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Abstract

We analyze periodic and seasonal cointegration models for bivariate quar-
terly observed time series in an empirical forecasting study. We include both
single equation and multiple equations methods. A VAR model in first dif-
ferences with and without cointegration restrictions is also included in the
analysis, where it serves as a benchmark. Our empirical results indicate that
the VAR model in first differences without cointegration is best if one-step
and four-step ahead forecasts are considered. For longer forecast horizons,
however, the periodic and seasonal cointegration models are better. When
comparing periodic versus seasonal cointegration models, we find that the
seasonal cointegration models tend to yield better forecasts. Finally, there is
no clear indication that multiple equation methods improve on single equation
methods.
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1 Introduction

In recent years several methods for cointegration analysis of nonadjusted seasonal
time series have been developed. If one is willing to assume that the seasonal pat-
tern is approximately constant over time, the vector autoregressive error-correction
model [VECM] with constant seasonal dummies parameters can be used. How-
ever, tests for various types of changing seasonality oftentimes find evidence for
a stochastic or changing seasonal pattern over time, see Hylleberg et al. (1990)
[HEGY], Franses (1996), among many others.

In this paper we examine in an empirical forecasting study the relevance of taking
care of changing seasonality within multivariate methods for cointegrated seasonal
time series. We evaluate three different approaches, see Franses and McAleer (1998),
that is nonseasonal cointegration models, seasonal cointegration models and periodic
cointegration models.

Testing and estimating seasonal cointegration relations can be accomplished
in at least two ways. Engle et al. (1993) [EGHL] propose a two-step procedure,
which is an extension of the Engle and Granger test for cointegration, whereas Lee
(1992) suggests a maximum likelihood method for seasonal cointegration, using a
seasonal error correction model. Johansen and Schaumburg (1999) introduce a gen-
eral asymptotic theory for the latter cointegration approach. While cointegration at
the zero frequency can be interpreted as evidence of a parallel long-run movements
among the time series considered, cointegration at the biannual or annual frequen-
cies is viewed as evidence of parallel movements across the corresponding seasonal
components of the time series.

An alternative model for changing seasonality in multivariate data extends the
periodic integration model, see Franses (1996) and Boswijk, Franses and Haldrup
(1997), among others. When the individual time series display periodic features,
one may want to consider periodic cointegration. A useful single equation method
is proposed in Boswijk and Franses (1995), and it is an extension of the cointegra-

tion test approach by Boswijk (1994). A multiple equation method is proposed by



Kleibergen and Franses (1999), who consider cointegration in periodic VAR, models
[PVAR].

The forecasting performance of seasonal cointegration models has been analyzed
in Kunst (1993) and in Reimers (1997). Two examples based on real data and a
Monte Carlo experiment in Kunst (1993) indicate that the benefits from accounting
for seasonal cointegration are quite limited as compared to vector error correction
models in first differences with deterministic seasonal dummies included. The main
conclusion in Reimers (1997) is that models in first differences produce smaller fore-
cast errors for short horizons, but when longer forecasting periods are considered
the seasonal cointegration model appears preferable. Finally, the forecasting per-
formance using different specifications of the single equation periodic cointegration
model has been examined in Herwartz (1997), where it is found not to be very
successful.

The purpose of the present paper is to compare the two model classes in an
empirical forecasting study, which involves seven sets of bivariate quarterly time
series, which one may expect to be somehow cointegrated. We aim to shed light
on the following issues. Do multiple equation methods for seasonal and periodic
cointegration generate better forecasts as compared to their single equation coun-
terparts? And, is one of the two model classes, that is seasonal versus periodic
cointegration, preferable in terms of forecasting? We also compare these periodic
and seasonal cointegration models with a VECM in first differences with constant
seasonal dummy parameters and with an estimated long-run relation included. Fi-
nally, we also include a VAR model in first differences with constant seasonal dummy
parameters in the analysis, that is, a model without cointegration.

The remainder of this paper is organized as follows. Section 2 gives a brief
discussion of the various cointegration approaches. In Section 3, we present the
data and Section 4 contains the estimation and forecasting results. The final section

presents some concluding remarks.



2 Cointegration methods

In this section we review four different approaches to cointegration analysis of quar-
terly time series. Later on, we will contrast these approaches with a VECM with
constant seasonal dummy parameters, where the long-run relation is estimated from
the data for the bivariate series at hand (denoted as N-ME-1, which means non-
seasonal multiple equation of type 1), and with a VAR model for first differenced
variables without cointegration, also with constant seasonal dummy parameters
(denoted as N-ME-2).

For some methods it can be useful to examine the properties of the univariate
time series first. For this purpose one can use for example the HEGY (1990) testing
approach for seasonal unit roots, and the Boswijk, Franses and Haldrup (1996)
testing approach for unit roots in periodic models. These methods are now well
known by now, and a detailed outline is considered to be beyond the scope of the
present paper.

We now turn to the various cointegration methods, where we deal with periodic
models first and with seasonal cointegration methods second. Within each class,
we first deal with the single equation approach and then with the multiple equation

method.

