 2: Rejection percentage of the STAR tests when the data follow an
AR(1) process with ARCH(1) errors.

¢

Test 09 06 02 00 02 0.6 0.9
T =50 B=05

Asy  17.30 22.12 25.24 25.04 25.03 21.06 18.24

Bg 13.69 21.25 26.13 26.05 25.94 22.19  17.45

Ba 508 528 491 516 519  5.07 4.81
T =100

Asy  22.26 31.59 37.09 35.99 36.00 29.99 23.73

Bg 19.79 30.84 36.83 36.56 37.06 31.46 23.00

By 4.47 461 478 452 454  4.36  4.26
T = 200

Asy  29.47 42.23 49.91 48.17 48.12 40.49  30.48

Bg 27.63 41.50 49.42 48.15 48.22 42.20 29.8

By 462 474 456 485 471 447  4.43
T =50 B3=09

Asy  32.35 39.77 45.05 45.47 44.72 41.00 38.00

Bg 25.76 37.96 44.61 45.64 45.25 41.06  32.72

B 6.02 6.19 6.96 6.77 7.08 6.31 6.22
T = 100

Asy ~ 47.83 57.86 63.44 62.23 61.69 56.72 51.45

Bg 40.23 55.47 62.48 62.19 62.02 57.14  46.63

By 504 5.58 5.47 5.59 5.68 5.44 4.95
T = 200

Asy  64.31 73.49 77.66 77.49 76.84 73.67  65.79

Bg 58.04 72.05 76.68 76.91 76.55 73.31  60.34

By 5.33 5.09 4.69 5.02 5.03 4.73 4.99
See note to Table 1. The errors follow an ARCH process with pa-
rameter .
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Figure 1: Rejection percentage of the STAR tests when the data follow an
ESTAR or an LSTAR process.
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The figures report the rejection frequencies for the asymptotic and the bootstrap
tests. The generated disturbances are normally distributed.
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The figures report the rejection frequencies for the ARCH bootstrap test Ba.
The generated disturbances follow an ARCH process with parameter 5.

See note to Figure 1. The data are generated according to equation (8).
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