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Abstract

The price adjustment coefficient model of Amihud and Mendelson
(1987) is shown to be suitable for estimation by the Kalman filter. A
techique that, under some commonly used conditions, is asymptotically
efficient. By Monte Carlo simulations it is shown that both bias and
mean squared error are much smaler compared to the estimator proposed
by Damodaran and Lim (1991) and Damodaran (1993). A test for the
adeqacy of the model is also proposed. Using data from four minor, the
nordic countries except Iceland, and one major, US, stock markets the
results are that the markets under-react to new information, but for most
of the nordic countries, the model is not adequate.
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1 Introduction

The modeling of returns, of a variety of assets, is a growing area of economics.
Most models rely on efficient market, i.e. a market that fully reflects all infor-
mation, there is no transaction costs and so on. In the real world, markets are
not fully efficient and the models are adjusted accordingly. In this paper we
treat the price adjustment model of Amihud and Mendelson (1987), especially
we are interested in estimation and testing the validity of the model. Estimation
is proposed to be carried out by Kalman filter techniques which have advantages
compared to previous estimators (proposed by Damodaran and Lim, 1991, and
Damodaran, 1993), i.e. i) efficient estimation, ii) less assumptions, iii) valid and
easy inference follows, iiii) an estimate of the underlying price is gained. The
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estimators is compared by a Monte Carlo simulation, showing that the Kalman
filter is much more efficient. Further we develope a test-statistic to used to
test if the price adjustment model is a valid approximation of the data gener-
ating process, i.e. the, unknown, process which generates the data and a model
should, as far as possible, mimic.

The proposed estimator and test statistic are exemplified on four minor, the
Nordic except Iceland, and one major, US, monthly stock indexes. The results
are that the price adjustment coefficient are somewhat less than one for all
countries except Denmark which is much lower, although it is only Norway and
Sweden that are not significantly different from one. A more worrying result
is that for Finland, Norway and Sweden the test result indicates that the price
adjustment model is not a valid model.

In what follows, Section 2 discuss the price adjustment model and Section 3
estimation. Tests of the validity of the model is derived in Section 4 while the
empirical example is in Section 5. A conclusion ends the paper

2 Price adjustment coefficients

Let the true price (value) and the observed price be denoted by V; and P;
respectively. The observed returns is Ry = P, — P,_1. It is often assumed
that the true price follows an random walk, V; = V;_1 + v¢;. Then the price
adjustment model of Amihud and Mendelson (1987) is

R, = P-P1=g(V,-P_1)+w (1)
Vi = Vicitu (2)

By the constraint 0 < ¢g; < 2, stationarity of R; is imposed, see Amihud and
Mendelson (1987) or Liu et al (1992). A full adjustment to news is represented
by g1 = 1, although the true price is observed with error. If also 02 = 0, the true
and the observed price coincide, a model often used for testing the random walk
hypothesis. The case g; = 0 gives no adjustment at all. The region 0 < g1 < 1
represents under-reaction and 1 < g; < 2 over-reaction.

If n periods returns is considered, the model is

Rt,n - Pt - Ptfn =0n (‘/t - Ptfn) + Ut n (3)
V:‘, = V;‘,fn + Vt,n (4)

where the relation between g1 and g, is, see Theobald and Yallup (1998),
gn=ngi[1+(n—1)gi]"" ()

From this it is easily seen that g, — 1 when n — oo, i.e. eventually there is
a full adjustment to the underlying price. The components of the variance of
the returns, V (R;), may be given economic interpretations, see Amihud and
Mendelson (1987), Damodaran and Lim (1991) and Damodaran (1993).



3 Estimation

A simple estimator of the price adjustment model of Amihud and Mendelson
(1987) were presented by Damodaran and Lim (1991) and Damodaran (1993).
Later Brisley and Theobald (1996) corrected a minor error. It was assumed that
i) the true price follows an random walk, ii) the noise terms of the underlying
price process and the observed price process is independent, iii) g, — 1 as
n — o0o. As noted above, the third one is not rely an assumption, but merely
an consequence of the model. By taking a closer look at the variance of the n
and the & (> n) period returns and assuming that g, = 1, g,, may be solved for,

2V (Ren) /n+2Cov (Ry s, Ry e—1) /1

V (Ron) Jn+ V (Ror) Jk + 2Cov (Rer, Rip 1) JF (6)

n =

Common choices of k is 5, 10 and 20. Obviously, the need for a choice of k is a
drawback of this estimator. The variance and the covariance are estimated by
the non-overlapping estimators

T/n

V) = ey 3 (Fen — )’ 7)
T/k
Cov (R Rupmr) = =gy 2 (R = ) (Russ = R) - (8)

where R, and R, are the means of n and k periods returns respectively.