2.1 Periodic cointegration - single equation

The Boswijk and Franses (1995) approach is an extension of the cointegration test
approach in Boswijk (1994). They consider the following single equation periodic

cointegration model [PCM]:
4 4
Age = > mDar+ Y Ne(yima —0,X14) (1)
s=1 s=1
P P
D Bilbaye—j + Yy TibaXe i+ e,
=1 i=0
where y; is the variable of specific interest and where X; is a vector of explanatory

variables. The ¢, is a standard white noise process and Ayy, is defined by Ay, =

(1 — BYy: = y1 — ys—a. It is assumed that X; is weakly exogenous. If needed



in (1) the AyX; terms can be replaced by A;X; variables. The parameters Ag
and 6 in equation (1) are seasonally varying adjustment and long-run parameters,
respectively. Adjustment can be easier to achieve in some quarters, or economic
agents may want to correct disequilibria faster in some seasons. In a consumption
model context, the target relations may reflect seasonally varying preferences or
seasonally varying availability of goods and services. Periodic cointegration requires
that the As-parameters are negative. Full periodic cointegration in (1) implies that
there is adjustment towards a long-run relationship in all four quarters, whereas
partial periodic cointegration implies that there is no adjustment in some quarters.

Boswijk and Franses (1995) propose a Wald test for cointegration in the PCM.
Consider the following, slightly rewritten form of (1):

4 4
Ay = Y psDai+ Y (81aDspe s+ 85, D51 Xy 4) (2)

s=1 s=1
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j=1 i=0
where 61, = A\; and 625 = —0. )\ in (1). Writing 65 = (815, 6/23)/, the null hypothesis
of no cointegration in season s, and the alternative hypothesis, of the Wald, test are
Hys : 6s = 0and Hy, : 85 # 0 for some s, respectively. Now, writing § = (67, ..., 62)/,
the null hypothesis of no cointegration in any season and the alternative hypothesis
of the joint Wald test are Hy : 6 = 0 and Hy : 6 # 0 respectively. The two Wald

statistics are calculated as

Wald, = (n—k)((RSSos — RSS1)/RSS)), (3)

Wald = (n—k)((RSSy— RSS1)/RSSy),

where k is the number of estimated parameters in equation (2), and where RSS; is
the OLS residual sum of squares from the unrestricted model and RSSys and RS Sy
the residual sums of squares under Hy, and Hy, respectively. The relevant critical
values of the various Wald test statistics are given in Boswijk and Franses (1995).
They also propose tests for various parameter restrictions when there is evidence
of cointegration in two or more quarters, like tests for equality of the adjustment

parameters and for the parameters concerning the long-run relationships across



seasons. In the empirical part below we will refer to this method as the P-SE

(periodic single equation) approach.

2.2 Periodic cointegration - multiple equations

A periodic VAR model of order 1 [PVAR(1)] of a k dimensional quarterly observed

vector of time series y,, can be written as:

Yn = PsYn—1 + Un, (4)

where s = 1,...5, n = 1,..., N and u,, is a vector of i.i.d. disturbances with mean
zero and E (unul,) = Q5. The seasonally varying (k X k) parameter matrices ¢, are
of full rank and the covariance matrices Qs imply that the PVAR(1) process can
have different short-run properties across quarters.

Even though all parameters are allowed to vary across the quarters, Kleiber-
gen and Franses (1999) show that the specification (4) imposes the same long-run
properties for each season. If we determine the relationship between y,, and y,_g,
that is, the same season in the previous year, and rewrite the resulting expression
in its nonseasonal annual form, see Tiao and Grupe (1980) and Osborn (1991), it

becomes
AYs =Y, 1 + s, t=1,....T =
where
s S—s
I = <H‘Ps—i+1 H‘PS—Z'—H) — 1. (6)
i=1 i=1
If there is cointegration amongst the elements in y,, then:
I, = O‘sﬁs — (7)
7 1 ’
‘PerlaSBs(Ps-&-l = a5+165+1'

The result in (7) implies that the spaces spanned by a1 and (3, are identical to
the spaces spanned by ¢, ja, and ng;ﬁs.
Estimation of the cointegration parameters in Il is not straightforward as

it implies nonlinear restrictions on the ¢, parameters. Kleibergen and Franses



(1999) therefore suggest an alternative method, which amounts to optimizing a
log-likelihood based objective function. This objective function can also be used
to test for the number of cointegration relations. The resulting test statistic can
be compared to the relevant critical values of the Johansen trace statistic, at least
asymptotically. The PVAR(1) model can be extended to include unrestricted sea-
sonally varying intercepts and trends. In the empirical part below we will denote
the model with seasonally varying intercepts included as P-ME-1 (periodic multi-
ple equation of type 1) and the model with both seasonally varying intercepts and
trends as P-ME-2.

Finally, the results for the PVAR(1) model hold for higher order dynamics if we

assume the following lag structure of a PVAR(p) model

Yn = P1sUn1T PosUn5T o T Pp sUn_(p—1)5—1 T Un (8)
= ws(l)yn_1 + SOT’SASZ/n—l +.t (p;;—l,sASyn—(p—Q)S—l + Up,

- P C
where pj = —) 195, t=1..,p—1L

2.3 Seasonal cointegration - single equation

Engle et al. (1993) EGHL propose a two-step test method for seasonal and nonsea-
sonal cointegration, which is similar to the Engle and Granger (1987) test procedure
for zero frequency cointegration. In the case of cointegration at all frequencies for

bivariate time series the following linear combinations will be stationary processes:

21t = Y1t — QA1T1g, (9)
22t = Y2,t — (a2,
23t = Y3t — Q3T3¢ — 4Y3t—1 — A5X3,¢—1,

where w1 = (1 + B + B? + B3)wy, way = —(1 — B+ B? — B3 w; and w3 =
—(1 — B?)wy, for w; = x; and y;.

