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Abstract. In this paper the autocorrelation structure of the Exponential GARCH(p, q)

process of Nelson (1991) is considered. Conditions for the existence of any arbitrary

unconditional moment are given. Furthermore, the expressions for the kurtosis and the
autocorrelations of squared observations are derived. The properties of the autocorrelation
structure are discussed and compared to those of the standard GARCH(p, ¢) process. In

particular, it is seen that, the EGARCH(p, ¢) model has a richer autocorrelation structure

than the standard GARCH(p, ¢) one. The statistical theory is further illustrated by a few
special cases such as the symmetric and the asymmetric EGARCH(2,2) models under the

assumption of normal errors or non-normal errors. The autocorrelations computed from

an estimated EGARCH(2,1) model of Nelson (1991) are highlighted.
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1 Introduction

Recently, the moment structure of models of generalized autoregressive heteroskedasticity
(GARCH) has attracted considerable attention. These models, first considered by Boller-
slev (1986) and Taylor (1986), have become very popular in modelling and predicting
volatility. The knowledge about the conditions of existence of moments and parametric
definitions of moments is important when researchers want to know how well their esti-
mated GARCH models match stylized facts found in a large number of financial series
of sufficiently high sampling frequency. Typical stylized facts include little or no lin-
ear dependence in the series but high kurtosis of the observations and a slowly decaying
autocorrelation function for the squared and centred observations.

Bollerslev (1986, 1988) already considered the fourth moment structure of the standard
first-order GARCH model under the assumption of normality. He and Terasvirta (1999a)
gave a completely characterization of the moment structure of the general GARCH(p, q)
model. But then, fewer results are available for another popular GARCH model, the
exponential GARCH model of Nelson (1991). Breidt, Crato and Lima (1998) derived the
autocorrelation function of the logarithms of squared observations of this model. This
autocorrelation function may also be obtained as a limiting case from the so-called power
ARCH model; see He and Terésvirta (1999b) for discussion. He, Terdsvirta and Malmsten
(1999) derived expressions for the moments, the kurtosis, and the autocorrelation function
of the squared observations for a family of first-order EGARCH models, including that of
Nelson (1991). On the other hand, corresponding results have not yet been obtained for
higher-order EGARCH models.

The present paper intends to fill this gap. The results apply to Nelson’s model as well

as to the logarithmic GARCH model that Geweke (1986) and Pantula (1986) suggested.



The plan of the paper is as follows. In Section 2, conditions for the existence of any
arbitrary moment of a family of EGARCH models are derived. The expression for the
kurtosis is given as well. Section 3 contains the results on the autocorrelation function. In
Section 4, the general theory is illustrated by considering a special case, the second-order
EGARCH model. This Section also contains a numerical example. Section 5 contains

some conclusions. The proofs are presented in the Appendix.

2 Existence of unconditional moments

We begin with a necessary and sufficient condition for existence of unconditional moments
in the EGARCH(p, p) process. The results derived for the EGARCH(p, p) model apply
directly to the EGARCH(p, ¢) model with p # ¢ because the latter is always nested in a
model with p = ¢q. Assume further that p > 2. This is a technical assumption due to
the specific mixed moment notation used in this paper (certain moments are not defined
for p = 1). The results for the lower-order EGARCH processes may be obtained from the
EGARCH(2,2) model by setting the appropriate parameters equal to zero. The EGARCH
model is defined as

&y = Ztht (1)

where {z;} is a sequence of independent identically distributed random variables with
zero mean and finite fourth moment, and A; is a F;_i-measurable function, where F; 1 is
the sigma-algebra generated by {z;_1, z:—2, z:—3, ...} and positive with probability one.
Furthermore,
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Inhy = aot 3o cig(z—o)+ 22 Bilnhy, (2)
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where g(z;) is a well-defined function of z;. Equations (1) and (2) define a class of Ex-

ponential GARCH(p, p) models. For example, setting g(z;) = 0z, + w(|z| — E|2]|) in (2)



yields the EGARCH(p, p) model proposed by Nelson (1991).