Recognizing that (2) and (4) is a state space form, estimation is easily done
with Kalman filter, see Harvey (1989). One of the assumptions of estimation
with Kalman filters is that the disturbances are multivariate normal distributed.
If this is true then the Kalman filter is asymptotic efficient, it achieves the
Cramér-Rao lower bound when the sample size grows to infinity, i.e. no other
estimator could have lower variance, see e.g. Harvey (1989). Even when the nor-
mality conditions fails, some optimality properties still holds, see White (1982).
Other advantages are that an estimate of V; evolves and that u; and vy may be
dependent.

Table 1 in here

In Table 1, a simulation study is displayed. Two sample sizes (T = 500,
1000) are used. When generating data, 7'+ 100 observations are generated
and the first 100 is discarded to gain stationarity of the data. To investigate if
the performance of the estimators are sensitive to g1, a grid of values is used,
g1 = (0.50,0.75,...,1.50). The number of replicates is 1000 and the evalua-
tion criteria are bias and mean squared error (MSE). The program used is
Gauss. The results are that, for the Kalman filter, the bias and M SFE decreases
significantly with ¢; and sample size. For all k considered are bias and MSE
much larger and increase, in absolute value, with k. E.g. consider g; = 1 and



T = 500, the bias of the Kalman filter is 0.03 while for the other estimators it
is 0.14, 1.14 and 12.5 for k£ = 5,10, 20, indeed a large difference.

One reason for the high MSE of the Damodaran estimator is that it is a
function of second order moments, hence the variance is a function of fourth
order moments. This high variability also applies other estimators of this type,
e.g. the variance ratio.

Table 2 in here

The size and power of the t—test of the hypothesis gy = 1 have also been
investigated, see Table 2. The Monte Carlo setup is as above. The test is
oversized but only marginally for the larger sample size. The power increase
with sample size but only slightly and the power is much better for the higher
values of ¢g; than for the lower.

It should be noted that Liu et al (1992) use an ARMA(1,1) model to estimate
g1- Using an ARMA(1,1) would give results close to Kalman filter, depending
on the choice of estimation method. The GMM estimator derived by Séafven-
blad (1997) also suffers from a choice of a truncation parameter k. He reports
results for the GMM estimator that lie between the Kalman filter and the by
Damodaran and Lim (1991) and Damodaran (1993) proposed one.

4 Testing the adequacy of the model

If the Amihud and Mendelson’s (1987) model is correct then the relation in
equation (5) would hold. Testing this with the result that the null is rejected
must be interpreted in the sense that the data generating process for the returns
is not well approximated by this model. It is possible to derive a test using
standard asymptotic theory, see e.g. Casella and Berger (1990) pp. 328-331.
Let the function of interest be

F(@1,90) = gu =g [1+ (n = 1) gu) 7" 9)
A first order Taylor expansion yields

f(gl’g”) = f (glvgn) + f{ (glvgn) (gl - 91)
+f1 (91, 9n) (Gn — gn) + Remainder (10)

where f’ (g1, gn) is the derative of f (g1, gn). Taking expectations, while ignoring
the remainder, gives

Ef(g1,9n) =~ f(91,90)+ Ef{ (91,9n) (91 — g1)
+Ef7IL (glvgn) (gn - gn) (11)
f(g1,9n) (12)



where E denotes the expectations operator. The variance may be approximated
by
V(f(@1.90) = E(f(91,90) — f (91.90))
~ (1 (g1,90) (1 — 91) + f4 (91, 90) (G — 9n))”
= f1(91.90)*V (91) + £}, (91,90) V (3m)
+2£1 (91, 9n) fr, (91, 9n) Cov (41, ) (13)

Substituting in the deratives yields

2
n
V(f(91,9n)) —| V(31)
(1+g1n— 91)2
n
+V (Gn) — 22— Cov (G1, 9n) (14)
(1+gin—g1)?
The test statistic is the usual
f (gla gn)

(15)

" 14 (f (glagn))

which is asymptotically standard Gaussian distributed under the null.
Asymptotic estimates of V (§1) and V (§,) may be gained by estimating

equations (2) and (4). It remains to estimate Cov (g1, §») - By using a bootstrap

approach it is possible to estimate V (§1),V (g») and Cov (g1, G» ) , see Efron and

Tibshirani (1993) for a discussion of bootstrap in general. The bootstrapping

scheme is

1. Estimate equation (2) on the data of length 7.

2. With the parameter estimates from 1, generate B number of time series
of length T.

3. For each of the B time series estimate both (2) and (4) and save §; and
In-

4. Using the B gy and §y,, estimate V (§1),V (g,) and Cov (g1, Gn) -

5. Estimate the test statistic, 2,, using (15) .

6. If the absolute value of 2, is greater than 1.96 (for a test on the 5% level),
reject the null.

A choice of n is needed. A to large number of n reduces the sample size to
much with increased uncertainty of g, as a consequence, so n = 2 is chosen.