The first step involves estimating oy to az in (9) using OLS, where deterministic
components such as a constant, a trend and seasonal dummies may be included in

these cointegration regressions. The second step amounts to checking whether the



resulting estimated residuals 23 ; to Z3 + are stationary, using the following auxiliary

regressions:

—~ —~ k o~

(1=B)z1py = mzie1+ 2 71— B)Zi—i + ey, (10)
=1

—~ o~ k —~

(1+B)zzy = ma(—Z2¢-1) + 2 v:(1+ B)z1,e—i + e,
=1
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(14 Bz = ma(—2z34-2) +ma(=Z5,0-1) + 27 (1 + B )z500 + &,

i=1
Cointegration at the zero and biannual frequencies implies m; = 0 and 7 = 0,
respectively, which is to be tested against the alternative that m; < 0, ¢ = 1,2 with
one-sided t-tests. If the F-test for the hypothesis m3 = m4 = 0 cannot be rejected
there is evidence of cointegration at the annual frequency. The t-statistics for mq
and 73 obey the familiar Dickey-Fuller distribution and critical values can be found
in Phillips and Ouliaris (1990). Critical values for the F-statistic are tabulated in
EGHL.
If the cointegrating rank is 1 at all frequencies for a bivariate time series and x;

is weakly exogenous, a final seasonal cointegration equation for y; reads as

q p
Agyy = Z5jA4$t—j+ZﬁiA4yt—i (11)
=0 i=1

FY1121t—1 + V19%2t—1 — V13%3t—2 — V14%3t—3 1 €¢.

For further reference, we call this model the S-SE model.

2.4 Seasonal cointegration - multiple equations

Lee (1992) suggests a maximum likelihood estimator for seasonal cointegration rela-
tions, based on a fully specified VAR model. This procedure extends the approach
summarized in Johansen (1995). Assuming that A4Y; is stationary, where Y; de-
notes a (k x 1) vector of variables, a seasonal error correction model [SECM] of the

following form is considered:

4
AY: = 0ifiZig + T10Yoms + oo+ TposDgYipa + @D+, (12)

i=1
where the D, are deterministic components and where e is i.i.d. N;(0,). There is

seasonal cointegration if at least one of the ozzﬂ; matrices for ¢ = 2,3,4 on the right



hand side has reduced, but non-zero rank. The linear filters Z,; in (12) remove
all unit roots except those at the zero, biannual and annual frequencies, and they
are the vector equivalents of the univariate HEGY transformations. If the matrices
aiﬁ; have reduced rank, ,B;Zi,t is stationary even though the processes Z;; are
nonstationary. Furthermore, the regressors Z;, are asymptotically uncorrelated,

that is
T
Til ZZi,th/',t g OaZ 7& .j7
t=1

implying that the cointegration vectors and adjustment coefficients can be found
by removing the reduced rank restriction on the other frequencies by concentrating
out the associated regressors. Lee (1992) suggests the restriction 044621 =0, and we
label this method, with unrestricted seasonal dummies included, as S-ME-1.

Franses and Kunst (1999) argue that deterministic seasonal dummy variables,
which are often included unrestrictedly in (12) to handle the deterministic part
of seasonality, should be confined to the seasonal cointegrating relations instead.
This is because unrestricted seasonal intercepts in the SECM may lead to diverging
seasonal trends, which can be unlikely in certain practical cases. This restricted
seasonal dummies case is denoted as S-ME-2.

Finally, Johansen and Schaumburg (1999) argue that the restriction a4ﬁ; =0
is very strong and not justified from a theoretical point of view. They refine the
asymptotic theory for the multivariate seasonal cointegration model and propose
an alternative estimation procedure for the parameters corresponding to the annual
frequency. In the forecasting study below we label this third method, where we

again include restricted seasonal dummies, as S-ME-3.

3 Data

In our forecasting study we consider the logs of quarterly observed time series
on consumption (C) and income (Y') in the United Kingdom, Sweden, (Western-)
Germany, Japan, Italy and the US. The data set for UK covers the time period

1955:1 to 1989:4 (consumption on non-durables and disposable income), whereas



the time series for Sweden ranges from the period 1963:1 to 1988:4 (consumption
on non-durables and disposable income) and for Germany from 1960:1 to 1988:4
(consumption and disposable income). The data set for Japan covers the period
1961:1 to 1987:4 (total consumption and disposable income) and the data set for
Ttaly the period 1970:1 to 1996:1 (consumption on non-durables and services and
GDP). The data set for the US covers the period 1947:1 to 1991:4 (consumption on
non-durables and GNP) [henceforth the US¢ y data set].

We also examine the nominal money stock (M1) and real GNP (Y) in the US
for the period 1948:1 to 1985:4 [henceforth the USysy data set].

These bivariate time series, have been analyzed previously in Boswijk and Franses
(1995), Cubadda (1999), Engle et al. (1993), Franses and Paap (1995), Hylleberg
et al. (1990), Lee and Siklos (1997) and Wells (1997). Note that we discard 16 ob-

servations at the end of each sample in order to evaluate out-of sample forecasting.

