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Abstract

Forecasts from seasonal cointegration models are compared with those
from a standard cointegration model based on first differences and seasonal
dummies. The effects of restricting or not restricting seasonal intercepts in the
seasonal cointegration models are examined as well as the recently proposed
specification and estimation procedure for the annual frequency by Johansen
and Schaumburg (1999). The data generating process used in the Monte Carlo
simulation is based on an empirical six-dimensional macroeconomic data set.
Results show that the seasonal cointegration model improves forecasting accu-
racy, compared with the standard cointegration model, even in small samples
and if short forecast horizons are considered. Furthermore, the specification
suggested by Johansen and Schaumburg seems to work better than the origi-
nal model presented by Lee (1992). An empirical forecasting example confirm
most of the results found in the Monte Carlo study.
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1 Introduction

It is common in applied work to assume an approximately constant seasonal pattern,
modelled by seasonal dummies. Recently the unit root and cointegration analysis at
the zero frequency have been extended to seasonal frequencies. Nonzero frequency
unit roots imply a stochastic or changing seasonal pattern. Assuming a deterministic
seasonal pattern in a multivariate setting, when it is in fact evolving over time, could
lead to inappropriate inference about short and long run dynamics in the system.
These negative effects may be felt strongly when the model is used in forecasting.

Similar to the approach suggested by Johansen (1995) for the zero frequency,
Lee (1992) presents a maximum likelihood estimator for seasonally cointegrating
relations. The seasonal error correction model [SECM], which allows for stochas-
tic seasonality, is however only partially correct when it comes to testing for the
cointegrating rank at the annual frequency. A certain parameter restriction has
been used in the literature to overcome this problem. If this restriction is relaxed
one cannot apply estimation methods based on canonical correlations, as suggested
by Lee.

Johansen and Schaumburg (1999) argue that this is a peculiar restriction as it
constrains all coefficients at the annual frequency. They present another estima-
tion procedure for the parameters corresponding to this frequency and introduce a
general asymptotic theory for the seasonal cointegration model.

Kunst and Franses (1998) argue that deterministic seasonal dummy variables,
which are often included unrestrictedly in the SEC M, should be confined to the sea-
sonal cointegrating relations instead. If cointegration at seasonal frequencies exists,
an inclusion of unrestricted seasonal intercepts then implies a growing amplitude in
the seasonal cycles, which may not be a realistic assumption in most cases.

In the present study, various seasonal cointegration specifications will be con-
trasted to the model suggested by Johansen and Schaumburg (1999) [henceforth
JS]. We have found three studies on forecasting and seasonal cointegration: Kunst
(1993), Reimers (1997) and Kunst and Franses (1998). Kunst (1993) contrasts the
SECM, where an intercept is included and the restriction on the annual frequency is
imposed, to a VECM and also a VAR model in first differences and seasonal dum-
mies. Two examples based on real data and a Monte Carlo experiment show that
the benefits from accounting for seasonal cointegration are quite limited. Reimers
(1997) uses the conventional seasonal cointegration model suggested by Lee, with
another simplifying restriction on the annual frequency and considers a simulated
two variable seasonal cointegration model, with a fixed lag length and no seasonal
intercepts. The SECM is compared to a traditional V ECM in first differences with
seasonal dummies. The main conclusion is that models in first differences produce
smaller forecast errors for short horizons, but when longer forecasting periods are
considered the seasonal cointegration model appears preferable. Kunst and Franses
(1998) investigate the forecasting effects of first deleting then either restricting or
not restricting the seasonal intercepts as discussed above. Using three empirical
data sets and various forecasting periods they show that the suggested restricted
seasonal dummy approach yields better forecasts in most cases.

