PANEL REGRESSION
WITH UNOBSERVED CLASSES

Mickael Salabasis* Mattias Villanif

SSE/EFI Working Paper Series in Economics and Finance

No. 353
January, 2000

Abstract

We propose a panel regression model with a predetermined and
fixed number of classes, where each class is defined by its parameters,
but any reference as to which group any observation belongs to is
absent. The classes or groups are rationalized by a willingness to
attribute some of the observed heterogeneity on a higher level than the
individual. The estimation procedures have a distinct Bayesian flavor,
relying on the Gibbs sampling scheme for parameter estimation, which
has proven effective in situations with missing or latent variables.
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1 Introduction

Heterogeneity is a major issue in the econometric analysis of panel data.
A quite common practice is to initially address the problem by splitting
large panels into smaller parts, conducting the analysis in each subpanel
separately. The validity of such a procedure rests on the assumption of any
observed heterogeneity not necessarily being individual specific exclusively,
but that at least part of it can be attributed to the existence of a, usually
small, number of distinct response types. This behavioral clustering can be
interpreted as a form of heterogeneity, residing at a group level, where the
homogenous classes are either actually believed to exist or simply define a
convenient structure for the problem at hand.

This common practice discloses a link between econometric analysis of
panels and multilevel models, extensively used in social and medical research.
Paraphrasing Hox [1995] slightly, one might argue that there should be a place
for the multilevel paradigm in the analysis of panel data as economic research
often concerns problems that investigate the relationship between agents and
the economy, where the general concept is that agents interact with the
social and economic contexts to which they are associated. One possible
interpretation of this statement is that agents, and specifically their behavior,
are influenced by the groups they belong to or associate themselves with,
while at the same time said groups may be influenced by their members. The
described state of nature can be conceptualized as a hierarchical system, and
once established, ignoring groups and group effects may render any standard
statistical technique invalid. For the introduction of a systematic statistical
approach and development of tools to analyze such structured data, the work
of Aitkin and Longford [1986] has played a major role, while more recent
advances are covered in Goldstein [1994].

Contrary to multilevel analysis, where the membership, or allocation,
of observations to classes is known, the analysis of economic data may be
obstructed by the lack of specific information about the hierarchy. Though
focus is often set on well defined groups, such as men and women or youths
and adults, it is common with more diffuse definition of groups, such as
high and low ability or stayers and mowvers, where suggestions offered on
how to classify observations are frequently vaguely formulated or difficult to
apply. Thus, as the definition of groups, and the subsequent classification
of individuals as members, may be subtler, we may need to recover them
by indirect means. This paper will address the problem of inference in a
situation where a class structure is plausible, as such or as an approximation,
the number of classes is known and any reference to class membership on the
individual level is unavailable.



In section 2, after a brief description of a simple multilevel model, we
address the issue of latent class membership. We show how a multi level
model may be transformed into a mixture model by assuming a random
classification model for group membership. Section 3 focuses on estimation,
where the general approach chosen is Bayesian. As the computational bur-
den becomes unmanageable even for small problems the particular approach
taken is that of numerical evaluation of the posterior by means of the Gibbs
sampler, which neatly solves the implementation of the random allocation
model and has proven itself effective in estimation of mixture models. The
procedure is then illustrated on a synthetic data set in section 4, and we
conclude in section 5 with possible extensions and elaborations.

2 Model
2.1 Multi Level Model

Consider the simple multilevel model
yij = O,/j + ﬁjﬂfi]‘ + Eij, = 1,2, oy NG j = 1,2, ceey k’,

where standard interpretations can be given to the intercepts, slopes and
residuals. Subscripts ¢ and j index the level 1 and 2 units, which we will
refer to as individual and class respectively. We may extend the model by
including further fixed explanatory variables as well as introducing repeated
measurements. Thus for individual ¢ in class j at time ¢t we write

Yije = Xi5e8; + €ijt,
where the intercept is included in 3;.
Making the indexing more consistent, we introduce a vector of indicator
variables z such that z; = j if individual 7 is a member of class j. With

standard assumptions about the distribution of the errors we may write the
model for an arbitrary individual ¢ as

yi|{z =37}~ Nr (Xzﬂj, Ei) . (1)

where y; the (T x 1)-vector containing measurements of the response, X; the
(T' x p)-matrix containing measurements of the predictors for individual 4,
and Y; is a possibly non-diagonal covariance matrix which can be restricted
to be equal for all individuals within a class or even equal for all individuals
in the population.

Not concerning ourselves with more complex covariance structures, as
those associated to various random effects specifications, we limit attention
to variance components defined as ¥; = 0]2-1 for all members of group j.