4 Empirical Results

In this section we first discuss the in-sample estimation results and then we turn to

the out-of-sample forecasting results.

4.1 Estimation results

At first we have a look at the results obtained from applying HEGY tests for seasonal
unit roots in univariate series. Results of the tests for seasonal and nonseasonal unit
roots appear in Table 1. The auxiliary regressions include an intercept, seasonal
dummies and a deterministic trend in each case. It is clear that all variables seem
to contain unit roots at the zero frequency. The results are more mixed at the
seasonal frequencies. Roots at the biannual frequency are rejected for Y in the
German, the UK and the USj;y data sets and no evidence of unit roots exists at
the annual frequency for consumption in Germany, Japan, Sweden. Roots at the
annual frequency are also rejected for Y in the German, the US¢,y and the USy;y

data sets. All in all, however, there is substantial evidence of changing seasonal
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patterns. We return to the seasonal unit root approach later on.

4.1.1 Periodic cointegration models

Results of the Wald-tests for periodic cointegration in the single equation case ap-
pear in Table 2. All the dependent variables (the consumption series and the money
stock series) are transformed into fourth differences. We choose the first difference
filter for Y in the UK and in the USjy;y data set. We find no evidence of periodic
cointegration in the US¢ )y data, but the Wald-test statistics suggest cointegration
in the first quarter in Germany, in the second quarter for Sweden and the UK and
in the third quarter for Italy and for the USy y data. Although the evidence of
cointegration may be viewed as weak, we also proceed with the estimation of a
partial PCM with cointegration in the first quarter for Japan.

Results for the final models can be found in Table 3. The first three columns cor-
respond with estimated adjustment or error-correction terms Xs and the coefficients
for the long run relations 58, respectively. In all cases except for Italy we include
an intercept in the long-run relation, indicated by . All of these are significant
at the 5% level. Comparisons with previous analysis of similar time series can be
done for most cases, although we use a shorter sample period here because sixteen
observations are discarded. The results for Germany are in line with the results
found in Franses and Paap (1995), where they, using other cointegration methods,
find evidence of cointegration between consumption and income in the first quarter
only. Boswijk and Franses (1995) examine the same data series for Sweden and find
cointegration in the second and fourth quarter. Furthermore, they find evidence
of equal adjustment parameters, that is, Xz = X4 = —0.260 and cannot reject that
52 = 54 = 0.687. The money equation for the US can be compared with the results
found in Lee and Siklos (1997). In contrast to their findings, we find evidence of
zero frequency cointegration between the nominal money stock and real GNP in
the third quarter. Interestingly, these two series are also analyzed in a study by
Barsky and Miron (1989), where they argue that comovements in the fourth quarter

dominate and that money and output do not seem to move together in the first and
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second quarters.

We also present results of tests for weak exogeneity in Table 4. Adding the es-
timated cointegration relations to AR(p) models of suitably differenced Y variables
suggests that the assumption of weak exogeneity seems to be valid in all the con-
sumption equation examples. However, as the F-test statistic for the cointegration
variable is significant in the USysy data set, a joint model for money and GNP
may yield more efficient estimates of the cointegration parameters in that case.

Results using the Kleibergen and Franses (1999) approach to multiple equations
periodic models are summarized in Table 5. The lag lengths are chosen according
the AIC and BIC criteria, in addition to equation by equation diagnostic tests. We
include seasonally varying intercepts (P-ME-1) or alternatively seasonally varying
intercepts and trends (P-ME-2). In the first case we find evidence of periodic
cointegration in the German and the UScy data sets only. When we include
seasonally varying trends in the equations there is evidence of cointegration in Japan
and the US,sy data set as well. Critical values are based on our own simulations

for small samples.

4.1.2 Seasonal cointegration models

The tests for seasonal cointegration using the two-step procedure proposed by EGHL
are summarized in Table 6, where a constant and a trend are included in the coin-
tegration regression if the zero frequency is considered and a constant and seasonal
dummies if the seasonal frequencies are considered. There is no evidence of cointe-
gration at the zero frequency, except between money and GNP in the US. We find
no evidence of cointegration at the biannual frequency, but for the annual frequency
we do so for Germany, Japan and Sweden.

EGHL analyze the consumption and income data for Japan using the same
techniques but again with sixteen more observations. They argue that the absence
of cointegration at the zero and biannual frequencies cannot be rejected and that a
question of whether there is cointegration at the annual frequency could be answered

with a weak 'maybe’. Lee and Siklos (1997) use the two-step approach to M1 and
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real GNP in the US, but their results are quite different from ours. Instead of
finding evidence of cointegration at the zero and annual frequencies, as we do, they
only reject the null hypothesis of no-cointegration at the biannual frequency.

Table 7 presents results for the final EGHL equations with the cointegrating
relations at the annual frequency included. Columns two and three correspond
to the estimated error-correction terms for the annual frequency, where only the
coefficients for z3;_o appear to be significant at the 5%-level.

Results of tests for weak exogeneity appear in Table 8, where the estimated coin-
tegration relations are added to univariate AR(p) models for Ayy;. The assumption
of weak exogeneity seems to be valid for Germany and Sweden, but not for Japan.