It is useful to rewrite (2) in the multiplicative form

= (explao} 1T explasg(a-0)) [T 17 3)

This is because we are interested in the moment structure of {h?} instead of that of
{In h2}.
A useful representation for 22 can be found by applying expression (3) recursively as
follows. First, apply (3) to h? ;| in ﬁ h?f i. This yields an expression which is dependent
i=1

p
on h?_, but no longer on h? ;. Applying (3) to hZ_, in [] h?? ¢ completes the next
i=1

p
recursion. The appropriate expression for [] hfi after the k-th recursion, k& > p, which

=1
p
is a function of lags of [] hfﬁ‘j;ﬂ, where every 1, is a function of 34, ..., 3,, appears in
i=1
p "
Lemma 2 of the Appendix. The general expression of [] hfig ¢ where 3; > 0 is given by
i=1

Lemma 4 in the Appendix.

In order to obtain the desired results we define a (p X p) matrix

B By B3 - Bpor By
1 0 0 0 0
=0 1 o0 0o 0 |- (4)
0 0 0 1 0
and set
¢, =BT P 1 k> p, (5)

where 8 = (8, ..., 8,)" and ¢ = (#,, ..., #;)" such that

¢1:51

J
d)j Z:l ﬁi(/)jfia .7 = 27 ws Dy with (/)0 =1 (6)



Next, let

A(T) = max{|A;[} (7)

be the maximum absolute eigenvalue of the matrix I' where \;, ¢ =1, ..., p, are the eigen-
values of matrix I" and y(e?, w) =E(exp{wg(z;)}) for any real number w. Assume now that
the EGARCH process started at some finite value infinitely many periods ago. It turns
out that all unconditional moments of {e;} exist and are independent of ¢t as k — oo if
and only if all the eigenvalues of I' in (4) lie inside the unit circle, that is, A(T') < 1. In
that case, I'* — 0 and f% I = (I-T) " as k — oo. This is needed for the sequence {¢;,}
i=
defined in (5) to converge to a finite value, which, in turn, is required for any unconditional

moment of the EGARCH(p, p) process (1) and (2) to exist. From Lemmata 1 and 2 in

the Appendix we obtain

Theorem 1 Assume that y(ef, mayp;) < oo for an arbitrary positive integer m and that
Vom = E(\2t|2m) < 00. For the EGARCH (p,p) model (1) with (2), the 2m-th unconditional
moment exists if and only if

A(T) < 1. )

Under this condition the 2m-th moment of €, can be expressed as

P 0o
P, = Ee7™ = (exp{mag(1— > 871 IT 7(e*,me:) 9)
such that
Y1 =
j .
Y; = ;ai¢j7i7 d)OZ]-a ]:277}7
p .
P = ; Qi J>D (10)

where ¢, are defined in (5)-(6).



Proof. See Appendix.
Remark 1. Typically, an unconditional moment of {¢;} is expressed as an infinite product

of unconditional moments of {z:} computed from the fractional exponential function of
P ,
g(2). From (5) and (6) it follows that ¢, in (9) can be rewritten as ¢, =Y ;' T+ P~1=ig
i=1

for k& > 2p. When condition (8) holds, ¢, converges to a finite value, and this is sufficient

for the product ﬁ ~v(e9, mep;) to converge to a finite nonzero value as n — oo. Numerical
i=1

computation of the moments y(e¥, my;) may be difficult in the general case in that we

have to approximate the infinite product in formula (9) by a product with a finite number

of terms. In some special cases such as the example following Corollary 1 below, an

analytical expression for the infinite product may be available in Corollary 3.

Remark 2. Nelson (1991) studied the stationarity conditions of {In h?} using an ARMA

representation of (2)

P .
1+ Z o; L g(z—4)
Inh? = ag + =1 m g(z-1).

1= 3 B, L

=1

b .
> «; L' have no common roots,

P .
Assuming that the lag polynomials 1— >~ §,L* and 1+
i—1 =1

K

p .
{Inh?} is stationary if and only if all the roots of 1— Y 3,L¢ lie outside the unit circle.

