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Abstract

We consider interest rate models of Heath-Jarrow-Morton type, where
the forward rates are driven by a multidimensional Wiener process, and
where he volatility is allowed to be an arbitrary smooth functional of
the present forward rate curve. Using ideas from differential geometry as
well as from systems and control theory, we investigate when the forward
rate process can be realized by a finite dimensional Markovian state space
model, and we give general necessary and sufficient conditions, in terms of
the volatility structure, for the existence of a finite dimensional realization.
A number of concrete applications are given, and most previously known
realization results for time homogenous Wiener driven models are included
and extended. As a special case we give a general and easily applicable
necessary and sufficient condition for when the induced short rate is a
Markov process. In particular we show that the only forward rate models,
with short rate dependent volatility structures, which generically give rise
to a Markovian short rate are the affine ones. These models are thus the
only generic short rate models from a forward rate point of view.
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1 Introduction

The purpose of the present paper is to investigate when and how a given, a priori
infinite dimensional, forward rate model can be realized by a finite dimensional
state space model in the form of a nonlinear diffusion. In particular we are
interested in minimal realizations, i.e. realizations having a minimal dimension.

For the case of a deterministic volatility structure (which gives rise to linear
forward rate dynamics) the realization problem has been completely solved in
[3]. The nonlinear realization problem has so far only been studied for special
cases and the typical results are in terms of sufficient conditions for the existence
of a finite dimensional realization (henceforth denoted FDR).

Most papers consider some version of a multiplicative volatility structure. Such
a volatility structure, which we below refer to as a “deterministic direction
volatility”, has been studied in [1], [23], and [17]. The typical assumption is
that volatilitites only depends on the short rate. In the recent preprint [9],
which is a massive extension of [1], there are several new results on Markovian
subsystems for an interesting class of time varying forward rate models where
the volatility structure is allowed to depend upon a finite number of benchmark
forward rates.

A classic paper on Markovian short rates is [8], where a deterministic volatility
is considered. See also [13] for a similar case with a driving Levy process. The
deepest study of short rate realizations so far is [19].

The present paper, in contrast to previous work in the field, is a study of the
general nonlinear realization problem. More precisely:

e The forward rate volatilities are allowed to general smooth functionals of
the present forward rate curve.

e In this general setting we obtain necessary and sufficient conditions for
the existence of an FDR.

We are thus able to give a complete solution to the general FDR problem and,
apart from [9] where the setup is lightly different, all earlier results are included
and extended.

The methodology is roughly as follows: Our problem turns out to be closely con-
nected to certain geometric properties of the forward rate process. In a previous
paper [2], it is investigated when the forward rate curve for a given (nonlinear)
forward rate model actually evolves on a given finite dimensional submanifold in
the forward curve space. Such a submanifold is thus invariant under the action
of the forward rate process, and in [2] it is shown that there exists a FDR if and
only if there exists an invariant finite dimensional submanifold passing through
each point in the space of forward rate curves. In the present work we use
results from [2], together with ideas from differential geometry as well as from



systems and control theory to give general necessary and sufficient conditions,
in terms of the volatility structure, for the existence of an FDR.

The structure of the paper is as follows. In Section 2 we give the necessary
mathematical background. In particular we give a self-contained proof of an in-
finite dimensional version of the Frobenius Theorem on involutive distributions,
which is the key result for our entire theory. In Section 3 we solve the realization
problem for a general SDE evolving in Hilbert space, and we also provide an
explicit characterization of the minimal invariant manifold generated by such
an SDE.

The applications to finance starts in Section 4, where we construct a suitable
Hilbert space of forward rate curves to work in, and apply our general realization
results to the forward rate equation. The main result of the paper is Theorem
4.1, which says that the forward rate model has a finite dimensional realization
if and only if the Lie algebra generated by the drift and the volatility of the
forward rate equation is finite dimensional.

The rest of the paper is devoted to applications of the main theorem, and in
Section 5 we study the case of a deterministic volatility structure. The more
interesting case of a multiplicative volatility is studied, in some detail, in Section
6 where we include and extend almost all previously known results in the field.
We end the paper with a study of short rate Markovian realizations in Section
7. The most important result here is Theorem 7.1 which provides a very simple
necessary and sufficient condition for when the short rate is Markovian. As an
application of this result we rederive, in Theorem 7.2, a remarkable result from
[19] which shows that the only forward rate models, with short rate dependent
volatility structures, which generically give rise to a Markovian short rate are
the affine ones. These models are thus the only generic short rate models from
a forward rate point of view.

The geometric ideas presented below are intimately connected to controllability
problems in systems theory, where they have been used extensively (see [18]).
They have also been used in filtering theory, where the problem is to find a
finite dimensional realization of the unnormalized conditional density process,
the evolution of which is given by the Zakai equation. A very good account of
these ideas can be found in [7]. For general background on interest rate theory
see [4].

2 Mathematical Background and the Frobenius
Theorem

In this section we give the necessary (and sufficient) background on infinite
dimensional differential geometry. In the context of interest rate theory below,
we will only be working in a Hilbert space setting, but the results are just as
easy to prove in Banach space.



Let us thus consider a real Banach space X. By an n-dimensional distribution,
we mean a mapping F, which to each x in an open subset V of X associates
an n-dimensional subspace F(x) C X. A mapping (vector field) f : U — X,
where U is an open subset of X, is said to lie in F (on U), if U C V and
f(z) € F(x) for every x € U. A collection fi,... fy of vector fields lying in F'
on U generate (or span) F on U if span { f1(z),... fo(z)} = F(z) for every z
in U, where span denotes the linear hull over the real field. The distribution is
smooth if, to every z in V, there exist an open set U such that z € U (| V, and
smooth vector fields fi,... f, spanning F on U. If F and G are distributions
and G(z) C F(z) for all  we say that F' contains G, and we write G C F.
The dimension of a distribution F' is defined pointwise as dimF(x).

Remark 2.1 The prefix smooth above is interpreted as C°°. Note, however,
that in many situations below we only need C* for some k which depends upon
the particular context.

Let f and g be smooth vector fields on U. Their Lie bracket is the vector field
[, 9] (z) = f(2)g(x) — g'(2) f (2),

where f’(z) denotes the Frechet derivative of f at x, and similarly for g. For
clarity we will sometimes write f'(x)[g(z)] instead of f/(z)g(x) A distribution
F is called involutive if, for every smooth f and g lying in F' on U, their Lie
bracket also lies in F, i.e.

[f,9](z) € F(z), Va€U.

Let the distribution F' be as above, and let ¢ : V. — W be a diffeomorphism
between the open subsets V and W of X. Then we can define a new distribution
pF on W by

(e F) (p(x)) = ¢ () F(2).
Similarly, for any smooth vector field f € C* (U, X), we define the field ¢, f by

. f = (¢ 0o¢™") (f op™!). By a straightforward calculation one verifies easily
that

Ox [f, 9] = [pxfrpug] -

From this we conclude that if F'is generated by fi,..., f,, then ¢, F' is generated
by ©s f1,-- -, @« fn, and we see that F' is involutive if and only if o, F'is involutive.

The main result of this section is the following infinite dimensional extension
of the standard Frobenius Theorem. For our purposes we need a particular
formulation of the theorem and, since this was not immediately available in the
literature (see e.g. [20]), we also provide a self contained proof.

Theorem 2.1 (Frobenius) Let F' be a smooth distribution on the open set V
in the Banach space X. Let furthermore x be an arbitrary point in V. Then
there exists a diffeomorphism ¢ : U — X on some neighborhood U C V of x,
such that ¢, F is constant on o(U) if and only if F is involutive.



Proof. The only if part is obvious from the remarks above. Let us thus assume
that F'is involutive. We proceed by induction on n. For n = 1 the result follows
basically from the existence theorem for ordinary differential equations, and a
sketch of this part of the proof is as follows.

Without loss of generality (WLOG) we may assume that the origin is in V, i.e.
that 0 € V. Define the vector e by e = f(0), and write X as the direct sum
X = Re+ Y. Note that, since Re is finite dimensional, it is complemented, so
the space Y always exists. Now consider the equation

t
¢<te+y>:y+/0 fh(set+y))ds, teR, yeY.

Using a standard contraction argument, it can be shown that, for some neigh-
borhood U of 0 € X, there exists a unique continuous solution 1 of this equation
with ¢ : U — U. To prove smoothness (i.e. C*°) of ¥ is harder, but it can be
done, see e.g. [20]. From the equation above we have ¢’(te+y)e = f (¢¥(te + y)).
We also note that ¢(y) = y and that ¢/(0)(te +y) = ¢tf(0) + y = te +y where
the last equality follows from the formula

|

U(te +y) y+/f 0) + O(se+y))ds

= y+tf(0)+o(te+y)=y+te+o(te+y).

Thus 9’(0) is the identity mapping, and the inverse function theorem provides
us with a local inverse ¢ = ¢~1. Now let # = ¢¥(te+y), i.e. ¢(z) =te+y. Then
we have (. f) (te +y) = ¢'(2)f(2). But ¢'(te + y)e = f(d(te +y)) = f(2),
so (¢ f) (te +y) = ¢’ (Y(te +y)) Y (te + y)e = (po) (te + y)e = e. Thus
p.f = e is a constant vector field.