Results of the maximum likelihood seasonal cointegration approach can be found
in Table 9. The lag lengths are chosen using the AIC and BIC, in addition to
equation by equation diagnostic tests. Lee and Siklos (1995) present critical values
for all frequencies in the unrestricted seasonal intercepts case (S-ME-1). Critical
values for the restricted seasonal intercept case (S-ME-2) are taken from Tables 1a-
1f in Franses and Kunst (1999). Finally, Johansen and Schaumburg present critical
values for the annual frequency in the restricted intercept case (S-ME-3). Note that
for the zero frequency case, we use the critical values tabulated in Lee and Siklos
(1995) for all model specifications. For the biannual case, we use the critical values
tabulated in Franses and Kunst (1999) for specifications (S-ME-2) and (S-ME-3).

Starting with the results when using unrestricted intercepts, there is evidence
of cointegration at the zero frequency for the Italian, Swedish and the US¢ )y data
sets. The results further suggest one cointegration vector at the biannual frequency
in Germany, UK and again in the US¢ y data set. For all countries, except for Italy,
there is evidence of stationary vectors at the annual frequency, while the results for
the UK even suggest two vectors at this frequency.

Turning to the case with restricted seasonal intercepts we see that there is now
no evidence of cointegration at frequencies 7 and 7/2 in the German data set, which
is also the case when using the method proposed by Johansen and Schaumburg. The

single cointegrating vector at the annual frequency in Sweden is not significant when
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using restricted seasonal intercepts in the Lee specification. The reverse result is
true for the cointegrating vector at 7/2 for Japan.

If we compare these findings with the results obtained using the two-step EGHL
procedure the results are quite different. We find almost no evidence of cointegration
at the zero frequency and at the biannual frequency, using the EGHL approach, but
we do so using multiple equation methods. However, for the annual frequency we

find similar results across the two approaches.

4.1.3 Nonseasonal models

Finally, we include in our forecasting study two nonseasonal models. The first
is a vector error correction model [VECM], where the cointegration relationship
is estimated using the familiar Johansen maximum likelihood method. Table 10
summarizes the test results and we observe that zero frequency cointegration is
found for the Italian, Swedish and US¢ y data sets. For further reference, we will
denote these models as N-ME-1. We also consider VAR models in first differences
and these will be denoted as N-ME-2. In both models we include deterministic
seasonal dummies.

As our interest is in evaluating out-of-sample forecasting performance, we do not
present detailed estimation results. These can be obtained form the corresponding

author upon request.

4.2 Forecasting

We now turn to a discussion of the out-of-sample forecasting exercise, where it is
our aim to forecast consumption and money.

4.2.1 Method

In general, if we do not find any evidence of cointegration using a particular model
type for a specific data set, we do not generate any forecasts. Only for the VAR
model for first differences and without cointegration, that is N-ME-2, we always

generate forecasts.
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To be able to compare the single equation methods with the system approaches
when it comes to forecasting, we use the weak exogeneity equations for y;, but now
without the cointegration relations added. For the P-SE and S-SE methods, this
approach results in a two equation system, where the first equation is presented in
Table 3 for periodic cointegration case and in Table 7 for seasonal cointegration,
while the second equations for the exogenous variable are presented in Tables 4 and
8, respectively.

For the periodic VAR model, we forecast from (8) in levels with seasonally
varying deterministic terms included, in case there is evidence of full rank. When
there is evidence of a reduced rank, we include the seasonally varying II;—matrices
and generate forecasts from the resulting model in fourth differences, and then
transform these to levels.

If we do not find any evidence of cointegration at one or two frequencies using
the three versions of the multiple equation seasonal cointegration approach, we set
the rank of corresponding II— matrices equal to zero and generate forecasts from
the resulting model.

We forecast the relevant time series sixteen steps ahead. Next, the estimation
period is extended by one quarter, but we do not reestimate the equations. This
extension of the sample period is done fifteen times until we generate the last one-
step ahead forecast error for each model and data set. This procedure leads to
sixteen one-step ahead forecast errors for each model and data set, fifteen two-step
ahead forecast errors and so on. In total we have 136 forecasts for each model and
data set. The results are summarized by presenting values of the root mean squared
prediction errors RMSPE (times 100) for one, four and eight steps ahead forecasts
in tables 11, 12 and 13, respectively. In table 14, we summarize all forecast errors

by considering the following RMSPE measure:

=1 =1

1 16 2 R
\/ﬁ <Z(mi1 - xi1)2 + ...+ Z(xﬂg, - :L‘i15)2 + (1'16 _ x16)2> )

Finally, in Table 15 we summarize all results by giving the average ranks of the nine

different approaches across the seven data sets.
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4.2.2 Results

The results in Table 11 (for one-step ahead forecast errors) and in the second column
of Table 15 are quite clear. The VAR model without cointegration for the data
in first differences clearly gives the best one-step ahead forecasts. The average
rank of N-ME-2 is 1.7, and its closest competitor is a multiple equation seasonal
cointegration model with average rank 3.2. The N-ME-2 model offers the lowest
RMSPE values for 5 out of 7 data sets.

When we consider the results in Table 12 and those in the third column of
Table 15, we observe that the results for one-step-ahead forecasts extend to the
case of four-step ahead forecasts. Again the VAR model for first differenced data
yields the best forecasts (2 out of 7 data sets and lowest rank), and again the
seasonal cointegration methods comes as a good second. The difference between
the performances of the various models become smaller, though.