=1

Obviously, condition (8) in Theorem 1 is equivalent to this condition, which in fact is the
one Nelson (1991) derived.

Remark 3. Compared with the standard GARCH(p,p) process of Bollerslev (1986),
condition (8) guarantees the existence of any moment for the EGARCH(p, p) model. For
comparison, the existence of the second moment of the GARCH(p, p) model is necessary
but far from sufficient for the existence of the fourth moment, see He and Terésvirta
(1999a) for a discussion. Assuming that v4 < oo, condition (8) for existence of the

unconditional moments depends only on the eigenvalues of matrix I' expressed in 3y, ..., 3,,,



but conditions for existence of the fourth moment of the GARCH(p, p) model depend not
only on the eigenvalues of T' (note that the definition of T for a standard GARCH process
is not the same as here): they depend on the values of a;’s and (3,’s as well. Clearly,
condition (8) is much easier to check than the condition for the existence of the fourth
moment for higher order GARCH models.

An expression for the kurtosis of ¢; is stated as a corollary.
Corollary 1 For the EGARCH(p,p) model (1) with (2) when vy < oo, y(e9,p;) and

~v(e9,2¢;) exist for any i and (8) holds, the kurtosis of e: exists and is given by

o = Eet /(B = ma() 11 % (11)

where k4(2) = v4/V3 is the kurtosis of z.

From Jensen’s inequality and Corollary 1, we have
Corollary 2 Consider the EGARCH(p,p) model (1) and (2) when vy < co. Assume,
furthermore, that y(e?,p;) and v(e?,2p,) exist for any i and that condition (8) holds.
Then

Ka > Ka(2t). (12)

The unconditional distribution of ¢, is thus leptokurtic.

To illustrate Corollary 1 we give the following analytic example below:
Corollary 3 Consider the EGARCH(2,2) model (1) and (2) is obtained by setting g(z;) =
0z, and assume z, ~nid(0,1) in (2) and that (8) holds. It then the kurtosis of this process

equals
0°[(a? + a3)(1 — By) + 200234
1B, — B} — 65— BBy + 33

kg = 3exp{ >3 (13)

for any 0 £ 0.

Proof. See Appendix.



3 Autocorrelation function for the squared observations

In this section we derive the n-th order autocorrelation function of {¢?} for the EGARCH(p, p)

model (1) with (2). To fix notation, define the n-th order autocorrelation of {7} as

P, = p(€2 52 ): E(é:%g%—n) - (EEL?)Q
n tr“t—n EE? o (EE%)Q

(14)

for any n > 1. Having already obtained expressions for Ec} and Ec? we must find an
appropriate one for E(¢?¢Z_,,) for n > 1. The expression is worked out and characterized
in Lemmata 4-7. Let ¥(e%, ¢,,_;vj1i + ¢5,) = E(exp{(dn_ijti + ©,)9(2t—(n+5))}) for
some i and j such that n > 1. Furthermore, let ¥,,,(e?,¢,) = E(zi_,exp{¢,9(z—n)}
for any positive integer n, where o3, for n > 1 and j > 1 are defined in Lemmata 5-7.
Note that 7, are somewhat similar to ¢, but different in that ¢, initially depend on
n. Theorem 1 and Lemmata 4-7 allow us to express the autocorrelations of {e?} for the

EGARCH(p, p) process as follows:

Theorem 2 Assume that vy < 0o and (8) holds and that (-), ¥(-) and F(-) exist. Then

the n-th order autocorrelation of {2} for the EGARCH(p,p) model (1) and (2) has the

form
Vo (€%, n) Mi(n) Ma(n) — v3(T] (v(e?,¢;))?
o = _ = 0> (15)
V4 ,I;Il v(e9,2¢;) — V%(l;[l v(ed, ¢;))?

where My(n), n > 1, is a function of v(-) and Msz(n), n > 1, a function of ¥(-) defined in

Lemma 7.