For the induction step, consider an n with n > 1 and suppose that the theorem
holds for every m-dimensional distribution whenever m < n. We may again
WLOG assume that the origin is in V, i.e. that 0 € V. Assume furthermore
that f1,... f, generate F in V. Put e; = f;(0); i =1,...,n and choose a closed
subspace Z of X such that

X =Rei1+...+ Re, + Z,
and
(Re1+ ...+ Re,)NZ =0.

Such a subspace always exists, since Rej + ...+ Re,, is finite dimensional, and
every finite dimensional subspace in a Banach space can be complemented. We
now define the subspace Y by

Y =Res+...4+ Re, + Z.

Since the theorem holds for n = 1 we may (modulo a diffeomorphism) assume
that f; = e;. By applying Gauss elimination we also see that we may WLOG
assume that

f]:e]+gj7 j:27"'7n7



where g; € C(V, Z).

Since F was assumed to be involutive, there exist scalar fields aj, € C*°(V, R)
such that [f1, fj] = D r_, ajrfr for j =2,...,n. Hence

fu.fil = fifi— fifi=0—djex

= ji1€1 +...+ Qjnn + Q5202 +...+ Qjndn.

Now, g% : V. — L(X,Z) (where L(X,Z) denotes the space of bounded linear
maps), so gte; € Z, from which it follows that for j = 2,...,n we have a;; =
... = ayn = 0. Hence gie; =0, so for j =2,---,n we have g;(tie; +y) = g;(v)
for every t;1 € R and y € Y. Thus the restrictions of fs,..., f; to Y generates
an (n — 1)-dimensional distribution Fy which obviously also is smooth and
involutive. From our induction hypethesis there will thus exist a diffeomorphism
py, defined near 0 € Y, such that ¢y, Fy is constant. Let ¢ be the extension
of py, defined by

o(tier +y) =tier + oy (y).

Clearly ¢ is a diffeomorphism around 0 € X such that ¢, F' is constant near

©(0). B

We will use the Frobenius theorem in order to prove existence of so called
tangential manifolds.

Definition 2.1 Let F' be a smooth distribution, and let xg be a fived point in
X. A submanifold G C X with xg € G is called a tangential manifold through
x for F, if F(x) C Tg(z) for each x in a neighborhood of xy in G. Here Tg(x)

denotes the tangent space to G at x.

Remark 2.2 We note that the definition of a tangential manifold (the concept
seems to be new) is similar to the definition of an integral manifold, but that for
an integral manifold we have the inclusion Tg(z) C F(z). Just as one typically is
looking for maximal integral manifolds, we will be looking for minimal tangential
manifolds.

We now have the following result which we will use below.

Theorem 2.2 Let F be an n-dimensional distribution, and let g be a fized
point in X . There exists an n-dimensional tangential manifold through x for all
x in a neighborhood of xg if and only if F' is involutive.

Proof. Assume that F is involutive. Then the Frobenius Theorem provides us
with smooth vector fields f1, ..., f, spanning F', and a local diffeomorphism such
that the fields ¢, f1, ... @s fn are constant. Denoting ¢, f; by e; we see that for



every x near g, the plane P, = ¢(x)+ Rej +. ..+ Re, is an tangential manifold
for the distribution ¢, F, passing through ¢(z). The pull-back ¢! (P,) of this
plane is then an tangential manifold for F' passing through x. The proof of the
other implication is easy and the finite dimensional argument goes through (see

e.g. [24]). 1

Suppose now that we are given an n-dimensional involutive distribution F' and
a point g € X. From the result above we know that there exists a tangential
manifold for F' passing through xg, and a natural question is if it possible to
parameterize this manifold in some constructive way. This is in fact possible
but we need some new notation.

Definition 2.2 Let f be a smooth vector field on X, and let x be a fixed point
in X. Consider the ODE

dx
d_tt = f(‘rt)a
rg = @.

We denote the solution z; as x; = eltx.

We have thus defined a group of operators {e/? : t € R}, and we note that the
set {e/tz 1t € R} C X is nothing else than the integral curve of the vector field
f, with initial point x, i.e. the curve obtained by starting at x and then “gluing
together infinitesimally small pieces” of the vector field f.

Proposition 2.1 Take as given an n-dimensional involutive distribution spanned
by f1,..., fn, and a point xy € X. Denote the tangential manifold through x¢
by G. Define the mapping G : R — X by

G(z1,...2n) = elnon | el171gg,

Then G is a local parameterization of G in the sense that there exist open neigh-
borhoods U C R™ and V C G, of 0 and x¢ respectively, such that V = G(U).
Furthermore, the inverse of G restricted to V is a local coordinate system for G
at xg.

Proof. It follows directly from the definition of an tangential manifold that
G(z) € G for all z near 0 in R™. Furthermore it is easy to see that G'(0)h =
>t hifi(zo) and , since fi,..., f, are independent, G'(0) is injective. The
inverse function theorem does the rest. J



3 Realizations and Invariant Manifolds

3.1 Homogenous Systems

Take as given an m-dimensional standard Wiener process W with components
W1, ..., W™, and a Hilbert space H, where a generic point will be denoted by 7.
Let furthermore pu,o0q,...,0,, be smooth vector fields on H. For a given initial
point 7° € H we can then consider the following Stratonovich SDE on H.

{ dry = p(ry)dt + o(re) o dWr, 0

_ o
ro = 1,

where o(r) o dW; = 1" 0;(r¢) o dW; and where o denotes the Stratonovich
integral. We note that, because of the assumed smoothness, the SDE (1) will
locally (up to a positive stopping time), always have a unique strong solution.
Let us emphasize that in the sequel we are dealing exclusively with local strong
(as opposed to weak or mild) solutions to all SDEs. For information on SDEs
in Hilbert space see [11], which is the standard text on the subject.

The reason for denoting the points in H by r is that in our applications below,
the space H will be a space of forward rate curves.

Remark 3.1 Note that we are here only considering time invariant systems.
For the time varying case, see next section.

The process r above is inherently an infinite dimensional process, but we will
investigate under what conditions it can be realized by means of a finite dimen-
sional SDE. We will to some extent use results from [2], where the reader also
can find a more detailed conceptual discussion.

Definition 3.1 We say that the SDE (1) has a (local) d-dimensional realiza-
tion if there exists a point zg € R?, smooth vector fields a,b, ..., by, on some
open subset Z of R% and a smooth (submanifold) map G : Z — H, such that r
has the local representation

Ty = G(Zt), (2)
where Z is the solution of the d-dimensional Stratonovich SDE
dZt = a(Zt)dt + b(Zt) e} th,
(3)
Z() = 20.

The prefix “local” above means that the representation is assumed to hold for
all t with 0 <t < 7(r°), P-a.s. where, for each r° € H, T(r°) is a a strictly
positive stopping time.



We want to give conditions for the existence of a finite realization in terms of
the local characteristics p, 0 and in this context a local realization is the best
one can hope for. See [2] for a discussion on this point. We will thus often
suppress the prefix “local”, so in the sequel the word realization should always
be interpreted as local realization.

The realization concept is closely connected to the concept of an invariant sub-
manifold.

Definition 3.2 A submanifold G in H is said to be (locally) invariant under
the action of the SDE (1), if for every choice of ¥ € G we have ry € G for
0 <t < 7(r°), where T is a strictly positive stopping time.

The first step to a solution of the realization problem lies in the following result.

Proposition 3.1 There exists a local d-dimensional realization to (1) if and
only if there exists an invariant submanifold G with r° € G.

Proof. For a formal proof see the proof of Proposition 4.2 in [2], which goes
through in our present setting. A simple intuitive argument runs as follows.
Suppose that there exists a finite dimensional invariant manifold G with r° € G.
Then G has a local coordinate system, and we may define the Z process as the
local coordinate process for the r-process. On the other hand it is clear that if
r has a finite dimensional realization as in (2)-(3), then all points r produced
by the realization are of the form r = G(z) so there obviously exists a finite
dimensional invariant submanifold G containing the initial point r°, namely

G=Im[G)={G(2); z€ Z}. 11

The problem of finding a realization is thus reduced to the problem of finding a
finite dimensional invariant submanifold and, using another result from [2], we
can now connect this problem to the Frobenius theory in the preceeding section.

Theorem 3.1 A submanifold G is invariant under the action of the SDE (1)
if and only if, for every point r € G, the vectors ju(r),o1(r),...,0m(r) belong to
the tangent space of G at r. Thus G is invariant if and only if it is an tangential
manifold for the distribution generated by p, o1, ..., 0.

Proof. See [2], Theorem 4.1. I

Putting these results together we immediately have the following.

10



Proposition 3.2 The SDE (1) has a finite dimensional realization if and only
if there exists a finite dimensional tangential manifold for p,oq,...,0.,, con-
taining the initial point r°. The dimension of a minimal (w.r.t. the dimension
d) realization coincides with the dimension of the minimal tangential manifold.

Before going to our main result we need a new concept.

Definition 3.3 Let F be a smooth distribution on H. The Lie algebra gen-
erated by F, denoted by {F}, ,, is defined as the minimal (under inclusion)
involutive distribution containing F'.

If, for example, the distribution F is spanned by the vector fields fi,..., fn
then, to construct the Lie algebra {fi,..., fn} 4, you simply form all possible
brackets, and brackets of brackets, etc. of the fields f1,..., f,, and adjoin these
to the original distribution until the dimension of the distribution is no longer
increased.

We can now formulate and prove our main result on the existence of finite
dimensional realizations.