3



2.2 Latent Class Membership

Contrary to multilevel analysis where the hierarchy is known, either as a
result of the sampling scheme used or the experimental design, the analysis
of economic data may be obstructed by the lack of information about the
hierarchy.

When the true membership of observations unknown, that is z is not
observed, conditioning on class is not possible for estimation purposes. A
suggested method for circumventing this missing data problem is to assume
class membership is random and that the probability of belonging to class j
is the same for all individuals or, in more formal terms, to assume

p(zi = j) = wy, (2)

which can be interpreted as our sample being a random sample from a mixed
population with population proportions given by wy, ...w,. This simple and
realistic description means that the multilevel model in equation (1) may be
rewritten as a mixture,

k
Yi~ Zj:l w;Nr(XiB;,071), (3)

reflecting the possibility of any individual potentially being a member of any
class.

3 Estimation

3.1 Model Specification

As Bayes estimators for mixtures are well defined, at least in case of proper
prior distributions, the general approach in this paper will be Bayesian; for
a convincing presentation of the paradigm see Bernardo and Smith [1994].

The starting point of any Bayesian analysis is the joint distribution for
all quantities of the model, both known and unknown. Next, conditioning on
what has been observed, we obtain the distribution of the unknown quantities
conditional on the observed sample, the posterior distribution. The unknown
parameters in the proposed model are 8 = (B84,...,3;), 6> = (03,...,0%),
w = (wy, ..., wy) and the latent z = (z1, ..., 2,).

After some reasonable assumptions of independence, the joint distribution
of all quantities, known and unknown, can be described by the model

p(y,B,0% w,z) = p(y|B,0°,2)p(B)p(c”)p(z|w)p(W). (4)



Completing the specification, and in a standard fashion, we select priors

p(w) ocwi e wpk
p /63) o Ny (o, UgI) ) (5)

D crj’z) x Ga(a,b),

that is an informative Dirichlet prior for the population weights and proper
conjugate priors for the regression parameters. The choice of a conjugated
model is again one of convenience, any proper prior will do fine. The selection
of parameters (8, py, 03, a,b) is either based on prior information available
or, lacking any relevant information, in such a way as to make the priors
appropriately vague.

A potential, and often real, problem with specification (4) is that, lacking
any prior information, the model is invariant to permutations of the class
labels, and is therefore unidentified. In the literature, this phenomenon is
called label switching and solutions offered include the introduction of some
identifiability constraints, various reparametrizations of the model, and post
processing the output, of which the first is often preferred and chosen here.
A natural choice of parameter to impose an identifiability constraint on is 3.
One such restriction could be

l ! !
ﬁ§)<ﬁ§)<...<ﬁ§c),

where ﬂy) is the [-th element of B;. Thus, groups are defined in ascending
order of the I-th element, though w or X, in case of group specific variances,
could also be used.

In accordance with the above the model is rewritten as

p(y.B,0% w.2) = p(y|B,0", 2)p(B)p(a”)p(2lw)p(W) Ly _y0_ _z0  (6)

where [ 5 is an indicator function for the restricted 3-space.

WepP<..<g®

Though the conditioning of equation (6) on the sample, for particular
prior distributions, results in a posterior distribution that can be written in
closed form, the computing time needed becomes prohibitively large even for
a small number of groups k£ and moderate sample size n as it involves the
evaluation of k" terms.

With the direct Bayesian approach disqualified, the approach taken is that
of numerical evaluation of the posterior by the Gibbs sampler, for details
and further references see Gilks, Richardson and Spiegelhalter [1996] and
especially Robert [1996] in that volume.



3.2 Full Conditional Posteriors

Implementation of the Gibbs sampler requires calculation of the full condi-
tional posteriors of all parameters of interest.

3.2.1 Full conditional posterior of 3,

For class 7 we have the following full conditional posterior
ﬂj|Ya /B_ja 0-27 W,Z NNp(Bja Qj)a

where

Q = [0;°XX; +0,°0 7"
By = Qlo*XiF+05 o,
where y; is the n;T-dimensional vector containing the stacked y; for the n;
observations currently allocated to class j and Xj contains their respective

X; stacked, and B_; the collection of all parameter vectors with the exception
of 3;.