In the present study a seasonally cointegrated data generating process [DGP] based
on estimation results from empirical data is used. The system is larger than the
simulation studies mentioned above. The forecasting performance of the more gen-
eral specification for the annual frequency, recently proposed by JS is evaluated.
In one part of the analysis the forecasting performance of the various specifications
are compared after selecting lag lengths and estimating the cointegrating rank. The
macroeconomic data sets for Austria, Germany and the United Kingdom, which are
also used in Kunst and Franses (1998), each consists of six variables.

The remainder of this paper is organized as follows. Section 2 presents specifi-



cations of the SEC M, while Section 3 describes the data and the estimation results
for the models to be used as DGP. In Section 4 the Monte Carlo setup is discussed.
A comparison of model forecasts is carried out in Section 5. Section 6 presents
forecast performance when using the empirical data sets. The final section contains
conclusions.

2 Seasonal Cointegration

Lee (1992) suggests a maximum likelihood estimator for seasonal cointegration re-
lations. This procedure extends the maximum likelihood approach, which is sum-
marized in Johansen (1995). Assuming quarterly data and that A4Y; is stationary,
a seasonal V ECM model of the following form is considered:
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where the D; are deterministic components and where &; is i.i.d. N,(0,€). The
process A4Y; above is said to be seasonally cointegrated if and only if at least one
of the aiﬁ; matrices for i = 2,3,4 on the right hand side has reduced, non-zero
rank. The linear filters which in (1) remove all unit roots except those on the zero,
biannual and annual frequencies, respectively are:

Ziy = (L+L?+ L+ LYY,
Zoy = (L—L*+L°- LYY,
Zye = (I* = LYY,

Zyy = (L—L*Y;

These filters are the vector equivalents of the univariate transformations used
in the so called HEGY-test for seasonal unit roots, see Hylleberg et al. (1990)

[HEGY]. If the matrices aiﬁ; have reduced, but non-zero rank this implies that

ﬁ; Z;+ is stationary even though the processes Z;; are nonstationary. Furthermore,
the regressors Z; ; are asymptotically uncorrelated:

T
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implying that the cointegration vectors and adjustment coefficients can be found
by removing the reduced rank restriction on the other frequencies by concentrating
out the associated regressors.

Strictly speaking, model (1) is only partially correct at frequency 7/2. As men-
tioned in the introduction, it is often suggested that one should impose the restric-
tion a4ﬁ; =0, i.e. that Z4+ has no influence on A,Y;. If this restriction is relaxed
one cannot apply the estimation method that uses canonical correlations.

JS, who argue that this is a strong restriction, which is not justified from a
theoretical point of view, refines the theory for seasonal cointegration in the general
case. For quarterly data, where the process A4Y; is assumed to be stationary, they
propose the following error correction model:
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where the processes X ¢, ..., X7+ are:

1
X1 = Zzl,ta
1
Xoy = *ZZQJ,
1
Xpt = ZZS,ta
1
Xy = *1Z4,1,

respectively. It can be seen that the restriction 0445;l = 0 mentioned above would
imply that o Rﬁ/] - IﬁlR = 01in (2), which is a peculiar restriction on the coefficients
at the annual frequency.

The estimation of azﬂ; for © = 1,2 uses canonical correlations in analogy to
the Johansen procedure and hence does not require any detailed explanation here.
However the estimation of G5 and (; is nonstandard.

After regressing A4Y:, X, 7 =1, 2, R, I and & on lagged values of A4Y; and
D, and defining the residuals as Ry, R;; and 7, respectively then removing the
restriction of reduced rank on aiﬁ; for i = 1,2 by regressing Ro; Rr; and Ry, on
Ry: and Ry, it is shown in JS that the resulting residuals (Uge, Ug: and Upy) satisfy
the following equation:

Use = 2(arBr+ arBy)Urs + 2(arf; — arBz)Ur + &,
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asymptotically. Defining the product moments as S;; = (1/T)XL U U ]/»t for 4,5 =
0,1, we have that for fixed values of B the concentrated likelihood function with
respect to & and hence the variance-covariance matrix ¢ take the form, apart from
a constant:
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The maximization of (4) cannot be solved as an eigenvalue problem as in the zero
and biannual frequency cases since 3 itself has complex structure while the product
matrices S11 — 5105&)1 So1 and S11 do not have such a structure. JS use a switching
algorithm proposed by Boswijk (1995) where the maximum likelihood estimator of 3