Theorem 3.2 Take as given the vector fields p,0 and a point ¥ € H. The
following statements are equivalent.

e For each choice of initial point r° near v € ‘H, there exists a d-dimensional
realization of the infinite dimensional SDE (1).

e The Lie algebra {p,o1,...,0m}, 4 has dimension d near 7.

Proof. From Frobenius it follows that G is an tangential manifold for the distri-
bution spanned by {p, 01, ..., 0.}, if and only if is tangential for {y,0q,...,0m} [ 4-
The rest follows from Proposition 3.2.

Remark 3.2 Note that, as far as finite realizations are concerned, we are only
considering pure existence results. We do not treat the problem of how to
construct a concrete realization. “In principle” this is simple: You “just” fix a
coordinate system on the invariant manifold (obtained through Proposition 2.1)
and write down the coordinate dynamics of the r-process, but this is easier said
than done. Note also that there is no such thing as a unique realization, since
any diffeomorphic transformation of the state space will give a new equivalent
realization. The problem of finding canonical realizations is a subject of ongoing
research.

In applications, when one is trying to construct the Lie algebra generated by

a concrete choice of {y,01,...,0.,}, the following observations are often quite
useful

11



Lemma 3.1 Take the vector fields fi, ..., fi as given. The Lie algebra {f1,..., frx}; 4
remains unchanged under the following operations.

e The vector field f; may be replaced by af;, where a is any smooth nonzero

scalar field.

e The vector field f; may be replaced by

fit Y asf
i

where aq,...,qx are any smooth scalar field.

Proof. The first point is geometrically obvious, since multiplication by a scalar
field will only change the length of the vector field f;, and not its direction,
and thus not the tangential manifold. Formally it follows from the “Leibnitz
rule” [f,a-g] = a-[f,g] — (&f) - g. The second point follows from the bilinear
property of the Lie bracket together with the fact that [f, f] = 0. I

We end this section with some remarks on the structural stability of realizations.
Consider therefore a given dynamical structure, specified by u, 0. It is important
to note that it may well happen that the SDE generated by {x, o} has a finite
dimensional realization for a particular choice of initial point 7°, whereas no
finite dimensional realization exists for points close to r°. We say that such
a system has a non-generic or “accidental” finite dimensional realization at
r°. If, on the other hand, the system has a finite dimensional realization for
all points in a neighborhood of 7° we say that the system has a generic finite
dimensional realization at r°. The existence of a non-generic realization is of
course of very limited value, since the situation is structurally unstable. We note
(with satisfaction) that our Lie algebraic result above guarantees the existence
of a generic finite dimensional realization.

A concrete, and very simplified picture of what is going on, is the following two-
dimensional example. In the (z,y)-plane we consider the distribution spanned
by the following vector fields

f('rhy) = (y,—m),
g(z,y) = ((@®+y*)y, —x))

It is clear that these two fields are independent at every point not lying on the
unit circle, whereas they are identical on the unit circle. For any point off the
unit circle, the minimal tangential manifold will thus be two-dimensional and
this property is generic. On the contrary, for any given point on the unit circle,
the tangential manifold will be one-dimensional (it will be the circle itself),
but this is a non-generic case, since the tangential manifold will be of higher
dimension at points arbitrarily close to the starting point.

12



3.2 Interpreting the State Variables

As noted above, there is no such thing as a unique realization of a given system,
since any diffeomorphic transformation of Z will provide an equivalent realiza-
tion. Nevertheless, in many applications it is of interest to find realizations
where the state variables have a natural (for example economic) interpretation.
For that purpose we will now prove a fairly general result concerning coordi-
nate systems, and for the rest of this subsection we make the following standing
assumption.

Assumption 3.1 We assume that the Hilbert space H is a space of functions
of the form r : I — R, where x — r(x). Here I is assumed to be some interval
on the real line.

In the applications below H will be a space of (analytic) forward rate curves.

Theorem 3.3 Suppose that there exists a d-dimensional realization for a given

system. Then there exists real numbers xq,...,xq in the interval I, and a real-
ization Z such that Zy = (ri(z1),...,1e(xq)). If the space H is a space of real
analytic functions, then the numbers x1,...,xq can, apart from a discrete set of

“forbidden values”, be choose completely freely.

Proof. Since there exists a d-dimensional realization, there will exist a d-
dimensional invariant manifold, G, in our Hilbert space H. It is enough to show
that we can choose # = (z1,...,24) in R? such that the map & : G — R4,
defined by &(r) = (r(z1),...,7(z4)) is a local coordinate mapping. By the
inverse mapping theorem it is enough to show that the Frechet derivative of Z is
bijective. Let therefore r be a fixed point on G and denote by TG, the tangent
space of G at r. Since G C 'H we can identify T'G, with a d-dimensional subspace
of H. Furthermore, since & as a mapping form H is linear and continuous, the
derivative Z,, of & at r is, for ¢ € TG,, given by &,.(q) = (¢(z1),...,q(xq)). To
prove that this mapping is bijective for some choice of z we let e1,...,eq be a
basis for T'G,. Defining, for k < d, the matrix

er(z1) ... ei(zy)
Ep(x) = : : ,
er(z1) ... ep(xr)
it is thus enough to show that det [Ey(x)] # 0 for some z in R%. We proceed
by induction on k.

Since ep is not the null function, there is some x; such that det[Ei(z)] =
e1(z1) # 0. Now assume that x4, . . ., x4 have been chosen such that det [Ey(z)] #

13



0 and consider

e1(zq) cooer(xg) e1(®pi1
Eroi(z) = | ¢ : :
+(@) er(z1) coeer(zr) er(Tri1)
ept1(®1) . eny1(@r)  eppr(Trir)

Suppose that det [Ex11(x)] = 0 for any choice of zx41. Then, since det [Ey(z)] #
0, the last row is a linear combination of the other rows. If the j:th row is de-
noted by r; we would then have

Tt = A1+ AT

However, since det [Er(x)] # 0, the A\:s only depend on zq,...,x;. Thus we
would have

ekl (Trg1) = Mer(@pt1), + - Aner(@ps1)
for every choice of x1. This, however, is a contradiction since eq, ..., e were

supposed to be linearly independent. If H is a space of analytic functions, we
use the fact that a nonzero analytic function only has isolated zeroes. i

3.3 Time Varying Systems

We now extend the analysis to cover time varying systems of the form

(4)

rs = 71°

{drt = pre, t)dt + o(re, t) o dWe,

Note that we no longer initiate the system at ¢ = 0 but at an arbitrary point s
in time. The relevant definitions of realizations and invariant manifolds are the
natural ones with the obvious extension of the prefix “local”.

Definition 3.4 We say that the SDE (4) has a (local) d-dimensional realiza-
tion at (s,7°), if there exists a point z, € R%, smooth vector fields a, by, ... by,
on some open subset Z of R and a smooth (submanifold) map G : Z — H,
such that r has the local representation

re = G(Zy), t>s (5)

where Z is the solution of the d-dimensional Stratonovich SDE

dZt = a(Zt)dt + b(Zt) o th,
Zy = 2z
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Definition 3.5 A submanifold G in H is said to be (locally) invariant under
the action of the SDE (1), if for every choice of (s,7%) € Ry x G we have ry € G
locally for s <'t.

As before we are investigating the existence of finite dimensional realizations
and invariant manifolds. We handle this new situation by enlarging the state
space and introducing running time as a new state. Defining, for each fixed s,
the Wiener process W* as W = W, — W,, we can write (4) as

dr, = [(ry,t)du+ o(ry,t) o dW?E,
dt = 1-du+0-dWg2,
rg = 71°%
to = S.

We are led to the following natural notation.

Definition 3.6 Define the following extended objects.
H="H xR, (7)

w0 = G0 (10)

We can now write (4) as the following SDE on H where, in order to save space,
we suppress the superindex in W*. and

dry, = [p(Pu)du+ &(r%, OdVVu:
{ fi(Pu) () (1)

Tozf.

Here we have used the notation

It is now easy to see that a manifold G is invariant in H for the time varying
system (4) if and only if G x R is invariant for the homogenous system (11).
Furthermore it is clear that finding a realization for (4) is equivalent to that
of finding a realization for (11), and we have our main result, which follows
immediately from Theorem 3.2.

Theorem 3.4 The time varying system (4) has a finite dimensional realization

if and only if
dim (i, 7} < o0
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4 Interest Rate Models

4.1 Basics

As in Heath, Jarrow, and Morton (1992), we consider a default free bond market
and let p(¢t,T) denote the price at time ¢ > 0 of a zero coupon bond maturing
at T > t. We assume frictionless markets and perfectly divisible bonds. The
forward rates f(t,T) are as usual defined by

_Ologp(t,T)

f(t,T) = oT ) (12)

and the short rate R is defined by

R(t) = f(t,¢).

Consider now as given a concrete term structure model, defined on a filtered
probability space (Q, F,Q,{Fi}i>0). We assume that the model is free of ar-
bitrage in the sense that the probability measure @) is a martingale measure
for the model, i.e. for each fixed T, the process p(t,T)/B; is a ()-martingale,

where the money account B is defined as usual by B, = exp { fot R(s)ds}. The

physical probability measure P will play no role below, so all calculations are
carried out under Q.

More specifically, we assume that under the martingale measure (), the dynamics
of the forward rates are of the form

df(t,T) = a(t, T)dt + oo(t, T)dW,, (13)

where W is an m-dimensional ()Q-Wiener process.