Proof. See Appendix.
Remark 4. The mixed moment ¥(-) is required for higher-order EGARCH models. Be-

cause it is not defined for the EGARCH(1,1) model the formula for the autocorrelation



structure of {¢?} for the EGARCH(1,1) model is simpler than expression (15), see He,
Terésvirta and Malmsten (1999).
Remark 5. Properties of the autocorrelation function {p,,}, n = 1,2, ..., can be estab-

lished through expression (15). Some of them are listed below:

o pp = 0asn — oo In fact, T,(e,p,) — va, Mi(n) — ([T (v(e?,,))? and
=1

Ms(n) — 1 as n — <.

e Autocorrelation p,, is a function of n in the terms of the powers of matrix I' as well
as ¢y, ..., ¢, It is seen that the first p autocorrelations depend on Mj(n)Mz(n) and
do not need to decay monotonically. When n > p the autocorrelations decay because
the power of I increases with n. However, p,, for n > p do not satisfy the Yule-Walker
equations for the autocorrelation of {7} as is the case with the GARCH(p, p) model
does. See, for example, the EGARCH(1,1) model in He, Terdsvirta and Malmsten

(1999).

e Eigenvalues (a positive dominant eigenvalue, or a negative one, or a pair of complex
eigenvalues) in I' determine the shape of p,, in (15). See the EGARCH(2,1) example
in Figure 1. The existence of an eigenvalue J; , ¢ € {1,...,p}, of matrix T in (4),
such that A\; ~ 1, indicates that the autocorrelation is persistent; otherwise the

autocorrelations decay quickly with increasing n.

o It is possible that p,, < O for some n. This is because for EGARCH models no
parameter constraints in (2) are required to guarantee that the conditional variance
be positive with probability one. For the GARCH(p, p) process, such conditions
given in Nelson and Cao (1992) lead to p,, > 0, n > 1; see also He and Terdsvirta

(1999c¢) for illustration.



4 Special case: EGARCH(2,2)

To illustrate the general result we consider the EGARCH(2,2) process.

Corollary 4 Assume that vy < 0o and condition (8) holds and that ~(-), F(-), ¥(-) < o0
in the EGARCH(2,2) model (1) with (2). Then the n-th order autocorrelation function of
the squared observations for this process is obtained by setting p = 2 in equation (15). In
the expression of this autocorrelation function,

n—1 00

i) = (I eI oter,e3) (16)
MQ(”) = a(eg, a2¢7171 + (an) (17)
for any n > 1 such that
SDTn = o (¢n + 1)7
Sagn = al(rzs;n + O‘QQSTTN (18)
* 2 * .
Pin = Z:l QP(j41)—ins J =3
with
(ZSTW/ = an + 17
d)zn = ﬁl(d)n + 1) + ﬁQd)nfl? (19)
¢;n = ﬂleiQild):w Jj>3
* * * 61 62
where ¢y, = (¢3,,#1,)"s B = (B1,0,)", and I' = . Furthermore, ¢; and ¢,
1 0

are defined in (5)-(6) and (10) for any ¢ > 1.

Proof. See Appendix.

10



From Corollary 4 it follows that the first-order autocorrelation has the form

va(Tia(e?, a))y(e?, a2 + aa(By +1)) 11 v(e ) - V%(l:l1 (e, :))?
P = =) lioo — (20)
va [T (e, 20,) = v3(T1 77, 2,))%
where ¢} is determined by setting n = 1 in (19) and noting that
dﬁl = ﬁl + 17
¢§1 - ﬁ1(51 + 1) + By, (21)
¢y = BTI?l¢r, j>3

with @] = (¢31,¢11) - Subsequently, the second-order autocorrelation

P2
vay(e?, a1)Vas(e?, 1By + az)F(e?, Bz + ar(B] + B2 + 1)) .HQ Y(e?, ) — V%(‘H1 (e, 0:))?
va [T (€2, 2¢05) = v3(T1 7(e7,22))?
(22)
where ¢, is determined by setting n = 2 in (19) and noting that

d)TQ = (/)2 + 17

b3z = Bildy+1)+ Bachy, (23)

0 = BTI¢5, 523,

with @3 = (¢35, ¢15)". Similarly, we can compute higher-order autocorrelations through
expressions (16)-(19) in Corollary 4.