3.2.2 Full conditional posterior of aj_Q

For the variances we get the full conditional posterior

F; — Xi8;) 7 — X,8;))

-2 2 leT 1
o;°ly,B,0”;,w,z ~Ga(a+ 5 b+ 5

where n;, y; and 5(]- are defined as above. For a common variance specifica-
tion suppress the index j.
3.2.3 Full conditional posterior of w
For the population weights the full conditional posterior is given by
wly, B, 0% z ~Dirichlet(ny + 61, ..., ny + O1),

where n; defined as above and 41, ..., 6, are hyperparameters reflecting a belief
about the relative sizes of the groups, as well as the strength of that belief.
3.2.4 Full conditional posterior of z
For the allocation we get

m(z = jly, B, 0% w,z_;) o< wiNp(y; — Xiﬁj,agl).

The allocation of observations to groups is carried out using the discrete
distribution implied by {7(z; = j|-),j = 1,..., k}, for details see Press [1989].



3.3 Gibbs Sampler Implementation

With the missing data structure introduced as in section 2.2 and the full
conditional posteriors derived in section 3.2 the implementation of the Gibbs
sampler is straightforward.

Given some initial allocation and starting values for all model and prior
parameters, the Gibbs sampler proceeds as follows

Step 1. Sample new weights w based on the current cardinality of each class
and the relevant posterior in section 3.2.3.

Step2. Cycle through all n observations, calculate for each observations k
numbers in accordance with section 3.2.4 and sample a new allocation z;
from the resulting individual discrete distribution. Recalculate current
cardinality n; of each class.

Step 3. Given the allocation from step 2 create y; and Xj, the stacked
vectors and matrices. Cycle through all k classes and sample new
B, from the posterior distribution in section 3.2.1 such that the order
condition in model (6) is not violated.

Step 4. Given the allocation from step 2 create the residuals y; — Xj. Cycle
through all k£ classes and sample new 0]72 from the posterior distribution
in section 3.2.2.

Repeat until convergence of the Gibbs sampler.

4 Illustration

To illustrate the suggested procedure we consider a synthetic data set sup-
porting the model without being trivial, and designed in such a way that we
may gain some insight into problems that may be encountered in practice.

4.1 Simple Model Specification

We generate a sample of n = 200 individuals and 7" = 5 measurements from
a simple model with £ = 2 classes, p = 2 regressors, an intercept and a linear
trend, common variance and parameters in 3 selected in such a way that the



generated data will support the model without being trivial.

N = 200, T=5p=2k=2
wy = P(z=1)=0.40
yii | {z=j}= Xﬂj + Eit (7)

1 2345Y)
X = (1 111 1)
B, = (1.00,1.00)",8, = (1.25,0.75)"
ei ~ N;(0,0°5),0% = 1.

A typical sample is illustrated in Figure 1, where each point represents the
individual estimates of intercept and slope. As expected the variation along
the intercept dimension is greater, but the two groups are discernible, though
not accentuated.

<Figure 1 about here>

4.2 Some Practical Considerations

To apply the Gibbs sampler we need to complete the prior specifications
with parameter values §; and & for the weights, p, and o3 for the regression
parameters, a and b for the error variance, select some starting values, decide
on burn-in length and stopping time, as well as choose a regressor for the
identifying restriction.

Reflecting a prior belief of equal population proportions we select §; =
62 = 10, for the regression parameters we set p, = [0,0]' and o2 = 100,
and for the variance, or rather the precision, a = b = 0.01. As there is only
one explanatory variable, the trend, it is selected for identification purposes.
Thus we label groups in ascending order of their trend coefficient, and restrict
any sampled values so that ,8&1) < ﬁg).

In theory starting values are of minor importance as they will not affect
the stationary distribution of an irreducible chain. In practice, and especially
for slow mixing chains, some care should be exercised, to avoid lengthy burn-
in times, for some suggestions see Gelman and Rubin [1992]. Thus, to obtain
starting values we begin by estimating B and 62 unconditionally, setting

/51,(0) = B—f‘é - diag (X,X)il
Ba) = Bts - diag (X'X)™

2 a2
w, = Wy,



where k is set to 0.05, but any small value will do. An initial allocation is
chosen based on the relative distances of the individual estimates of intercept
and slope from B3 ) and B, ).

The length of necessary burn-in depends on starting values, the rate of
convergence of the Gibbs sampler to the desired stationary distribution and
the degree of approximation demanded. In theory it may be determined
analytically though, in most cases, the necessary calculations present an in-
surmountable problem. In practice visual inspection of output is the most
commonly used method while other available rules of thumb include the
suggestion by Geyer [1992] that, with reasonable starting values, a burn-in
length of between one and two percent of total length is adequate.