The results in Table 13 and the fourth column of table 15 indicate that for
longer forecast horizons, the seasonal cointegration methods (and in particular, the
multiple equation method with restricted intercepts) improve upon the periodic and
N-ME methods.

Finally, when we average over all forecasts as in Table 14, and the final column
of Table 15, we observe that the differences between the various methods have
decreased even further.

When we compare the performance of the single equation methods with that
of multiple equation methods, we do not find clear-cut signs that our approach
consistently outperform the other. Indeed our empirical findings suggest that for
shorter horizons the nonseasonal VAR for first differenced variables is preferred,
while in general (also for longer horizons) the seasonal cointegration models seem

to yield the most accurate forecasts.
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5 Concluding remarks

We have analyzed periodic and seasonal cointegration models for bivariate quarterly
observed time series in an empirical forecasting study. We included both single
equation and multiple equations methods. A VAR model in first differences with
and without cointegration restrictions was also included in the analysis, where it
served as a benchmark. Our empirical results indicate that the VAR model in
first differences is best if one-step and four-step ahead forecasts are considered.
If one considers the cointegrated models only, the seasonal cointegration models
are the best. This conclusions also extends to longer forecast horizons. Hence,
when comparing periodic versus seasonal cointegration models, we find that the
seasonal cointegration models tend to yield better forecasts. Finally, there is no clear

indication that multiple equation methods improve on single equation methods.
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A Tables

Table 1: Testing for seasonal unit roots in univariate time series.

tr, tﬂz F7T377T/1 FTl'lfo/l Lags
GER C -0.50 -1.48 6.66* 3.86 1
Y -1.05 -5.15% 4.01 9.65* 1-2
ITA C -1.63 -1.62 4.43 4.08 1-5
Y -1.80 -2.19 3.75 4.14 1-2
JAP C -0.08 -1.78 13.21% 7.30% 1,4
Y 0.69 -2.05 5.18 3.75 1
SWE C -0.76 -2.30 7.79% 5.70 -
Y -0.51 -2.30 4.65 3.95 -
UK C -3.02 -1.79 5.70 5.54 1, 4-5
Y -1.97 -3.67* 57.6* 42.34% -
USc,y C -0.90 -2.20 4.69 3.98 1-6
Y -1.71 -2.27 13.6* 9.10* 1-2
USmy M -0.11 -2.28 3.07 2.94 1, 4-6
Y 0.53 -3.33* 13.43* 9.92%* 1,3

* Significant at the 5% level. Seasonal dummies and trend are included in each
equation. Lags denotes the number of lagged fourth-order differences in the
auxiliary test regression.

Table 2: Testing for single equation periodic cointegration (Wald-tests).

Quarter Lags
Quarter 1 2 3 4 All Ager  Agyy
GER 17.00%* 4.82 5.89 3.11 19.64 1-5 1
ITA 2.98 7.03 12.49% 1.91 16.10 1-3 -
JAP 10.40 9.07 9.12 2.06 21.05 1,4 3,4
SWE 6.41 17.52% 3.03 7.82 19.35 1,4 -
UK (1) 1.26 12.11%* 5.47 0.45 16.94 1,5 1-3
USc,y 7.47 3.51 5.81 4.26 16.75 1,4 1,3-5
USyy (1) | 0.35 1.33  11.79%  2.60 6.19 1, 4-6 -

* Significant at the 5% level. Ay, and seasonal dummies are included in
each equation. All dependent variables (consumption or money stock)
are in seasonal differences. A (1) indicates that ¢ = 1 and thus the use
of the first difference filter for y;.
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Table 3: Single equation periodic cointegration models.

- R _ 9 (1) (4)

A m 9. | R© AR(1) AR(4) ARCH ARCH JB

GER, s=1 | -0.47% 0.17* 1.00* | 0.85 3.18 278 002 021 145

ITA, s=3 | -0.12% - 0.94* [ 0.92 006 075 036 019 453

JAP, s=1 | -0.27% -0.38* 0.92* | 0.80 0.70  1.65 026  0.63  3.20
SWE, s=2 | -047% -0.39%* 0.72% | 0.30 0.04 029 042 022  37.0%
UK, s=2 | -0.74% -1.48% 0.85* | 064 140 183  0.01 123 8.34%

USyry, s=3 | -0.07* -1.89% 0.64* | 090 171 100 242 1.00 161

* Significant at the 5% level.

Consumption or money stock on the left hand side in

the equation. AR concerns the F-version of the LM test for residual autocorrelation,
ARCH is the F-version of the LM test for ARCH and JB is the Jarque-Bera test for
normality.

Table 4: Testing for weak exogeneity in single equa-
tion periodic cointegration models.

Lags  Deterministics t3 F5

GER 1, 4-5 I 0.76 0.58
ITA 1-5 I 0.87 0.76
JAP 1-4, 7 I 0.15 0.02
SWE 1-2 I 1.20 1.44
UK (1) 14 I, SD 1.66  1.36
USary (1) | 1,3-5 I, SD 2.18%  4.74%

* Significant at the 5% level. The test statistics are
based on AR(p) models for independent variables
in the PCM models with cointegration relations (z)
added, see Boswijk and Franses (1995) for details.
A (1) indicates the use of first difference filters. Sea-
sonal dummies were not found to be significant in
the cases Y is transformed into fourth differences.
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Table 5: Testing for cointegration in periodic VAR models.