As we will see below, it is convenient to use the Musiela ([6], [21]) parameteri-
zation of forward rates
T(t7'r) = f(tat"i_m)a (14)

where the symbol = denotes time to maturity as opposed to T', which denotes
time of maturity. We denote the induced dynamics for the r-process by

dr(t,x) = B(t, x)dt + o(t, x)dWr, (15)

and it is easy to see that there is a one-to-one correspondence between the
formulations (13) and (15), namely

Bltz) = O%r(t,a:)—&-a(t,t—&-a:), (16)
o(t,x) = oo(t,t+ ). (17)

The HJM no arbitrage drift condition can now be transferred to the new para-
meterization. Writing * for transpose, the result is as follows ([21]).
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Proposition 4.1 (Forward Rate Equation) Under the martingale measure
Q, the r-dynamics are

dr(t,z) = {%r(t, x) + o(t, ) /Ofﬁ o(t, u)*du} dt + o(t, x)dWy. (18)

4.2 The Space

The big problem with the forward rate equation (18), from our point of view,
is the operator % in the drift term. In most “naturally” chosen spaces, like a
weighted Sobolev space, the operator is unbounded, which means that we have
no existence results concerning strong solutions. Thus, in order to study the
realization problem using our previously developed framework, we need a very

regular space to work in (see Remark 4.3).

Definition 4.1 Consider fized real numbers 3 > 1, and v > 0. The space Hg .,
is defined as the space of all infinitely differentiable functions

r:Ry - R

satisfying the norm condition ||r||g, < co. Here the norm is defined as
o0 0 2
d’r
2 = ,6*”/ (—(m)) e "dx.
By 7;0 0 dxm

Note that Hg ., is not a space of distributions, but a space of functions. The
reason for the exponential weighting is to include all constant functions in the
space. Most of the results below are uniform w.r.t. (8,7), so in the sequel
we will often suppress the subindices. With the obvious inner product H is a
pre-Hilbert space, and we have the following result.

7]

Proposition 4.2 The space H is a Hilbert space (i.e. complete), and if f, —
f in H then f,,(lm) — f) wniformly on compacts for every m > 0, where
flm) = d™ f/dx™. Thus in particular, for any fived x € Ry, the point evaluation
mapping r — r(x) is a bounded linear functional. Furthermore, every function
in H is in fact real analytic, and can thus be uniquely extended to a holomorphic
function in the entire complex plane.

Proof. Let us introduce measures v and p on N (the natural numbers) and
R, respectively (with obvious sigma algebras), by

v(E) = > B, ECN,

nck

w(F) = /e_'””dx. FCR,.
F
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Let furthermore v x p denote the product measure.
For every f € C™(Ry) we define Tf: N x Ry — Rby Tf(n,z) = f™(z), so
H={feCRy): TfeL*vxupu)}.

Now let {f,} be a Cauchy sequence in H and put f,, , = f, — fxz- Then, as
n,k — o0, Tfnr — 0in L2 (v x ) Thus there exists some g € L? (v x p) such
that T'f,, — g in L? (v x ), and we can choose a subsequence { f,,/ } from {f,,}
such that

Tfn —g, (vxp)—ae.

But then, for every m > 0 we have that
F™ = g, in L2 (n),

and
£ S g (1) — e,

where g,,,(z) = g(m, z). Let, for T > 0, C[0,T] denote the space of continuous
functions [0,7] — R with supremum norm. We now want to prove that, for

every m, { f,§m>} is a Cauchy sequence in C[0,7T], and for this we need the

following lemma.

Lemma 4.1 The sequence {fT(Lm)(O)} 1s Cauchy in R.

n

Proof of Lemma: To get a contradiction, assume that there exists some ¢ > 0
such that, for every N, f <m>( 0) > € for some n,k > N. Now consider

fr(ztrl:z) (SE - 7<LnZ> / fn7n+1
We have, however,

o] 2
‘/ (m+1> ‘ = ‘/ e(v’y)/QI[O’m] (y)efwy/zf,(:,iﬂ)(y)dy
0
&S] 2 err 1
ewdy> </ f7gm+1) e‘“’dy) = ( )
</0 0 { A )} Y

T SO -

clo,T)

IA

Thus

L2 (u)

for some K depending on v and T. Now choose N such that

< €/2
L2(p) /

7n+1 ‘

if n,k > N. Then obviously fn",i (x) > €/2 for all x € [0,T] and for arbitrarily

large n,k. This, however, contradicts the assumption that || fnm)H L2 — 0

18



when n, k — oco. Thus f,(f,? (0) = 0asn, k — oo.
End of proof of Lemma.

From the above proof we also have

17

1] =

IO+ KI5l — 0

as n,k — oo, so {f,,(lm)} is Cauchy in C[0,7]. Thus ™ = by, in Cl0,T]

for some h,, in C[0,7T]. Since fr(l@ — Gm, p — a.e. we conclude that g, =
B, 1t —a.e. on [0,T].

From
15 (@) = £(0) /fm+1 \dy,
we get

hm(x) = hm(o) +/0 hm+1( )dya

from which it follows that h!, = h,,41, and consequently that Thg = g, hg € H
and f,, — hg in ‘H. Thus we have proved completeness and uniform convergence
of derivatives on compacts.

To prove analyticity we make a Taylor expansion with exact rest term. Thus

n 1 x
=> f 0)z* + = [ " fC D (z - t)dt,
=0 n: 0

=)~

and it is enough to prove that this series converges for every z, i.e, to prove
that the remainder term tends to zero as n — co. Using obvious estimates and
Cauchy-Schwartz we obtain

1 / tnf(n+1>(xt)dt‘<_/ ‘f(n+1> )‘dt
0

xnﬁ% e —1 —n > — n 2 12
ol 5 <6 /0 i HM‘) :

nl
In this product the first term tends to zero because of the factorial, the second
is constant, and the third tend to zero because || f||g,y < co. 11

4.3 The General Model

We take as given a volatility o of the form
oc:HxRy — R™,

i.e. each component of o(r,z) = [o1(r,2),...,0m(r,x)] is a functional of the
infinite dimensional r-variable, and a function of the real variable z. We will
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also view o; as a mapping from H to a space of functions, and we will in fact
assume that each component o; is a smooth vector field on H.

Remark 4.1 Note that we are primarily interested in homogenous systems,
i.e. we consider forward rate volatilities without an explicit time-dependence.
This is partly due to the fact that it (to us) seems unnatural to assume time-
varying volatilities, but mainly in order to save space. In our experience, the
introduction of a time dependent volatility seems to add very little of interest,
and time varying models are easily handled by the methods in Section 3.3. We
will give examples below.

We need to introduce some more compact notation.

Definition 4.2 In the sequel, we will denote integration w.r.t. time to maturity
by H. Thus, we will write

Ho(r,z) = /Ofﬂ o(r,s)ds. (19)

Suppressing the z-variable, the It6 dynamics (18) of the forward rates under
the martingale measure () can thus be written as

dr, = {%H + U(Tt)HU(Tt)*} dt + o (r)dWy. (20)

Remark 4.2 Note that o(r;)Ho(r,)* is shorthand for Y 1" o5 (r¢)Ho;(r), where
the product o;(r¢)Ho;(r;) is, for each fixed r, the pointwise product of two real
valued functions. This notational convention will be kept in the sequel.

It is not hard to show (see [2]) that the forward rate model on Stratonovich
form is given by

dry = p(ry)dt + o(ry) o dWy (21)
where
H(r) = o o(r)Ho(r)* — 2ol (1) o) (22)

where o/.(r)[o(r)] denotes the Frechet derivative ¢’(r) operating on o(r). We
need some regularity assumptions.

Assumption 4.1 From now on we assume that o has the following properties.

o The mappings o1, ...,0, are smooth vector fields on H.

e The mapping
r+— o(r)Ho(r)*

is a smooth vector field on H.
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Remark 4.3 The reason for our choice of H as the underlying space, is that the
linear operator F = 8% is bounded in this space. Together with the assumptions
above, this implies that both p and o are smooth vector fields on H, thus
ensuring the local existence of a strong solution to the forward rate equation for

every initial point r° € H.

4.4 Main Results

We now go on to apply our general results from Sections 2 and 3 to the class
of interest rate models presented in the Section 4.3. Assumption 4.1 is in force
throughout the entire section.

Theorem 4.1 (Main Theorem) Take as given the volatility mapping o =
(01,...,0m) as well as an initial forward rate curve r° € H. Then the forward
rate model generated by o generically admits a finite dimensional realization at
r°, if and only if

dim {p, 01, ..., 0m} 4 <00 (23)

in a neighborhood of r°, where p is given by
0
wr) = z-r +o(r)Ho(r)" = 50,(r)[o(r)], (24)
and Ho is defined by

Ho(r,z) = /Ofﬂ o(r,s)ds. (25)

Proof. Follows at once from Theorem 3.2 and (22). 1

In the sequel we will, in order to save space, denote the Lie algebra above by
{p,0} 4, by L(p,0) or by L.

If the assumptions of Theorem 4.1 are in force, we can furthermore use Propo-
sition 2.1 to give a give a description of the minimal invariant (tangential )
manifold, containing 7°, which is generated by the interest rate dynamics. In
other words, we can describe the structure of all possible forward curves that
can be produced by the model.