Appropriate choices of g(z:) yield the autocorrelation functions for various EGARCH
(2,2) models. Such cases are considered in the next subsections. Note that we always

assume that conditions in Corollary 4 hold in the following corollaries.

11



4.1 An analytic example: Symmetric EGARCH(2,2) model

It follows from Corollaries 3 and 4 that an analytic expression of the autocorrelations for
the symmetric EGARCH(2,2) model is available. It is given in the following corollary.

Corollary 5 Consider a symmetric EGARCH(2,2) model (1) and (2) and assume that
9(zt) = 0z and 2z ~nid(0,1) in (2). The autocorrelation function of {e?} then has the

form

Pn
(Hw%@mmmﬁwwaf@fﬁf@fﬁ@+£»mmwﬁﬁyﬂfl

3exp{07[(a2 + a3)(1 — By) + 20023,/ (1 — By — B — B3 — 1By + B3)} — 1

(24)
where
y(n) = (o] +a3)(1 = Bs) + 2a1025,](¢7, + 26, — 1)
+2[(af + a3)61 65 + aras(l — B — 63)][b_1 (¢ — 1)]
+H(0363 + ad)(1 — By) — 0367 (1 + By) + 201028, B3]¢% 4. (25)

Proof. See Appendix.

The autocorrelation function remains positive as it dampens out as a function of n,
if the dominant eigenvalue of I' in (19) is positive. On the other hand, it alternates in
sign as it dampens out, when the dominant eigenvalue of I is negative. Furthermore, the
autocorrelation function displays a damped sine wave, when a complex pair of eigenvalues
of I dominates; see Figure 1 for an illustration.

The corresponding results for the EGARCH(1,1) model are obtained by setting awo =

By = 01in (24). The autocorrelation function thus has the form

(1+ 62367 ) exp{62a3By /(1 — 63)) — 1

o Bexp(67a2/(1- A1)} 1

n>1, (26)

b

12



as given in He, Terdsvirta and Malmsten (1999).

4.2 Asymmetric EGARCH(2,2) model under normal errors

It follows from Corollary 4 and Theorem A1.1 of Nelson (1991) that we are able to compute
the autocorrelation function of the squared observations for an asymmetric EGARCH(2,2)
model under normal errors. The result is contained in the following corollary.

Corollary 6 Consider the asymmetric EGARCH(2,2) model (1) and (2) is obtained by
setting g(z;) = 0z;+w(|z| —E |z]) and assuming z, ~nid(0,1) in (2). The autocorrelation

function of {e?} then has the form

VEew(=/20 55 D) TT #i(e) T @nlet,)— T 2200

P, = i=1 — i=1 — =2 i=1 ) (27)
311 @2 IT 93¢0

In expression (27),

V() = exp{— \/1} [(¢ — D(aa + ag) + (a2(1 = B1) + a183) ¢, 1]} (28)

— (B + Bs)
Du(-) = D_s[—¢,(w+0)]exp{0.25¢5 (w + 6)*}
+D 3], (w — 0)] exp{0.25¢% (w — 6)*} (29)

and ®;(x;) in (27) is a function of wx;, defined as

O;(z;) = O(zi(w+0))exp{0.52%(w + 0)?}
+®(z;(w — 0)) exp{0.52% (w — 6)?} (30)
when ©; = ¢;, or ¢, or 2¢;, where ®(-) is the cumulative distribution function of the
standard normal random variable and Dyl-] is the parabolic cylinder function (Gradshteyn

and Ryzhik, 1980).

Proof. See Appendix.

13



As may be expected, the autocorrelation function of the squared observations for the

asymmetric EGARCH(2,2) model depends on the asymmetry parameter w.