GER ITA JAP SWE UK UScy USwmy 95%
Lags 2 2 2 3 3 4 3
P-ME-1
Hgp:
r=0 41.46* 830.9* 43.28* 328.7* 78062* 56.51* 20.70 36.85
r<1 1.72 7.84* 9.19%*  30.48* 17.85* 3.25 7.73 4.69
P-ME-2
Hgp:
r=0 40.33  97.26* 73.84* 62029* 38346* 233.9*  79.55* 57.00
r<1 1.29 8.38* 0.70 9.68* 751* 2.71 1.60 4.83

* Significant at the 5% level. P-ME-1 indicates a PVAR model with seasonally
varying intercept included, while P-ME-2 indicates a PVAR model with both
seasonally varying intercept and trend included. Critical values are based on
our own simulations. Lags correspond to the order of the PVAR model, as
described in section 2.2.

Table 6: Testing for single equation seasonal cointegration.

iz, Lags iz, Lags Fronz, Lags

GER -2.18 1, 3-5 -0.76 1-4 13.3* 1,4

ITA -1.93 1-2 -1.17 1-3 5.41 1-3

JAP -1.83 1, 4-5 -1.41 1-4, 7 17.6* 1-3

SWE -3.33 1-2 -2.09 1-2, 4 14.9* 3-4
UK -2.74 1-4 -1.62  1-2, 4-6 7.67 1, 3-4
UScy | -264 12,45 | -210 15 478 1-2, 4-5

USay | -3.95* 1, 4-5 -1.87 1,4-6,9 3.74 1-7

* Significant at the 5% level. Intercept and trend are included in
the cointegration regression for the zero frequency. Intercept and
seasonal dummies are included in the cointegration regression
for the seasonal frequencies. Lags correspond to the auxiliary
regression and concern fourth order differenced variables.
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Table 7: Single equation seasonal cointegration models.

- (1) (4)
Lags | 713 A | B AR(1) AR(4) ARCH ARCH  JB

GER 1,3-4 | -0.40* 0.06 | 0.85 0.36 0.50 0.34 0.50 0.22
JAP 1,4 | -0.48* 0.07 | 0.83 0.63 1.75 0.26 0.82 4.29
SWE 1 -0.38*%  0.12 | 0.31 0.32 2.26 1.45 0.93 1.83

* Significant at the 5% level. An intercept and Ay, are included in each equa-
tion. AR concerns the the F-version of the LM test for residual autocorrelation,
ARCH is the F-version of the LM test for ARCH and JB is the Jarque-Bera
test for normality.

Table 8: Testing for weak exogeneity in single equation
seasonal cointegration models.

Lags  Deterministics | t3,, 5., 129
GER | 1,4-5 I 0.65 -1.22 0.92
JAP | 14,7 I -1.87  -2.35%  5.17*
SWE 1-2 I -0.21  -2.02*%  2.10

* Significant at the 5% level. AR(p) models for indepen-
dent variables in the EGHL equations with cointegration
relations added, see EGHL for detailes.
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Table 9: Testing for seasonal cointegration in VAR models.

S-ME-1 S-ME-2 S-ME-3
Frequency: 0 T /2 0 m /2 0 m /2
p-r Lags
GER 1 6.56 32.75%  22.78* 6.56 15.04 21.83 6.56 15.04 30.76 2
2 2.32 3.77 6.25 2.32 3.98 5.45 2.32 3.98 5.86
ITA 1 27.73* 11.9 12.36 27.73* 9.56 12.69 27.73* 9.56 40.42* 2
2 4.67 5.08 0.64 4.67 2.06 1.88 4.67 2.06 12.40
JAP 1 14.60 10.34  35.14* | 14.60 4.80 27.75% | 14.60 4.80 32.69 3
2 0.86 1.60 5.74 0.86 0.93 5.74 0.86 0.93 7.17
SWE 1 19.11% 13.71 24.96* | 19.11* 13.50 25.29 19.11*  13.50 38.00* -
2 4.35 3.44 7.39 4.35 3.63 7.38 4.35 3.63 7.76
UK 1 17.60 28.51*  75.37* | 17.60 28.41*  75.29*% | 17.60 28.41*  108.4%* -
2 0.01 8.09 21.09%* 0.01 8.20 21.03* 0.01 8.20 23.09%*
USc,y 1 28.52*  21.05*  36.75* | 28.52* 20.91* 36.71* | 28.52* 20.91*% 84.35* 1
2 2.25 7.43 4.34 2.25 7.25 4.43 2.25 7.25 17.80%*
USmy 1 10.56 15.97  28.70* | 10.56 28.92 28.92*% | 10.56 28.92 61.03* 2
2 3.03 5.62 4.80 3.03 5.04 5.04 3.03 5.04 14.06

* Significant at the 5% level. S-ME-1 denotes the Lee (1992) specification with unrestricted seasonal
intercepts, S-ME-2 denotes the same specification with restricted seasonal intercepts, S-ME-3 denotes
the Johansen and Schaumburg (1999) specification with restricted seasonal intercepts.
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Table 10: Nonseasonal models (with
and without cointegration).