Theorem 4.2 Assume that the Lie algebra {p, 0}, , is spanned by the smooth
vector fields fi,...,fq. Then, for the initial point r°, all forward rate curves
produced by the model will belong to the induced tangential manifold G, which
can be parameterized as G = Im|G|, where

Glz1,...,2q) = elesa  efiopo, (26)

and where the operator efi® is given in Definition 2.2.
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With this machinery we can also very easily solve a related question, which was
left open in [2]. Consider a fixed interest rate model, specified by the volatility
o and also a fixed family of forward rate curves parameterized by the mapping
Go : RF — H. Now, if Gy = Im[Gy] is invariant, then the interest rate model
will, given any initial point r° in Gy, only produce forward rate curves belonging
to Gp, in which case we say that the model and the family Gy are consistent.
If the family is not consistent, then an initial forward rate curve in Gy may
produce future forward rate curves outside Gy, and the question arises how to
construct the smallest possible family of forward rate curves which contains
the initial family Gy, and is consistent (i.e. invariant) w.r.t the interest rate
model. As a concrete example, one may want to find the minimal extension of
the Nelson-Siegel family of forward rate curves (see [22], [2]) which is consistent
with the Hull-White (extended Vasi¢ek) model. In particular one would like to
know under what conditions this minimal extension of Gy is finite dimensional.

In geometrical terms we thus want to construct the minimal manifold containing
Go, which is tangential w.r.t. the vector fields p,o1,...,0,,. The solution is
obvious: For very point on Gy we construct the minimal tangential manifold
through that point, and then we define the extension G as the union of all
these fibers. Thus we have the following result, the proof of which is obvious.
Concrete applications will be given below.

Proposition 4.3 Consider a fized volatility mapping o, and let Gy be a k-
dimensional submanifold parameterized by Go : R® — H. Then Gy can be
extended to a finite dimensional invariant submanifold G, if and only if

dim{p,01,...,0m}; 4 < 00.

Moreover, if Gy is transversal to {1, o}, 4 and if the Lie algebra is spanned by the
independent vector fields f1,..., fq, then dimG = k + d and a parameterization
of G is given by the map G : R*T? — H, defined by

G(z1y oy Zly YLy -, Yd) = efava ...ef‘y‘G(zl,...,zk). (27)

Remark 4.4 The term “transversal” above means that no vector in the Lie
algebra L(p,0) is contained the tangent space of Gy at any point of Gp. This
prohibits an integral curve of L to be contained in Gy, which otherwise would
lead to an extension with lower dimension than d + k. In such a case the
parameterization above would amount to an over parameterization in the sense
that G would not be injective.

We end this section by showing that it is always possible to choose the state
variables as a set of benchmark forward rates.

Proposition 4.4 Suppose that dim{u,o1,...,0m}; 4 = d. Then, for almost
every choice of distinct benchmark maturities x1,...,xq, the realization can be
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chosen such that the state process Zy is given by Zy = (r¢(x1),...7¢(xq)). The
expression “almost every choice” above means that, apart from a discrete set of
forbidden values, x1,...,xq can be chosen freely.

Proof. Follows immediately from Theorem 3.3 and the fact that H is a space
of analytic functions. i

5 Deterministic Volatility

We now move on to present some applications of the theory developed above.
We start with the simplest case, which is when the volatility o(r, z) does not
depend on r, i.e. when we can write o(r,2) = o(x). This case was first studied
in [21], and more or less completely analyzed in [3]. For simplicity we also
assume (for the moment) that we have only one driving Wiener process, so the
volatility is a constant vector field in H.

5.1 Finite Dimensional Realizations

In order to use Theorem 4.1 we now compute the Lie algebra £(u, o). Since the
vector field o is constant we have ¢’ = 0 so, from (24) we have

w(ry=Fr+ D,

where D(z) = o(z) [y o(u)du. The Frechet derivatives are trivial in this case.
Since F is linear (and bounded in our space), we obtain
p' = F,

o = 0.
Thus the Lie bracket [u, o] is given by
ln, 0] =Fo,

and in the same way we have

I, [, 0] = F2o.
Continuing in the same way it is easily seen that the relevant Lie algebra L is
given by
L={p o}, ,=span{p oFo, F2o,.. 3.

It is thus clear that £ is finite dimensional (at each point 7) if and only if the

function space
span{F"c ;n =0,1,2,...}
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is finite dimensional. This argument easily carries over to the case of several
driving Wiener processes, and we have the following result, which originally was
proved in [3]. See also [21] for a closely related result.

Proposition 5.1 Assume that the volatility components oy ...,0,, are deter-
ministic. Then the model possesses a finite dimensional realization if and only
if the function space

span[Fk(ri; 1=1,---,m. k:O,l,---]

is finite dimensional. If the dimension of the function space above equals d, then
the dimension of a minimal realization is d + 1.

We thus have a finite dimensional realization if and only if the components
of o solve, as functions of z, a multidimensional linear ODE with constant
coefficients. Using standard results from ODE theory, a more concrete charac-
terization is given as follows.

Corollary 5.1 Given the assumptions above there ezists a finite dimensional
realization if and only if the volatility o(x) = [o1(x),...,0m(x)] can be written
o(x) = ce™* B, (28)

where ¢ is a row vector, whereas A and B are matrices. In particular, if every
component of o is of the form

oi(z) = pi(x)e e, (29)
for some polynomial p; and some real positive number \;, then there exists a

finite dimensional realization.

Remark 5.1 Let us call a function of the form ce“®b, where ¢ is a row vector,
A is a square matrix and b is a column vector, a quasi-exponential (or QE)
function. All functions of the form (29) are of course quasi exponential, and the
general form of a quasi-exponential function f is given by

Fla) ="M 4+ 37 e [py(2) cos(wyz) + gi(x) sin(wjz)],  (30)

i J

where \;, a1, w; are real numbers, whereas p; and ¢; are real polynomials.
QE functions will turn up again, so we list some simple properties.

Lemma 5.1 The following hold for the quasi-exponential functions.

o A function is QF if and only if it is a component of the solution of a vector
valued linear ODE with constant coefficients.
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Awb.

A function is QE if and only if it can be written as f(z) = ce

If f is QE, then f' is QF.

If f is QF, then its primitive function is QFE.

If f and g are QF, then fg is QFE.

5.2 Invariant Manifolds

We now turn to the construction of invariant manifolds, and to this end we
assume that the Lie algebra above is finite dimensional. Thus it is spanned by
a finite number of vector fields as

{M,U}LAzspan{u,UEk); i=1,...,m; kr:O,l,.-.,m},

where o
o (@) = 5 (@),
In order to apply Theorem 4.2 and Proposition 4.3, we have to compute the
operators exp [ut] and exp [(rl(k)}, i.e. we have to solve H-valued ODEs. We
recall that
w(ry=Fr+ D,

where the constant field D is given

which can be written as

10
20z
where, as before, S(z) = [; o(s)ds. Thus e is obtained by solving

D(x) IS ()%,

dr
— =F D.
a0

This is a linear equation with solution

t
re = eFlrg Jr/ ¥ =9 Dds
0

(Wmﬂmzm@+w+%wﬂwwm14ﬂmww

The vector fields O'§k> are constant, so the corresponding ODEs are trivial. We
have )
&g (k)t

e% ‘rg =10+ 0;
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We thus have the following results on the parameterization of invariant mani-
folds. For a given mapping G : R* — H, we write G(z)(x) or G(z, ) to denote
the function G(z) € H evaluated at = € R,.

Proposition 5.2 The invariant manifold generated by the initial forward rate
curve rq is parameterized as

G(zo,zf; i=1,...,m; k=0,...,n;)(z)

= rolet20) + 5 (IS + DI~ [S@I?) + 3D 0P @)z

i=1 k=0

If the k-dimensional manifold Gy is transversal to L{p, o} and parameterized
by Go(y1, - .-, Yk), then the minimal consistent (i.e. invariant) extension is pa-
rameterized as

Gy1, - Urs 20,28 i=1,...,m; k=0,...,n;)(x)

= Golwr,- o w)l +20) + 5 (ISG + )2 = [1@)?) + D23 o w)ek.

1=1 k=0

Note that if Gy is invariant under shift in the z-variable (this is in fact the
typical case), then a simpler parameterization of G is given by

Gy s Urs 20,28 i=1,...,m; k=0,...,n;)(x)

1 m ng . ;
= Go(yr,-.u) (@) + 5 (IS +2)[* = IS@)|*) + 3 Y of @)zt
i=1 k=0
As a concrete application let us consider the simple case when m = 1 and

o(x) = oe™",

where, with a slight abuse of notation, a and ¢ denote positive constants. As
is well known, this is the HJM formulation of the Hull-White extension of the
Vasi¢ek model [16],[25]. In this case we have

S(z) =— [1 — e_‘m] )

The relevant function space

020 = { e 0]

—ax

is obviously one-dimensional and spanned by the single function e™** so the
Lie algebra is two-dimensional.
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As the given manifold Gy we take the Nelson-Siegel ([22]) family of forward rate
curves, parameterized as

—Yax

Go(yi, .- ya)(x) = y1 + y2e Y% 4 yawe

This family is obviously invariant under shift in x, so we have the following
result.

Proposition 5.3 For a given initial forward rate curve ry, the invariant man-

ifold generated by the Hull-White extended Vasicek model is parameterized by
—ax 02 —azg —2ax 02 —2azp —ax
G(20,21)(z) = ro(x+20)te = [176 ]fe oY) [176 ]+zle .