4.3 Asymmetric EGARCH(2,2) model under non-normal errors

We set g(z;) = 0z, + w(|z| — E|z]|) (Nelson, 1991) in (2) and assume that the {2} are a
sequence of i.i.d. random variables from the GED (Generalized Error Distribution (Harvey
(1981), Box and Tiao (1973)) with mean zero and variance one. Thus z; has the density

~ vexp{—-0.5]z/A|"}
1) = —aarmryey

-00 < z < 00, 0 <v < o0, (31)

where T'(-) is the gamma function, and \ = [2(=2/Y)T'(1/v)/T'(3/v)]'/2. Parameter v is a
tail-thickness parameter, see Nelson (1991) for a discussion. Following from Corollary 4
and Theorem A1.2 of Nelson (1991) that we have the following corollary:

Corollary 7 Consider an asymmetric EGARCH(2,2) model (1) and (2) and assume
that g(z) = 0z + w(|z:| — E|z|) and 2z ~GED(v) with Ez; = 0, Ez? = 1 and v > 1
in (2). Then the autocorrelation function of {7} when {e;} when follows an asymmetric

EGARCH(2,2) model, equals

Pn
n—1

V222/UA2 exp{iwr()‘a U) Z:l sz},}/(n)sln(@n) 41:[1 SQi (‘pz) i SQi’n((an) o V% 41:[1 S%l(@z)

Va ‘1:[1 Sa:(2¢;) — V3 1:[1 S3:(#:)

K3

3
where
DA\ v) = A2YPD(2/v)/T(1/v)
) = exp(~ (0~ (e +az) + (a1 = ) + a1 )
Sule) = & @AM+ 0 + 0= 0l 5

14



Sai(xi) = kijo (QI/UAwi)k[(w + e)k + (w — Q)k}%
for i = @5 @i 205

Proof. See Appendix.
Note that the sums Sy, (-) and So;(-) in (33) are convergent if v > 1. If v < 1, we refer

to Nelson (1991) for a discussion.

4.4 An empirical example

Nelson (1991) employed an EGARCH(2,1) model to analyze the daily returns for the
value-weighted market index from the CRSP tapes for July 1962-December 1987. To
accommodate the possibly asymmetric relation between stock returns and volatility Nelson
chose g(z¢) = 02z + w(|z¢t| — E|2|). To allow flexible parametric families of distributions,
Nelson assumed that z; ~iid with the GED(v) density in (31). The estimated parameters
are given in Table 1. Since U = 1.5763 > 1 the corresponding v4 and y(e?, -) exist according
to the estimated model. The estimated GED(¥) density function has a more peaked centre
part and a fatter tail than the standard normal density. The eigenvalues of the estimated T
are 0.99957 and 0.92981, which indicates the existence of all the unconditional moments of
et for the estimated EGARCH(2,1) model. The positive dominant eigenvalue of Tis very
close to one, so that the estimated autocorrelation decays very slowly. Unfortunately, since
)\(f‘) (= 0.99957) is very closed to one, it is numerically difficult to compute the values
of the kurtosis and the autocorrelations from the estimated model. We alleviate the
difficulty by computing those results from the estimated model after a slight reduction in
the value of 51- The reduced parameter estimate 51 (R) =1.92925 and the corresponding
:\\(f‘(R)) = 0.9976. The numerical results are given in Table 2. We find that the kurtosis

for the reduced estimated model is very high, and p; (R) and p5(R) are lower than p,(R).

15



But it seems that p,,(R) decays very quickly.

5 Final remarks

We have derived a complete characterization of the moment structure of a general EGARCH
(p, q) process. The results of the paper are useful, for example, if we want to compare the
higher-order EGARCH model with the standard higher-order GARCH model. In partic-
ular, we have already see that the autocorrelation function of the squared observations
for the EGARCH(2,2) model of Nelson (1991) has a richer autocorrelation structure than
that of the standard GARCH(2,2) model.