VECM VAR
p-r Trace Lags | Lags
GER 1 11.70 4 4
2 1.94
ITA 1 27.73* 5 5
2 4.67
JAP 1 10.32 5 5
2 0.39
SWE 1 19.11% 3 3
2 4.35
UK 1 17.60 3 3
2 0.01
USc,y 1 21.07* ) 5
2 4.35
USmy 1 10.83 4 4
2 1.14

* Significant at the 5% level. Lags
are selected using AIC and BIC.
Deterministic seasonal dummies in-
cluded in each case. For the VECM
we use the familiar Johansen trace
test statistic for zero frequency coin-
tegration.

Table 11: Root mean squared prediction errors: one-step ahead
forecasts.
GER ITA JAP SWE UK UScy USwmy

P-SE 1.294 0.484 1.246 1.816 3.663 - 1.708
P-ME-1 | 2477 0.691 0.760 2.804 3.381 1.344 -
P-ME-2 - 0.682 1.054 1.586 3.523 1.371 1.883

S-SE 1.277 - 0.922 1.781 - - -
S-ME-1 | 1.263 - 0.663 2.087 2.365 1.040 1.466
S-ME-2 - - 0.758 - 2.374 1.044 1.455
S-ME-3 - 0.430 - 2.030 1.952 1.076 1.402
N-ME-1 - 0.395 - 2.080 - 1.066 -
N-ME-2 | 1.135 0.432 0.616 1.829 1.878 0.793 1.201

The smallest RMSPE for each data set is underlined.
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Table 12: Root mean squared prediction errors: four-step ahead

forecasts.
GER ITA JAP SWE UK UScy USamy

P-SE 2.335 1.899 0.855 1.974 5.971 - 3.890
P-ME-1 | 3.170 1.434 1.178 4.066 5.244 2.107 -
P-ME-2 - 1.718 2.225 2487 5.710 1.407 3.342

S-SE 2.320 - 1.752  1.402 - - -
S-ME-1 | 1.788 - 1.349 2.065 4.049 1.454 3.754
S-ME-2 - - 1.316 - 4.046 1.453 3.763
S-ME-3 - 1.493 - 1.993 3.909 1.678 3.697
N-ME-1 - 1.416 - 2.393 - 1.878 -
N-ME-2 | 2.154 1.748 1.460 1.541 3.849 1.295 3.664
The smallest RMSPE for each data set is underlined.
Table 13: Root mean squared prediction errors: eight-step
ahead forecasts.

GER ITA JAP SWE UK UScy USamy

P-SE 4.302 3.153 1.712 2.677 8.791 - 5.603
P-ME-1 | 4.244 2.090 1247 4.703 10.92  3.590 -
P-ME-2 - 3.035 4.298 3.052 10.29 1.871 4.622

S-SE 4.536 - 3.282  2.111 - - -
S-ME-1 | 3.631 - 2.801 3.600 7.822 2.897 5.110
S-ME-2 - - 2.736 - 7.819 2.902 5.103
S-ME-3 - 2.593 - 3.515  7.648 3.291 5.130
N-ME-1 - 2.415 - 4.145 - 3.668 -
N-ME-2 | 4.259 3.589 3.310 2.155 7.577 2.154 5.113

The smallest RMSPE for each data set is underlined.

Table 14: Root mean squared prediction errors: all forecasts.
GER ITA JAP SWE UK UScy USmy
P-SE 4.022 3.028 1.680 2.658 8.224 - 6.176
P-ME-1 | 4.050 2.126 1213 4.447 9.143  3.161 -
P-ME-2 - 2.723 3950 2.798 8311  1.647 3.879
S-SE 4.254 - 2,987 2.126 - - -
S-ME-1 | 3.473 - 2.749 3.513 6.733  2.739 5.757
S-ME-2 - - 2.738 - 6.734  2.755 5.756
S-ME-3 - 2.346 - 3.516  6.572  3.026 5.765
N-ME-1 - 2.182 - 3.777 - 3.335 -
N-ME-2 | 4.065 3.157 3.155 2.160 6.453 1.903 5.735

The smallest RMSPE for each data set is underlined.
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Table 15: Average ranks of the various models (Aver-
aged over countries and data sets).

Method™ 1-step 4-step 8-step All steps
P-SE 5.0 4.5 4.2 3.8
P-ME-1 5.7 4.8 4.2 4.3
P-ME-2 5.2 4.5 3.8 3.8
S-SE 3.3 3.3 3.7 3.7
S-ME-1 3.3 3.7 3.5 3.3
S-ME-2 3.3 3.5 3.0 3.5
S-ME-3 3.2 3.4 4.0 4.2
N-ME-1 3.7 4.3 5.3 5.3
N-ME-2 1.7 2.6 3.4 3.8

* P-SE denotes a single equation periodic cointegration
model, whereas P-ME-1 and -2 concern multiple equa-
tion models (with seasonally varying intercepts and with
seasonally varying intercepts and trends, respectively).
S-SE denotes a single equation seasonal cointegration
model, whereas S-ME concerns multiple seasonal coin-
tegration methods (-1 is the Lee specification with unre-
stricted seasonal intercepts, -2 imposes resrictions on the
seasonal, and -3 is the Johansen and Schaumburg spec-
ification with restricted seasonal intercepts included).
N-ME-1 is a VECM in first differences with constant
seasonal dummy parameters, while N-ME-2 denotes a
VAR model in first differences, also with constant sea-
sonal dummy parameters.
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