The minimal extension of the NS family consistent with the Hull-White extended
Vasicek model is parameterized by

G(ZO7 Z1,Y1y - - - ,y4)($) =11 + y2@_y45’3 + ygxe_y“
0.2
a?

2
[1 o e—azo] o e—Qam% [1

ax

+e—am

_ e—2az0] + zie”

6 Deterministic Direction Volatility

We go on to study the most natural extension of the deterministic volatility
case, namely the case when the volatility is of the form

oi(r,x) = @i(r)\i(z), i=1,...,m. (31)

In this case the individual vector field o; has constant direction \; € H, but is
of varying length, determined by ¢;. For ease of exposition we mainly restrict
ourselves to the time invariant case, but the results can easily be extended to
the time varying case (see below).

In order to avoid trivialities we make the following assumption.

Assumption 6.1 We assume that ¢;(r) # 0 for all v € H and for all i =
1,...,m.

Note that ¢; is allowed to be any smooth functional of the entire forward rate
curve. The simpler special case when ¢, is a point evaluation of the short rate,
i.e. of the form ¢(r) = h(r(0)) has been studied in [1], [17] and [23]. A more
general case, treated in [9], occurs when ¢ is a finite point evaluation, i.e. when
o(r) = h(r(zy),...r(xy)) for fixed benchmark maturities 1, ..., 2. All these
setups are special cases of our present framework and, apart from [9] which also
consider non-multiplicative volatilities, all results are included and extended
below.

The special case of only one driving Wiener process turns out to have some
features which will be used later, so we make a separate investigation of that
particular case.

27



6.1 A Scalar Driving Wiener Process

In this case we have o(r, z) = ¢(r)\(z), and after a simple calculation the drift
vector p turns out to be

ur) = Fr+ @)D — 56 (Ne(r)A (32)

where ¢’ (r)[A] denotes the Frechet derivative ¢’(r) acting on the vector A, and
where the constant vector D € H is given by

We now want to know under what conditions on ¢ and A we have a finite
dimensional realization, i.e. when the Lie algebra generated by

pr) = Fr+ 0D - 2 N
o) = ¢l

is finite dimensional. Under Assumption 6.1 we can use Lemma 3.1, to see that
the Lie algebra is in fact generated by the simpler system of vector fields

fo(r) = Fr+@(r)D,
fl (T) = )‘7
where we have used the notation
D(r) = @*(r).

Since the field f; is constant, it has zero Frechet derivative. Thus the first Lie
bracket is easily computed as

[fo. f1] (r) = FA+ @'(r)[A|D.
The next bracket to compute is [[fo, f1], f1] which is given by

([fo, f1] s f1] = @"(r)[\; A|D.

Note that ®”(r)[A; A] is the second order Frechet derivative of ® operating on the
vector pair [A; A]. This pair is to be distinguished from (notice the semicolon)
the Lie bracket [\, \] (with a comma), which if course would be equal to zero.
We now make a further assumption.

Assumption 6.2 We assume that " (r)[A\; A\] # 0 for all v € H.
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Given this assumption we may again use Lemma 3.1 to see that the Lie algebra
is generated by the following vector fields

fo(r) = Fr,
filr) = A
fa(r) = F\
fa(r) = D.

Of these vector fields, all but fy are constant, so all brackets are easy. After
elementary calculations we see that in fact

{n,0}; 4, = span {Fr,F"X, F"D; n=0,1,...}.

From this expression it follows immediately that a necessary condition for the Lie
algebra to be finite dimensional is that the vector space spanned by {F"\; n > 0}
is finite dimensional. This occurs if and only if A is quasi-exponential (see Re-
mark 5.1). If, on the other hand, )\ is quasi-exponential, then we know from
Lemma 5.1, that also D is quasi-exponential, since it is the integral of the QE
function A multiplied by the QE function A. Thus the space {F"D; n =0,1,...}
is also finite dimensional, and we have proved the following result.

Proposition 6.1 Under Assumptions 6.1 and 6.2, the interest rate model with
volatility given by o(r,x) = @(r)\(z) has a finite dimensional realization if and
only if X\ is a quasi-exponential function. The scalar field ¢ is allowed to be any

smooth field.

Remark 6.1 The case when assumption 6.2 is not in force is interesting when
one is looking for a two-dimensional realization, and we will come back to this
case in Section 7.

6.2 The Time Varying Case

For the time varying case of the model above we may apply Theorem 3.4 and,
using the using the same technique as above, the following result can easily be
derived. The proof is very similar to the one above, and therefore omitted.

Proposition 6.2 Consider a volatility of the form
o(r,t,x) = e(r, t)A(t, z),

and define D, ® by D(t,x) = A(t,z) [ A(t, s)ds and ®(r,t) = ©*(r,t). Assume
that @/ (r,t) (A, \] # 0, where @/ denotes the second Frechet derivative w.r.t. .
Then the model has a finite dimensional realization if and only if, for each t,
the function space

o o\". (9 9\
—_— e — —_— e — . >
{<8t 8ac> A <8t 830) D; ”—0}
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has finite dimension.

In the theorem above we view, for each t, the function space above as a space
of functions of the single variable x. Thus there exists a finite dimensional
realization if and only if there exist scalar functions {o;(t);¢=1,..., N} and
{B;(t);5 =1,..., M} with ay = Byy =1, such that the PDE:s

éam (5- %)iw,w) o,
ﬁ;,@j(t) (% _ %)j D(t,z) = 0.

are satisfied for all ¢ and «.

Sometimes the models above are defined in terms of time of maturity 7', instead
of time to maturity x, and it may be convenient to have the result above in
terms this (HIM-type) parameterization. By definition we have © = T — t, so
we may therefore define the objects A\g and Dgby

MN(ET) = Mt,T—t),
Do(t, T) = D(t,T—t).

It is then easily seen that there exists a finite dimensional realization if and only
if there exist scalar functions {a;(t);i=1,...,N} and {B;(t);j=1,..., M}
with any = B = 1 such that the ODE:s

Z ai(t)@)\o(t, T) =0,

Zﬁj DotT)—O

are satisfied for all ¢ and 7.

6.3 Several Driving Wiener Processes
‘We now go back to the multidimensional model with m driving Wiener processes

and volatilities of the form (31). With notation parallel to that of the scalar
case, the drift field of the forward rate equation is given by

FT—&-Z(,OZ )D; ——Z% A, (33)

where



We now have to study the dimension of the Lie algebra generated by

W) = Fre YD -5 AN,

oi(r) = e1(r)A,

Om(r) = ©m(r)Am.

Under Assumption 6.1 we can again use Lemma 3.1, to see that the Lie algebra
is in fact generated by the much simpler system of vector fields

folr) = Fr+> &(r)D;,
i=1

filr) = A,

f7n(r) = >\7n7

where we have used the notation

@(r) = $H(r).

In this case, the structure of the Lie algebra is no longer as simple as in the
case of a scalar Wiener process, so we will restrict ourselves to giving suffi-
cient conditions for finite dimensionality. Such conditions are, on the other
hand, very easy to provide. From the set of generating vector fields given
above, it is obvious that the Lie algebra {yu,o}; , is included in the algebra
{Fr,Di,...,Dp,Ai,..., A} 4. For this Lie algebra we have, however, the
following trivial relation

{FT;Dly-~-7-D7n7>\1;~-~7>\m}LA
= span{Fr,F"D; F")\;; i=1,...,m; n > 0}.

Arguing as in the proof of Proposition 6.1 we have the following sufficient con-
ditions.

Proposition 6.3 Under Assumption 6.1, a sufficient condition for the volatility
structure o;(r,x) = @;(r)\i(x) to have a finite dimensional realization, is that
all the functions Ay, ..., A\, are quasi-exponential. The functions ¢1,...,Qm
are allowed to be arbitrary smooth scalar fields on H.

Proposition 6.3 can quite easily be extended to the case when each volatility
component o; is a finite linear combination of QE functions.
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Proposition 6.4 Assume that the volatility has the structure
N
oi(r,z) = Zsﬁij(r))\j(x), i=1,...m.
i=1

A sufficient condition for the existence of a finite dimensional realization, is
that all the functions \; are quasi-exponential. The functions y;; are allowed
to be arbitrary smooth scalar fields on H.

Proof. Arguing as in the proof of the Proposition 6.3, we see that {u, o}, , is
included in

span {Fr,F"X;, F"Djy; j,k=1,...N; n >0},

where
Djp(x) = Aj(x) /0 A (s)ds.

Using Lemma 3.1 we see that this function space is finite dimensional. i

6.4 The Time Varying Case

As in Section 6.2 we can easily handle the time varying case.

Proposition 6.5 Consider volatilities of the form
oi(r t,x) = @i(r,t)N(t, ), i=1,...,m.
and define D;, ®; by Di(t,x) = Xi(t, ) [; A(t,s)ds and ®;(r,t) = @2(r,t). A

sufficient condition for the existence of a finite dimensional realization is that,
for each t, the function space

o a\" o a\"
- _ = . —— — 4' > =1,... .
{<8t 83:) As <8t 83:) Dy n20,1=1, ’m}

has finite dimension.