We also need to determine a stopping time, the goal being adequate final
precision. For a small problem as above, where every iteration is very fast,
the issue is of minor importance, but with increasing sample size, number of
measurements, classes and covariates, the issue of computational efficiency
becomes real. For some guidance on formal methods of deciding stopping
time we refer to Raftery and Lewis [1996]. As economy is not really an issue
for the example at hand, and adhering to Geyer’s rule of thumb, we discard
the first 1000 iterations as burn-in, and run the Gibbs sampler for another
100, 000 iterations.

4.3 Results and Inference

Any statistic based on the Gibbs sampler output is valid for inference as
long as the chain has converged. Addressing the question of convergence we
may inspect the evolution of the posterior mean of parameters of interest. In
Figure 2, the posterior means of 3 are plotted, and we note a relatively rapid
convergence, within the first 20000 iterations for all coefficients. The same
plots for the weights and variance display similar behavior. The convergence
properties of the parameter estimates were further corroborated by their
estimated Monte Carlo variances, evaluated every 20000 iterations by running
a large number of parallel chains.

<Figure 2 about here>

The posterior distributions of the parameters of interest, as in Figure 3 for
the regression coefficients, are a concise and complete way to summarize the
results of the Gibbs sampler. Visual inspection of these particular posterior
distributions seem to indicate a very slight truncation for the slopes, which is
probably a result of the ordering condition. A more complete and manageable
presentation of the results is presented in Table 1, with some selected sample
percentiles, means and standard deviations for the posterior distributions
of B, wy, and o2. To facilitate the assessment of the results we also report



the model and sample equivalents, estimated assuming known allocation.
As expected, the Gibbs sampler managed to discriminate the two classes,
resulting in good estimates overall.

<Figure 3 about here>

<Table 1 about here>

A variable with interesting inferential possibilities is the introduced latent
allocation z. One possibility is to use the posterior modal allocation and other
relevant posterior distributions to fit any preferred classification model, to
be used for quick membership predictions of new individuals. Another pos-
sibility, equally valid, would be to actually fit any such classification model
within the Gibbs sampler. This is illustrated in Figure 4, where three labeled
contours for the probability of being a member of the first class, estimated
in each iteration by a linear discriminant which relies on calculations similar
to those performed for the allocation in section 3.2.4, have been averaged.
We also compare the true allocation with the posterior allocation of obser-
vations to class one. This comparison is not possible in applications but is
done to illustrate the degree of correspondence between actual and sampled
allocation.

<Figure 4 about here>

5 Remarks

5.1 Problems and Pitfalls

Several things influence the performance of the proposed model and esti-
mation procedure, where most problems are related to the definition and
identification of classes.

Critical factors for a good performance is the similarity of members within
a class and the distinctiveness of classes relative each other. For the model
considered, the similarity of members within a class is primarily governed by
the precision of the individual estimates of the regression coefficients, where,
all else equal, smaller sample variation in individual estimates on average
implies clearer definition of classes. Still, within class similarity is a relative
concept as it depends in a sense on the distinctiveness of classes, as measured
by some location distance. The model may perform very well even when the
within class variation is large if the classes are located far from each other.
This is illustrated in Figure 5 for the model used in section 4, where confi-
dence ellipsoids for the two classes are plotted. Holding the means constant,
decreasing similarity within classes, due to for instance a larger error variance
or fewer observations per individual, would imply wider confidence regions,
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a greater overlap between classes, and difficulties in estimation due to in-

adequate distinctiveness. Thus performance is obviously problem dependent

and it may be difficult to state prior to estimation what the risks are.
<Figure 5 about here>

With a fix number of classes k, it is necessary that data actually supports
the model. By this we mean not only that & is correctly specified but also
that the relation of within and between variation, as defined above, is such
that we may have confidence in the Gibbs sampler actually picking out the
classes. Otherwise, when none or too few observations are allocated to any
class we will have problems sampling new values and get stuck in areas of low
probability; this despite of the theoretical irreducibility of the chain. Still
this computational problem may occur even under the best of circumstances.

Another cause of concern is identification and identifying restrictions. As
mentioned in section 3.1, when estimating mixtures with the Gibbs sampler,
if not properly identified we may have trouble discriminating between the £!
possible different posterior modes. When using an order constraint, as we
do, there may be better or worse choices of element to order upon. Again
the optimal decision depends on both the within and between variation, as
well as the actual distance between class loci, and it may be difficult to form
an opinion a priori.

The allocation step in the Gibbs sampler, and in particular the calculation
of the individual discrete distributions of membership, is also a source of
potential problems of numerical nature. Coupled with the trapping state
complication mentioned above, outliers may have a severe detrimental effect
on performance.