(4)

is calculated iteratively: Isolate 3 and 3; by using a normalized form (le/ 2Ug =

(7075) of Uy, namely:
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where nggt =&, “d N,(0,1I), and then vectorize (5) by using the formula
vee(alN B,Us) = (Uy, % aN)vee(B;). Since Up, is a vector and hence vee(Ug;) = Uy,
this yields:
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where U = |(Up, ® o) = (Ug 0 o) (U, ® o) + (Up, 0 af)|. By and B,
can now be found from:
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For a given value of B, which is generated randomly in the first iteration, es-
timates of & = (So1B(8 S;;*'B8)™")/2 and Q¢ = Sgo— S018(8 S'B)”")B Sio are
computed. In a second step Uy, is normalized and vectorized as described above,
yielding a new estimate of 3 for which we can compute a new likelihood function.
This procedure is repeated until a suitable convergence criterion is satisfied.

Kunst and Franses (1998) argue that deterministic seasonal dummy variables,
which are often included unrestrictedly in (1) to handle the deterministic part of
seasonality, should be confined to the seasonal cointegrating relations instead. This
is because unrestricted seasonal intercepts in the SECM may lead to diverging

seasonal trends, which is unlikely in most cases. They propose the following model
instead:
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where py, p3 and p, are the restricted seasonal intercepts. We restrict the seasonal
dummy variables in the same way for the JS specification in the section below.

3 Tests for Seasonal Integration and Cointegration

Gross domestic product (Y), private consumption (C), gross fixed investment (I),
goods exports (X), real wages (W) are transformed into natural logarithms. The
real interest rates (R) are given in percentage points. The three data sets are plotted
in appendix A 5-7. The motivation for using these data series is that the neoclassical
growth theory suggests several long-run relations among these variables. The data
set for Austria covers the time period 1964:1 to 1994:4, whereas the time series
for Germany run from 1960:1 to 1988:1 and for the UK from 1957:1 to 1994:1.
Unit roots in the univariate time series are tested using the HEGY-test. The test
procedure investigates whether the seasonal difference (1 — B*), which assumes the
presence of four unit roots, is the appropriate filter compared with other nested
filters.

Results of the tests for seasonal and nonseasonal unit roots appear in Table
3.1. All auxiliary regressions include an intercept (I), seasonal dummies (D) and a
deterministic trend (T), except those for the real interest rates where an exclusion of
the trend seems to be a more appropriate specification. All variables seem to contain
unit roots at the zero frequency, except UK consumption and the real interest rate
in Austria. The results are more mixed at the seasonal frequencies. All roots at
the biannual frequency, except for consumption, are rejected for Austria. On the
other hand we find evidence of four unit roots at this frequency for both Germany
and UK. Turning to the annual frequency we find evidence of three, one and four
stationary variables for Austria, Germany and UK, respectively. Since unit roots are
most frequent in the German data set it is sensible to conclude that cointegration
at all frequencies is most likely to be found there.



Table 3.1. Seasonal integration tests.

Austria Germany UK
Var. | te tmn Frmo | tm te Feon | tm e Faid
Y -1.78  -3.47 181 |-1.52 -2.83 329 | -3.21 -1.38 4.43
C -1.28  -183 314 |-1.21 -145 341 |-3.49 -1.8 3.73
I -2.29 -4.96 9.79 | -2.83 -2.68 6.21 | -2.68 -2.53 13.3
X -1.49 -5.18 48.6 | -0.96 -5.13 39.7 | -1.12 -2.12 6.82
W -1.69 -3.31 258 |-1.18 -162 218 | -2.16 -3.05 19.9
R -3.01 -2.95 7.20 | -2.77 -2.03 473 | -1.94 -5.38 22.3
Lags of A4y and additional regressors ().
Lags I Lags I Lags I
Y | 14 ID,T 1 ID,T 15 ID,T
c | 14 ID,T 1-4 ID,T 1-5 ID,T
I | 12 LD, T 1-3 LD, T 1 LD, T
X - ILD,T ; ILD,T 1-4 ILD,T
wo| 16 ID,T 1-4 ID,T 1 ID,T
R | 13 I.D 1 I.D 1-5 I.D