5 Empirical example

Data are monthly stock index for Denmark (Cop. SE), Finland (HEX), Norway
(Norway Share Prices/Total index), Sweden (AFGX) and US (S&P500) ranging
from January 1957 to September 1996, i.e. there are 477 observations on each
index. The data source is the database EcoWin. The data is transformed by
first taking the logarithm and then the first difference. As the price adjustment
model does not allow for drift, the returns are mean adjusted. A new price
index series is derived by the cumulative sum of the mean adjusted returns.

Table 3 in here

In Table (3) the results of the empirical analysis are displayed. Bootstrapped
values of V' (1), V (g2) and Cov (g1, §2) are gained by the approach described
above using 500 bootstrap replicates. The bootstrapped values may be seen as
small sample estimates. The asymptotic standard errors do not, for this sample
size and most countries, corresponds well to the small sample. This implies
that for valid inference one should not use the asymptotic standard errors even
for such large samples as in this case. Note that the covariances are relatively
small. For every country, except Norway, the hypothesis g1 = 1 is rejected.
This indicate that the market do not immediately adjust to new information.
A more striking feature is that although the model predicts that go > g1, this
is only true for Denmark. With this result in mind it is not surprising that the
zo test indicates that the price adjustment model is not valid for three out of
the five series investigated, hence, other models should be search for.

6 Conclusion

The price adjustment model of Amihud and Mendelson (1987) has previously
been estimated by inefficient methods. In this paper an efficient estimator is
proposed by using the Kalman filter. A monte Carlo simulation indicates that
the Kalman filter is much better, in terms of bias and M SFE, than previous
methods. Further, a test for the validity of the model is proposed and its
asymptotic distribution is derived. Using data from four minor and one ma-
jor stock market the results are that the market either is not fully efficient or
that the price adjustment model is not a valid model to approximate the data
generating process.
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Table 1: Bias and mean squared error of g;

KE D D D
g k=5 Jk=10 Jrk=20
T ¢ Bias MSE Bias MSE Bias MSE Bias MSE
500 0.50 -0.0319 0.125 0.420 0.379 0.131 2.18  -1.40 32.7
0.75 -0.0491  0.0884 0.127 0.196 -0.0962 1.64 -1.24 21.0
1.00 -0.0190 0.0288 -0.0536 0.138  -0.215 1.14  -1.03 12.5
1.25 -0.00988 0.0101  -0.190 0.127 -0.300 0.757 -0.851 6.95
1.50 -0.00709 0.00413 -0.329 0.166 -0.373 0491 -0.711 3.44
1000 0.50 -0.0482 0.121 0.456 0.297 0.280 1.07  -0.379 10.1
0.75 -0.0226  0.0556 0.158 0.105 0.0187 0.761 -0.484 7.17
1.00 -0.00893 0.0150 -0.0285 0.0613 -0.131 0.543 -0.496  4.68
1.25 -0.00475 0.00544 -0.172 0.0710 -0.240 0.383 -0.491  2.78
1.50 -0.00285 0.00214 -0.318 0.128 -0.333 0.282 -0.490 1.45

Table 2: Size and power fo the test g1 = 1

g1
T 0.50 0.75 1.00 1.25 1.50
500 0.487 0.347 0.0925 0.646 0.991
1000 0.499 0.355 0.0725 0.901 0.998

Table 3: Empirical results using monthlystock price indexes for the period 5701-

9609. index
a1 g2 Cov (g1, G2) 29
Denmark 0.154* 0.324* 0.0146 0.277
(0.0556) (0.115)
[0.152] [0.185]
Finland 0.724* 0.207* 0.00170 —3.38*
(0.0446) (0.0988)
[0.0944] [0.182]
Norway 0.856 0.234* 0.00336 —2.22*
(0.0460) (0.252)
[0.193] [0.295]
Sweden 0.838 0.00969* —0.000809 —-3.23*
(0.0455) (0.0116)
[0.156] [0.261]
Us 0.7215* 0.655* 0.003232 —1.03
(0.0442) (0.262)
[0.0990] [0.178]

Standard errors below, () denotes asymptotic ones and

[| bootstrapped. A * denotes significant result, at the 5%
level, when using bootstrapped values.