Otherwise, some limited experimentation indicates, as expected, that the
performance is enhanced with increasing sample size, increased number of
measurements, and distinctiveness of mixture components.

5.2 Extensions and Elaborations

Improved performance and increased richness of specification, are two dimen-
sions along which extensions and elaborations may be discussed.

As discussed in section 5.1, we may experience practical and technical
problems when estimating the mixture. Practical problems are associated
primarily with the definition of classes while the technical problems are of
computational nature, frequently connected to the former. A source to which
many of the problems can be traced is class membership and the random
membership model presented in section 2.2. The mechanism at work is sim-
ple, and may result in the Gibbs sampler being trapped in areas of low
probability while exploring them, as is necessary. In the literature, the main
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direction suggested for solving both problems are various reparametrizations
as in Gilks and Roberts [1996] and Robert [1996]. Another suggested direc-
tion, perhaps more natural and certainly offering very interesting possibili-
ties, is through the introduction of the number of classes into the analysis, as
in Green [1995] and Richardson and Green [1997]. A third possibility, when
auxiliary information is available, would be to extend the membership model
from the random used to something more elaborate like the probit, where
the work of Chib and Greenberg [1998] might offer valuable insights.

An obvious venue for increased model flexibility is the specification of
the covariance matrix, which could be generalized to handle more intricate
structures and extended to specifications taking into account the time series
aspect of panels. The obvious way to do this is through the prior specification
which may be altered to comply with one or two way random effects, at a
moderate computational cost.

Finally, the idea of the class structure model, presented in section 3, is
that the effect of the regressors in X operate at a group level, the effect of the
variable depending on group membership. The flexibility of the model can
be further increased by the introduction of individual and population effects,
that is independent variables operating at an individual and population level.
The model for an individual could then be written as

yi | {zi = j} ~ Np(ai Xy + 8;Xa; +vXy;, Xi), (8)

where variables classified as X; are interpreted as random or fixed individual
effects, while variables classified as X3 would correspond to the independent
variables of a standard panel regression, that is variables with an effect that
does not depend on group membership and is the same for all individuals.
What makes model (8) interesting is the fact that it can be used to specify
anything from a simple panel regression model, where all independent vari-
ables are classified as being of type 3, to something resembling a random
coefficient model, where all independent variables are classified as being of
type 1, with an option of mixing any or both with variables of type 2 to
create hybrid models of varying degrees of complexity.
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Table 1: Summary of Gibbs sampler results; selected percentiles, mean and
standard deviation for regression coeflicients, variance and weight. Model
and sample values, where the latter were estimated with OLS assuming
knowledge of the true model and individual class membership, are shown to
facilitate comparison and appraisal.

Posterior percentiles, mean and standard deviation

Mo.os Mo2s Moso Mogs Mogs | mean  std true  sample
10875 0.950 0.998 1.041 1.097 | 0.993 0.068 | 1.000  0.992
52) 0.690 0.856 0.977 1.105 1.308 | 0.985 0.189 | 1.000  1.006
,Bgl) 1.164 1.202 1.229 1.258 1.304 | 1.231 0.042 | 1.250 1.238

@ 10562 0.702 0.792 0.880 1.011 | 0.789 0.137 | 0.750  0.767
w; | 0256 0.338 0403 0475 0586 | 0.410 0.100 | 0.400 0.405
o2 0960 1.006 1.041 1.077 1.133 | 1.043 0.053 | 1.000 1.039
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A typical sample
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Figure 1: A typical sample of n = 200 individuals from the simple model
described in (7). Points represent individual estimates of the regression co-

efficients.

o : observations actually sampled from class 1
x : observations actually sampled from class 2
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Figure 2: Posterior mean evolution of regression coefficients, iterations in
thousands.
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Figure 3: Summary of GIBBS sampler output for all regression coefficients;
both groups. The slight truncation in the distributions for the slopes is an

effect of the order restriction.
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Classification, class #1
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Figure 4: Classification, true and posterior for the first class, with three
contours for the probability of an individual being a member of the first class
equal to 0.05,0.50 and 0.95. The contours are based on a linear discriminant,
calculated in each Gibbs sampler iteration for sampled values on all relevant
quantities, and averaged over the whole cycle.

o : observations actually sampled from class 1

x : observations with posterior allocation to class 1
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Confidence ellipsoids
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Figure 5: Confidence ellipsoids for both classes, dotted lines for class 1 and
solid lines for class 2, where both class means are marked with a circle. The
probability of a sampled individuals’ estimated 3 falling inside its relevant
outer, middle and inner ellipse is 0.90, 0.75, and 0.50 respectively.
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