For the cointegration tests we use the same lag lengths as Kunst and Franses
(1998), indicated by k. The ranks of the matrices azﬂ; (t =1,2) and aB  are
determined using the trace test, where the null hypothesis is: at most r cointegrating
vectors against the alternative of at most r + 1 vectors. Table 3.2 summarizes the
result using the model with unrestricted zero frequency intercept and other seasonal
intercepts restricted. Numbers written in bold indicate significance at the 5% level.
Critical values for the zero frequency are from Table 15.3 in Johansen (1995) and
for the biannual frequency from Tables la-1f in Franses and Kunst (1996). For
the annual frequency we use the critical values from Table 2 in JS. Two long-run
cointegrating vectors are found on the zero frequency for Germany and three for
Austria and the UK. On frequency 7 we find evidence of six vectors for Austria and
identify two cointegrating vectors for Germany. For the UK we find no evidence
of cointegration at frequency m. Finally at frequency /2 three vectors are found
for Austria, two for Germany and one for the UK. Table 3.4 show our results for
the Lee specification with unrestricted seasonal intercepts, while Table 3.5 shows
the results for the same model with restricted seasonal intercepts. Lee and Siklos
(1995) present critical values for the unrestricted seasonal intercepts case, but they
only consider smaller systems. Critical values for Table 3.4 are therefore based on
our own calculations. For the biannual and annual frequencies we consult Tables
la-1f in Franses and Kunst (1999). It can be seen in Table 3.4 that we find evidence
of one more cointegrating vector on the biannual frequency for Germany and the
UK as compared to the results in Table 3.2. For the annual frequency there is some
evidence of a fourth vector in Austria. The conclusions from Table 3.5 are the same
as from Table 3.2. Having chosen the rank for the different frequencies we test
for further reduction of the model. A hypothesis that simplifies the cointegration
analysis on frequency 7/2 is the one implying real structure (Hggar), i.e. 5y =0
in (2). However this hypothesis is strongly rejected (see Table 3.3). Based on these
results, where the biannual frequency for Austria seems to have full rank and no
evidence for cointegrating relationships at the same frequency for the UK are found,
the German data set is used in the Monte Carlo forecasting analysis.
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Table 3.2. Cointegration tests. Restricted seasonal intercepts [JS].

Austria, k=0 Germany, k=0 UK, k=5

p-r 0 T /2 0 T /2 0 T /2
1 161.3 161.4 284.7 | 132.2 1289 287.3 | 140.7 959 218.7
2 88.1 113.1 174.6 68.8 82.7 1753 73.6 582 1342
3 488 73.8 106.1 38.2 40.8 97.8 477 394 74.7
4 22.5 42.7 56.2 17.2 16.8 50.4 25.7 22.7 41.0
5 6.8 209 28.7 8.4 8.6 21.7 8.7 11.3 17.7
6 1.5 9.7 9.4 1.9 4.1 6.7 0.8 3.2 5.8

Table 3.3. Tests for real restriction, 3; = 0.

LRrpar = X*(raje(p — rxs2))
Austria 43.3 Poatue = 0.00
Germany 68.8 Poalue = 0.00
UK 20.6 Pualue = 0.00

Table 3.4. Cointegration tests. Unrestricted seasonal intercepts.