This result can obviously be reformulated in terms of 7" instead of in terms of
x along the lines of Section 6.2.
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7 Short Rate Realizations

One of the classical problems concerning the HJM approach to interest rate
modeling is that of determining when a given forward rate model is realized
by a short rate model, i.e. when the short rate induced by the forward rate
model is a one-dimensional Markov process. There are several results in this
area providing partial answers (see references in the introduction). Note that
we, as usual, mainly restrict ourselves to the case of time homogenous forward
rate volatilities.

7.1 General Theory

Using our previous results, we immediately have the following general necessary
condition.

Proposition 7.1 The forward rate model generated by o(r, x) is a generic short
rate model, i.e the short rate is generically a Markov process, only if

dim {j1,0} 4 < 2 (31)

Proof. Suppose that the model is really a short rate model and assume for
notational simplicity that we have a scalar driving Wiener process, so that the
short rate R satisfies a scalar SDE of the form

dR = a(t, Ry)dt + b(R;)dW;.

Note that, since our r-model is time invariant, the volatility b must also be time

invariant. Then bond prices are given as p(t,T) = F*(t, R;) where F' solves

the term structure PDE
OFT oFT

Lo
7(t, R) + a(t,R)ﬁ(t, R) + 3P (R)

82 FT

i (t,R) — RFT(t,R) = 0,

I
—

FT(T,R)

Thus we have
T(t,fl?) = G(t7 Rt7$)7

where

G(t,R,z) = fa_i In F*2(t, R).

Hence we see that the forward rate process is generated by a two dimensional
state space model with time ¢ and the short rate R as the states. i
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Remark 7.1 The natural case is of course dim{p,0}; , = 2, since we are
basically looking for a short rate realization where the coefficients are time
dependent (in order to make it possible to fit any initial forward rate curve).
It is presently an open question whether there exists a nontrivial generic short
rate model with dim {u,0}; , = 1.

Let us start by observing that, in this context, the case of a scalar Wiener
process is the only non pathological case.

Lemma 7.1 Assume that there are m driving Wiener processes, and that the
volatilities are of the general form o1(r,z),...,0m(r,x). Then, a necessary
condition for the Lie algebra {p,0}, 4 to be two dimensional is that there exists
a vector field oo(r,z) and scalar fields p;(r), i =1,...,m such that

oi(r,x) = @i(r)oo(r, z)

Proof. If the Lie algebra is two-dimensional, then the fields o1, . .., 0, must be
parallel at each point 7, otherwise {p(r),o1(r),..., 0, (r)} will span a subspace
of ‘H of dimension greater than two. [

To avoid degenerate cases like this we make a standing assumption.

Assumption 7.1 We assume that we have only one scalar driving Wiener
process, t.e. that m =1.

Note that condition (34) is only a sufficient condition for the existence of a short
rate realization. It guarantees that there exists a two-dimensional realization,
but the question remains whether the realization can chosen in such a way
that the short rate and running time are the state variables. This question is
completely resolved by the following central result.

Theorem 7.1 Assume that the model is not deterministic, and take as given a
time invariant volatility o(r,x). Then there exists a short rate realization if and
only if the vector fields [u, o] and o are parallel, i.e. if and only if there exists
a scalar field or) such that the following relation holds (locally) for all r.

(1,0 (r) = alr)o(r). (35)

This can also be written
[Er+D,o](r) - %U”(T)[U(T); o(r)] = a(r)o(r). (36)
where

D(r,z) = o(r,z) /Ofﬁ o(r,s)ds.
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If the wvolatility is time varying of the form o(r,t,x), then (35) is replaced by
pr(r,t)[o(r, )] — oy (r, ) [(r, t)] — 0u(r,t) = e, t)or(r, 1), (37)

where subindex denotes the Frechet derivative w.r.t. the indicated variable.

Remark 7.2 We note that the necessary and sufficient condition (35) is very
explicit, in the sense that it can easily be checked for any concrete specification
of the volatility structure. The only thing required is that we calculate some
derivatives.

Proof. We start by noting that (35) obviously implies that the Lie algebra is two
dimensional. The hard part to prove is that (35) is necessary and sufficient. The

other results then follow by direct calculations and an application of Theorem
3.4.

The proof consists of two parts. We begin by showing that (35) is necessary
and sufficient for a two dimensional realization where running time is one of the
state variables. Then we show that (35) is also sufficient for us to be able to
choose the short rate as the other state variable.

We begin the first part by showing necessity. Assume thus that there exists a
two dimensional realization where running time is one of the state variables.
Then it must have the form

dzy = 1-dt+0o0dW,
dzg = a(z)dt+ b(z) o dW,
r = G(z2).

In vector notation this reads
dz = A(2)dt + B(z) o dW,

where the vector fields A and B are given by

The Frechet derivatives (Jacobians) are easily obtained as follows, where sub-
script denotes partial derivatives.

A(z) = [ al?z) az(()z) ] - Bl = [ bi(2)  ba(2) ] |

Thus the Lie bracket is given by

AR _RA— 0
[A,B] = A'B BA_[a2b1b2albl].
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It is now clear by inspection that we have [A, B]//B, where // denotes parallel.
On the other hand, because of the relation r = G(z), we also have u = G, A and
o = G, B. Using the fact that the bracket is preserved under smooth mappings
we obtain

[t,0] =[G+A,G.B] = G, |4, B].

Since [A, B] //B we thus have G, [A4, B]//G.B, but G,B = ¢ and we are fin-
ished.

We now go on to prove sufficiency, and thus assume that (35) actually holds.
The Lie algebra is then two-dimensional so there will exist a two dimensional
realization of the form

dzy = a'(2)dt +b'(2) o dW,
dzo = a*(2)dt +b*(2) o dW,
r = G(2).

Furthermore, it follows from the first part (the case n = 1) of the proof of the
Frobenius Theorem that, after a diffeomorphism, the realization can be written
on the form

dzy = a'(2)dt+0o0dW,
dzo = a*(2)dt+1o0dW.
We now have to show that we can find a diffeomorphism H : R?> — R? such
that )
yla | |1
wla-]] (39)
and

o[3)-[3]

for some functions ¢ and d. Writing

Al
we have, with subscripts denoting partial derivatives,
1 1
e i ]
s0 (38)-(39) become
[ HY | | [ Hia'+ Hia®? ] [ 1]
| Hf |~ | ¢ |’ | Hya' +H3a® | | d |
which can be written
R [ Hia' 1 [1]
_Hg_i_c_’ _H21a1+H22a2_¥_d_
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The problem is thus reduced to that of finding a function h = H'(21, z2) such

that 9 9
—_— = _ 1 =
97 (2) =0, 971 (2)a*(2) = 1. (40)

For an arbitrarily chosen function a' this is of course not possible. We can,
however, now use our assumption that [, c]//o. Using the functorial property
of the Lie bracket w.r.t. diffeomorphisms, the parallel condition can be trans-
ferred to the local coordinate system (i.e. to our realization above) so that, with
obvious notation, [A, B]//B. Written out in detail this means that

4]012]

so we see that a'! is a function of z; only, and (40) becomes

oh 1

—(21,22) =0, —(21,29)a" (#1) = 1.

822(1 2) 821(1 2)a(z1)
We can thus define our local coordinate transformation H by choosing H' (21, 22)
h(z1) as any primitive function to 1/al(21), and choosing H? arbitrarily. We
note in passing that a' # 0 since otherwise the entire system is deterministic.

We have thus shown that if condition (35) is satisfied then there exists a real-
ization of the form

dy = a(y,t)dt+b(y,t)odW
Tt(x) - G(yht:x):

where y is a scalar process (corresponding to zo above), and it remains to show
that we can choose y as the short rate R. In order to see this we use the
realization to obtain Ry = G(y¢,t,0). This gives us the R-dynamics as

oG 0G le;
dR = (E +aa—y> dt b5 0 dIY,

from which we see that %(y,t,O) # 0, since otherwise we would have a de-
terministic model. We can thus, for each t, locally invert the mapping y ——
G(y,t,0). Denoting the inverse by H(R,t) we have y; = H(R;,t), and with
this change of variable we have thus obtained a realization with R as the state
variable. |

7.2 Deterministic Volatility

We now turn to applications of Theorem 7.1, and in this section we study the
simplest non-trivial example, which is the case studied by Carverhill in [8].
We have m driving Wiener processes, and in our notation the volatilities are
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assumed to be deterministic, i.e. (with a slight misuse of notation) they have
the form
oi(t,r x) = oy(t, x).

Adapting Lemma 7.1 to our present setting, we see that there must exist func-
tions ¢(t) and og(t, z) such that

oi(t,x) = gi(t)oo(t,x), i=1,...,m.

This however, implies that we can replace the m driving Wiener processes with
just one Wiener process so, as was expected, we may as well assume that m = 1.
Denoting 0y by o, we obtain

plr t,z) = aﬁr(m) +o(t, ) /Ofﬂ o(t, s)ds.

X

and we see that pu, = Fr and o, = 0. Since we have a time varying system,
we use the second part of Theorem 7.1 which says that there exists a short rate
realization if and only if here exists a scalar field a(r,t), such that for all r ¢, «
we have

oz (t, ) — oe(t, x) = a(r, t)o(t, z).

From this it is clear that «(r,t) = «(t). Dividing by ¢ and defining g by
g(t,x) = Ino(t,x) we have the equation

gm(t7 I) - gt(ta LE) = Oé(t)
Taking z-derivatives, and defining h by h = g, we get
hy(t, ) — hy(t,x) = 0.