Austria, k=0 Germany, k=0 UK, k=5

p-r 0 T /2 0 T /2 0 T /2
1 161.3 181.0 200.1 | 1322 140.8 1745 | 140.7 104 130.7
2 88.1 116.5 1228 68.8 94.1 95.1 73.6 64.5 71.7
3 48.8 77.2 77.8 38.2 52.3 54.5 477 420 40.6
4 22,5 46.1  40.1 17.2 24.3 29.8 25.7 25.3 22.4
5 6.8 21.0 18.9 8.4 7.9 15.2 8.7 10.5 7.7
6 14 9.7 6.2 1.9 3.2 4.0 08 28 1.7

Table 3.5. Cointegration tests. Restricted seasonal intercepts.

Austria, k=0 Germany, k=0 UK, k=5

p-r 0 T /2 0 T /2 0 T /2
1 161.3 1614 1879 | 132.2 1289 171.2 | 140.7 959 130.2
2 88.1 1131 111.1 68.8 82.7 93.6 73.6 58.2 71.5
3 48.8 73.8 67.2 38.2 40.8 56.8 477 394 40.4
4 22.5 42.7 41.7 17.2 16.8 32.0 25.7  22.7 22.1
5 6.8 209 21.3 8.4 8.6 174 8.7 11.3 7.6
6 1.5 9.7 7.8 1.9 4.1 5.9 0.8 3.2 1.6

The Monte Carlo setup

The data generating processes are based on parameter estimates from the above sea-
sonal cointegration model specifications using the German data set. In a first step
we compare the forecast accuracy for the seasonal cointegration models when sea-
sonality is viewed as being purely stochastic, i.e. only a single intercept is included.
The seasonal cointegration specifications we compare are those of JS (JSA) and Lee
(1992) (LEE), respectively. Both specifications are contrasted with a traditional
VECM in first differences, including seasonal dummies (JD). We also compare
the models when a deterministic seasonal component is introduced. The compared
specifications in this case are the JS specification with restricted seasonal dum-
mies (JSB), the Lee (1992) model with unrestricted seasonal dummies (LEEU D)

and restricted seasonal dummies (LEERD). For the two latter model specifications



we impose the restriction 044,6’; = 0. The forecast errors from the three seasonal
cointegration models in fourth differences are again compared with those from a
cointegrated model (Johansen’s procedure) in first differences with a constant and
three centered seasonal dummies (JD). Series of length T = 100 and T = 200 are
generated from the various DGPs with N (0, 1) serially and mutually uncorrelated
errors. Furthermore, 100 presample observations and 20 postsample observations
are generated. These last 20 observations are saved and used for ex-ante forecasting.
In each case 1000 replications (N) are generated.

In the first part of the analysis we do not test for the proper lag order for the
model specifications. Instead we set k£ = 0 for the seasonal cointegration models
and k = 3 for model in first differences. With this lag structure the zero frequency
is exactly comparable for all model specifications. Moreover, we do not test for the
cointegrating rank at different frequencies in the first part. We consider instead the
cointegrating ranks ro = 1,2, r = 1,2 and 7,5 = 1,2, for the zero, biannual and
annual frequencies, respectively. In the second part of the analysis we choose the
lag order according to the Schwarz Criterion (SBC). We also conduct tests for the
cointegrating rank with relevant critical values for every replication.

The figures reported are computed in the following way. For each model we
calculate squared forecast errors, in levels (as to preserve comparability), for all six
equations. We consider up to 20-step ahead forecasts (only 1-8 step ahead forecast
errors are shown in the figures). We then compute the squared average forecast
error over the equations for each horizon. Finally we compute the average of these
after conducting 1000 replications.

5 Monte Carlo Results

Figures 1 - 4 in the appendix summarize the Monte Carlo study, where we start by
analyzing the forecasting accuracy when the DGPs only include an intercept and the
seasonality is thus generated as being purely stochastic. The two DGPs considered
are JSA and LEFE. These two seasonal cointegration specifications are contrasted
with JD. A comparison of the two seasonal cointegration approaches when rg =
1, rm = 1 and 7/, = 1, summarized in figure 1, indicates that JSA produces
the best forecasts. If the DGP is based on estimates using the JS specification,
LEFE produces even larger forecasts errors than the model in first differences for
short forecast horizons, which is in line with the results found by Reimers (1997).

However, if we consider a DGP based on estimates of aiﬁ; (¢ = 1,2 and 3) using
the original Lee (1992) model, it can be seen that JSA generates exactly the same
system average forecast errors even though the smaller sample size is considered.
This is an indication that the general specification of the annual frequency proposed
by JS may result in a good forecasting behavior even if the 044,6’; = 0 restriction
in (1) is clearly motivated. The case when 7o, 7, and 7./, are set to be equal
to two results in almost the same conclusions (not shown here). However, when
the DGP is based on LEFE estimates of the adjustment- and long-run parameters,
JSA produces slightly larger forecast errors than the DGP based model (LEE),
which is estimated using canonical correlations at each frequency. Even though the
difference is not big it could be an indication that the estimation procedure for the
annual frequency proposed by JS works best if there are few cointegrating relations
to be estimated.

When seasonality is generated as being both deterministic and stochastic we
compare three seasonal cointegration specifications, namely, the Johansen and Schaum-
burg (1999) model with restricted seasonal dummies JSB, the Lee (1992) specifi-
cation with restricted seasonal dummies, proposed by Kunst (1998) and Franses,
LEERD and the unrestricted seasonal dummy model LEEUD. These are again



contrasted with a cointegration model in first differences with deterministic seasonal
dummies JD. The results, summarized in figures 3-4, are comparable with those
mentioned above. The forecast errors generated by JSB are always very close to
those generated by LEERD even though the latter specification is used as DGP.
However, the opposite is not true for any combination of ranks at different frequen-
cies in the DGPs. Again, the two Lee specifications produce larger forecasts errors
than JD for short forecast horizons, especially if the larger sample size is consid-
ered (not shown here). Finally, if the seasonal cointegration model with unrestricted
seasonal intercepts is used as DGP that same model produces larger forecast errors
than JSB and LEERD, which confirms the results of Kunst and Franses (1998).

If we consider the case when the lag order is chosen and tests for the cointegrating
rank are done in every replication we get the same results (not shown here). If
the DGP is based on estimates using the JS specification, LEERD and LEEUD
produces larger forecasts errors compared to JSB and if we consider a DGP based
on estimates of aiﬁ; (¢ = 1,2 and 3) using the original LE'E specification with or
without restricted seasonal intercepts JSB performs almost equally well, even if
the smaller sample size is considered.

We also want to study the forecasting performance of the JS specification if
the hypothesis real structure (Hgrgar), i.e. 8; = 0 at the annual frequency in
(2) is satisfied. Our DGP in this case are the JS specification with real structure
imposed and we consider the case where seasonality is generated as being purely
stochastic and the case when seasonality is generated as being both deterministic
and stochastic. We estimate and make forecasts from models with and without the
restriction imposed and from models where we first test for the restriction and then
make forecasts according to the result. Comparing the forecasting performance for
this three approaches reveal no big differences, but the approach to pretest for the
restriction and then make forecasts seems to outperform the second approach, if
longer forecast horizons are considered and more cointegrating relations are to be
estimated. The first approach, where we just estimate and make forecasts from the
DGP based model gives, not surprisingly, the best results.