This is the simplest possible example of the wave equation, with solution h(t, z) =
A(t 4+ z) for some arbitrary function A. Thus

o(t,2) = /Om)\(t—i—s)ds—&-ﬁ(t),

for some function 8 and, going back all the steps to o, we have the following
result, which was proved in [8].

Proposition 7.2 The deterministic volatility structure o(t, x) induces a Markov-
ian short rate if and only if it can be written as

o(t, z) = oft) exp { z o )\(s)ds} .

for some functions ¢ and \, where ¢ > 0.
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7.3 Constant Direction Volatility

We now turn to models with a constant direction volatility, and for simplicity
we will carry out the discussion only for the case when there is no explicit time
dependence. We thus assume that

o(r,z) = e(r)A(z). (41)

We recall from Section 6.1 that for this model p is given by

ulr) = Fr+ ¢(r)D — 2/ () Np(r)A

Using Theorem 7.1, Lemma 3.1, and calculations already made in Section 6.1
we conclude that there exists a short rate realization if and only if there exists
a scalar field ¢(r) such that

FA+ @' (r)[\|D + c(r)A = 0.

for all ». This is a vector equation, and if we write it in component form it reads

L (@) + @ ()ND@) +elrA@) =0, V)€ Ry x K. (42)

Setting x = 0, and recalling that D(z) = 0, we obtain

dA

E(O) +c(r)A(0) =0, VY(z,r) € Ry xH, Vr €H.

Assuming that \(0) # 0, this implies that the scalar field c is in fact constant.
Denoting this constant by ¢, (42) transforms into

%(37) + ®'(r)[N|D(z) + cA(x) =0, VY(z,r) € Ry x H.

From this equation it is clear that we must have
o' (r)[\ = d, (43)
for some constant d. Plugging this into (42) we get

%(x) +d-D(z)+cXz) =0, VoeR (44)

This is an ODE for A, and we obviously should treat the cases d =0 and d # 0
separately.

If d = 0, then (44) is the simple equation

d\
7, (@) FeA) =0,
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with solution
A(z) = A(0)e™.

From (43), the condition d = 0 says that ®(r)[A\] = 0 for all . This in turns
implies that ®(r) is constant on all lines in H, which are parallel to A\. Writing

H ={A} + Y, where Y = {A}", we thus see that ® must be of the form
D(y+s\)=V(y),s€R, ye,

for some smooth mapping ¥ : )Y — R.

We now turn to the case d # 0. In this case we rewrite (44) by noting that

1d

D) = 5= L),

where
L(ac):/o A(s)ds. (45)

Thus A = £ L and (44) becomes,

d’L d dL
L al .
dz? + dz + “dz 0
Thus
dL ,
E(l‘) +dL*(z) + cL(z) +e =0,

which is a Riccati equation for L.

To obtain information from condition (43), we may write it as
I'(r)[A] =0,

where I'(r) = ®(r) — (v, ), for any fixed vector v € H such that (v,\) = d. Here
(+,-) denotes then inner product in H. Thus I" is constant on all lines parallel
to A\, and we can summarize our findings.

Proposition 7.3 Assume that the volatility is of the form o(r,z) = @(r)A\(x),
and that A\(0) # 0. Then there exists a short rate realization if and only if one
of the following two cases occur.

1. The vector X\ is of the form
Az) = Age™ ", (46)
for some constant c. Furthermore, the scalar field ¢ is of the form
plr,t) = /T(Pr), (47)

where ¥ s an arbitrary nonlinear smooth map W : {)\}J‘ — R, and P s
the orthogonal projection in H onto \*.
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2. Defining L as in (45), L satisfies a Riccati equation of the form

%(w) +dL*(x) + cL(z) +e = 0. (48)

Furthermore ¢ has the form
p(r) =/ (v,r) + W (Pr) (49)

where U is as above, and where v is any vector with (v, A) = d.

Remark 7.3 The assumption A(0) # 0 is very innocent, since it says that the
dynamics of the short rate has nonzero diffusion term. The reader will probably
notice the structural similarity with the results above and the class of affine
short rate models. Also note that all our results are local, otherwise we would
of course have problems with expressions like y/(v,r) + ¥(Pr) where the linear
functional can take arbitrarily large negative values.

The result above has an easy an interesting corollary, which will be used later.
Corollary 7.1 Assume that the scalar field ¢ above is a point evaluation of the

short rate, i.e. that (with a slight abuse of notation)

Then the function U in Proposition 7.8 must be constant w.r.t. r. Thus (47)
and (49) are, for some choice of constants a and 3, replaced by

P(R) =B, (50)
and
¢(R) = \/aR + §, (51)
respectively.

Proof. In this case, with ®(r) = ¢?(R), the condition (43) becomes

which, given the standing assumption A\(0) # 0, immediately give us the result.

Remark 7.4 From Corollary 7.1 we recognize, by inspection of ¢ and A, three
well known short rate models.
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e ¢(R) =3 and ¢ = 0. This is the Ho-Lee model.

e ©(R) = B and ¢ # 0. This is the Hull-White extension of the Vasi¢ek
model.

e ©(R) = +/aR+ (. This is the Hull-White extension of the Cox-Ingersoll-
Ross model.

These models are henceforth referred to as the affine short rate models. We
say that a forward rate model which is generated (realized) by an affine short
rate model is an affine forward rate model.

7.4 “All Generic Short Rate Models are Affine”
We now consider the perhaps most interesting special case, which is when the

forward rate volatility o(r) only depends on the short rate R. We will use the
techniques above in order to rederive a rather astonishing result from [19].

Assumption 7.2 The volatility is of the form
o =0(R,x),

where, with a slight abuse of notation, o is a smooth function of the two real
variables R and x.

The question is now when a volatility specification like this will possess a short
rate realization and, as we will see, the requirement [y, 0] //o in Theorem 7.1
turns out to be very severe. We have in fact the following strong result.

Proposition 7.4 Under Assumption 7.2, the there exists a short rate realiza-
tion if and only if o can be factored as

o(R,x) = p(R)A(z).

Proof. Writing out all variables, the drift vector field p is easily calculated as
v 1
H(R.a) = Fria) + o(R.o) [ o(R,s)ds = 30u(R 2)o(R)
0

where g(R) = 0(R,0) and where o, = g—j'%. We now have to compute the Lie
bracket [i, 0], and we obtain

o' (r)p(r)](z) = o (R, 2)Fr(0) - %%(Ry )9 (R)g(R)

42



#(r)o(r)(z) = U;(Rax)*%{ﬁﬁé(Ryx)gz( ) — or(R,x)g'(R)g(R)}
+ g(R){(r}i(Rw)/j o(R,s)ds + or(R,x) /0 o }

Thus

o) (@) = h(R2)+ o(R) (a(R,a:) /0””0<R,s)ds>
_ %UR(R 2)g2(R) — o'(R, 2)Fr(0)

Applying Theorem 7.1, a necessary and sufficient for the existence of a short
rate realization is that o and [u, o] are parallel. Denoting Fr(0) by z, there
must thus exist a function «(z, R) such that the equation

ol (R,z) + g(R )88R <U(R, x) /Om o(R, s)ds)
—%JR(R 2)9*(R) — o's(R,z)z + a2z, R)o(R,x) = 0

holds for all R and z. Since this equation holds identically in 2z, we can take the
z-derivative, to obtain the equation

or(R,x) = (2, R)o(R, x),
from which it follows that in fact o/ (z, R) = f(R). We thus obtain
or(R,z) = f(R)o(R, ),

which is an ODE for o(R, z) with the solution

o(R,x) = exp {/0 f(s)ds} o(0, z),

and we have the desired factorization. J

We may now state the main result of the section (see Remark 7.4). It was first
stated and proved (using completely different techniques) in the remarkable
paper [19].

Theorem 7.2 Assume that the forward rate volatilities are of the form
o(r,z) = o(R, ).

Then the model has a short rate realization if and only if it is affine.
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Proof. This follows immediately from Proposition 7.4, Corollary 7.1, and the
comments above. |

We have thus completely characterized the class of forward rate models with
a volatility structure of the form o(R,z) which are generated by short rate
models. Another way of formulating this somewhat surprising result is to say
that “the only generic short rate models are the affine ones”. To understand
the geometric picture one can think of the following program.

1. Choose an arbitrary short rate model, say of the form
th == a(t, Rt)dt -+ b(Rt)th
with a fixed initial point Rj.

2. Solve the associated PDE in order to compute bond prices. This will also
produce:

e An initial forward rate curve 7#°(z).

e Forward rate volatilities of the form (R, z).

3. Forget about the underlying short rate model, and take the forward rate
volatility structure o(R, z) as given in the forward rate equation (20).

4. Initiate the forward rate equation with an arbitrary initial forward rate
curve r°(x)

The question is now whether the thus constructed forward rate model will pro-
duce a Markovian short rate process. Obviously, if you choose the initial forward
rate curve r° as r° = r°, then you are back where you started, and everything
is OK. If, however, you choose another initial forward rate curve 7°, say the
observed forward rate curve of today, then it is no longer clear that the short
rate will be Markovian. What the theorem above says, is that only the models
listed above will produce a Markovian short rate model for all initial points in
a neighborhood of r°. If you take another model (like, say, the Dothan model)
then a generic choice of the initial forward rate curve will produce a short rate
process which is not Markovian.
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