6 An Empirical Forecasting Example

In this section we investigate the forecasting performance of some of the models
presented in previous sections, namely JSB, LEERD, LEEUD and JD, using
the empirical data set for Germany, which covers the time period 1960:1 - 1988:1.
We impose the ranks 79 = 2, rr = 2 and r, /2 = 2 for the seasonal cointegration
models and rg = 2 for the model in first differences. Furthermore, we set k£ = 0
for the seasonal cointegration models and k = 3 for JD. All squared forecast errors
correspond to level variables. In the first step we save eight observations and make
ex ante forecasts. In the next step the sample is extended by one quarter, but we do
not reestimate the equations. These extensions of the sample are through 1987:4,
where we generate the last one-step ahead forecast error. Hence there are eight
one-step ahead forecast errors, seven two-step ahead forecast errors and so on. The
eight-step ahead forecasts are then based on a single observation for each equation.
The results are summarized by the RMSE statistic (root mean squared error) for
1, 2, 4 and 8-step ahead forecasts in Table 4.1 below.



Table 4.1. Forecast errors evaluated with RMSE*100.

Horizon: 1 2 4 8 1 2 4 8
JSB LEEUD
Y 1.26 122 144 0.08 Y 1.32 0.93 130 0.34
C 1.15 1.13 092 0.11 C 091 082 086 0.61
I 412 3.09 3.51 7.67 I 3.86 2.66 3.52 6.96
X 2.37 3.12 4.22 4.37 X 2.83 3.13 4.69 5.69
W 1.79 194 188 2.58 W 1.80 1.76 188 3.36
R 1.55 1.76 2.01 1.46 R 1.30 132 1.69 1.97
LEERD JD
Y 1.35 097 1.29 0.14 Y 131 1.79 181 0.02
C 0.86 0.76 0.81 0.15 C 1.22 150 1.31 0.93
I 3.79 273 363 7.53 I 460 450 3.64 4.84
X 273 3.17 467 5.11 X 1.90 253 423 4.95
W 1.75 1.74 1.85 3.30 W 1.92 243 226 247
R 1.27 1.32 1.70 1.60 R 260 273 140 1.60

If we start to compare the three seasonal cointegration specifications the re-
sults in Table 4.1 indicate that JSB is better than LEERD and LEEU D if longer
forecast horizons are considered (the smallest RMSEs generated from the seasonal
cointegration models are indicaded in bold). The results for JSB are worse if we
consider one, two and four-step ahead forecasts where LEERD generates better
forecasts than JSB. Notable are that 20 out of the 24 smallest RMSE statistics
are from the two specifications with restricted seasonal dummies. If a third coin-
tegrating vector is imposed at the biannual frequency in LEFEU D, which we found
evidence for in Section 3, that model behaves better and generate smaller errors
for shorter horizons. When we include the model in first differences (JD) in the
analysis we see that it works better for longer forecast horizons (underlined figures
indicate smaller RMSEs than the seasonal cointegration models). If the whole se-
quence from one to eight-steps ahead forecasts are considered we find that 11 out
the 48 smallest RMSE statistics are generated from the model in first differences
and five of those comes from the goods exports equation. Notable is that the results
of the HEGY-tests indicate no seasonal unit roots for that particular time series,
which may explain why JD generates better forecasts for goods exports. The result
from this empirical part thus seem to confirm most of the results from the Monte
Carlo study.

7 Conclusions

The forecasting performance of the seasonally cointegrated model of Johansen and
Schaumburg (1999) [JS] is compared to related specifications and to a standard
model based on first differences and seasonal dummies. We examine data sets from
Austria, Germany and the UK, each including six variables, i.e. gross domestic
product, private consumption, gross fixed investment, goods exports, real wages
and the real interest rate. Having examined the integration and cointegration prop-
erties for the three data sets we select a data generating processes that is based
on parameter estimates generated from the different seasonal cointegration model
specifications using the German data set. In the first part of the Monte Carlo
study, where lag lengths and cointegrating ranks are set in advance, the general
specification proposed by JS has the best forecasting performance. There is no big
differences in forecasting performance between that specification and the specifica-
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tion proposed by Lee (1992) even if the a4ﬁ; = 0 restriction is valid i.e. the latter
model is used as DGP. In some cases The JS specification actually performs equally
well. In the second part of the analysis, lag order selection and testing procedures for
cointegrating rank are included in each replication and the results are quite similar.
In short, these results show that different seasonal cointegration specifications do
improve the forecasting accuracy compared with the standard cointegration model,
also in small samples and if short forecast horizons are considered. Furthermore,
the model suggested by JS seems to work better than the original model presented
by Lee (1992). We also study the forecasting performance of the JS specification if
the hypothesis of a real structure (Hggar), i.e. 8; = 0 at the annual frequencies
is satisfied. We estimate and make forecasts from models with and without the
restriction imposed and from models where we pretest for the restriction and then
make forecasts according to the result. Comparing the forecasting performance for
these three approaches reveals no big differences, but the approach to first test for
the restriction and then make forecasts seems to outperform the second approach,
if longer forecast horizons are considered and more cointegrating relations are to be
estimated. In the final section we investigate the forecasting performance using the
empirical data set of Germany. A comparison of the three seasonal cointegration
specifications indicate that JSB is better than LEFRD and LEEUD if longer
forecast horizons are considered. However, for one, two and four-step ahead fore-
casts LEERD generates better forecasts than JSB. The model in first differences
generate larger forecast errors as compared to the seasonal cointegration models as
a whole in most cases, except for goods exports. A possible explanation for this
could be that this particular time series do not seem to contain any seasonal unit
roots, according to the HEGY-test.
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A Figures
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(a) Rank=1 at all frequencies, T=100.
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(b) Rank=1 at all frequencies, T=100.

Figure 1: Mean squered errors (in levels) over replicates and variables for k steps
ahead forecasts. DGP based on estimates using (a) JSA specification and (b) Lee
specification.
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(a) Rank=1 at all frequencies, T=100.

(b) Rank=2 at all frequencies, T=100.

Figure 2: Mean squered errors (in levels) over replicates and variables for k steps
ahead forecasts. DGP based on estimates using the JSB specification.
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(a) Rank=1 at all frequencies, T=100.

(b) Rank=2 at all frequencies, T=100.

Figure 3: Mean squered errors (in levels) over replicates and variables for k steps
ahead forecsats. DGP based on estimates using the LEERD specification.

15



(a) Rank=1 at all frequencies, T=100.

(b) Rank=2 at all frequencies, T=100.

Figure 4: Mean squered errors (in levels) over replicates and variables for k steps
ahead forecasts. DGP based on estimates using the LEEUD specification.
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Figure 5: Austrian data, 1964:1-1994:4.

17



5

]
1959

1984

1989 1974 1979 1984

1989

(a) Gross domestic product

24
1959

1984

1989 1974 978 1984

(¢) Gross fixed investment

1989

1959

1964

1989 1974 1979 1984

(e) Wages

Figure 6:

‘989

58

54

52

50

a8

4B

a4
1959

1984 1969 1974 1873 ‘984

(b) Private consumption

1989

50

a8

48

a4

42

a0

020

5

0

-0.00

-0.08

-010

-015

a2
1959

984 1969 1974 wrg 984

(d) Goods exports

1989

1959

1964 1969 1974 1973 984

(f) Real interest rate

German data, 1960:1-1988:1.

18

1989



120

e

ns

na

n2

n

108
1955 1960

104

102

100

98

96

94

92

1985

1970 1975 1980 1985 1990 1995

a) Gross domestic product

a0
955 1960

4

ne

n

w8

108

1955

970 1975 198D 985 1990 1995

(¢) Gross fixed investment

04
1955 1960

1985

1970 1975 1980 1985 1990 1995

(e) Wages

8

na

2

o

08

108

0.4

2

103
1955 1950 1965 1970 1975 1980 1985

1930

(b) Private consumption

1995

04

100

98

84
1955 1960 1985 1970 975 9B0 1965

018

e

-0.04

-0.08

-012

-018

(d) Goods exports

1990

1995

-0:20
1955 1960 1965 1970 1975 1980 1985

(f) Real interest rate

Figure 7: UK data, 1957:1-1994:1.

19

880

1995