The statistical theory in this paper also applies to the general logarithmic GARCH

(LGARCH) (p, ¢) model:

er = Zthy, (1)

q P
Inh? = oot > oy Ing(z_;)h?_;+ > B;1n n2_,. (2))
‘ i=1

i=1
Setting g(z;) = 22 in (2’) gives the LGARCH(p, ¢) model Pantula (1986) and Geweke
(1986) previously proposed. In general substituting a; + §; and g*i(z_;) for 3; and
exp{a;9(z—;)}, i = 1,2, ..., max{p, ¢}, respectively, throughout this paper, yields the cor-
responding results for the general LGARCH(p, ¢) model (1) and (2’). The first-order case

has been treated in He, Terdsvirta and Malmsten (1999).
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Appendix.

Lemma 1 Under (4), (5) and (6), for any k > p,

holds.

(f’k = é 6i¢k—i

Proof. Note that by (4) and (6)

TP

o

—=Trpr-1

o
bo
0

— P2

holds. Applying (A.2) and (5) gives

o

= ﬂ/l"(k—l)—P—ll"

6,8 pm1

P2
P

d)() =...=1T_

_ ﬂ/r(k—l)—p—l

+ 3,1

19

d)pfl d)p
¢p—2 ¢p—1
¢1 P2
(f)O (f)l

ﬂld)p—i_...—i_ﬁpd)l

Brlp_1+ -+ 0By

Bipg + -+ B3
B1¢1 + B
Pp_1

¢p—2

o
®o

(A.1)




+B;3 TPt +-o+ 3,8 TE P!

(/)pr
d)p—?)

bo

0

= B10p_1+ Bobp_o+ -+ BpPi_yp-

of
bo

p
Lemma 2 Let k > p. Under (3), the product I1 h?f’z on the right-hand side of (3) can

i=1

be expressed in terms of the product H hy le such that

P 25 k k
I:T i = (I1 exp{aod; (IT exp{¢ia’gii})

where o = (o, - - -

gt = (g(zt—l), T

=

=1 =1 =1

.ap)" and, furthermore,

warl = (/)k+17
Vppo = DBadp + o+ BpPrii_p—1):
1/)164-3 = ﬂ?)(/)k + + ﬂp(/)k+1—(p—2)7
djk"rp - ﬂpgblw

,9(2t—p))" and, finally, ¢, is defined by (5).

p
Proof. Let 1 <k < p. Applying (3) to h? ;| in [] h?i gives

»
n2?
il;ll

=1

D
= exp{f00} exp{frels ) 11 il

h 2(8:8, +ﬁ,+w)h

= exp{f a0} exp{f,a'gi_1} H (i1

Define ¢; = 3, and rewrite the right-hand side of (A.5) as

p
I h
i=1

2(8, ¢1+5z+1)h2¢l By
t—p—1-

i =exp{p a0} exp{p g 1} H hy i1

20

P
11 w2

28,8
t—p—1°"

(A.3)

(A.6)



Applying (3) to h?_, on the right-side of (A.6) gives

LAY
il;ll i
= exp{¢;a} eXP{¢10‘/gt—1} exp{ (816, + Bo)ao} exp{ (B, 4y + ﬁQ)a/gt—Q}

2[8,(81 0 +82)+(¢1 841 +Bi42)] , 2[8, 1 (8101 +8,)+018,]; 28,(8,61+8, )
H hl‘ i—2 i - ht ]; i ht —p—2 (A7)

Defining ¢y = 3¢, + (5 and rewriting the right-hand side of (A.7) yield

P
1:[1 h?i = exp{¢ ao}exp{p a’gi_1}exp{pyao} exp{poa’gi_o}

2[8,poH(18; 1 1+8,10)] 5 2[B, 1 P2+, 8,1, 28,02
Hhmz T T T hy .

Continuing the iteration until k¥ = p and defining ¢,, = 8,¢,_1 + B2¢,_o + -+ 8,00 and

p
¢ = 1, the product [] h?f % can be expressed as

=1
Poag,
1T h=
=1
P P ,
= I exp{¢p;0} [] exp{¢;'gi—i}

=1 i=1

D P

QZﬁid)pf(ifl\) QZﬁid)pf(ifZ‘)

i= / = i 2(B,_190p+BpPp_1) 28,9,
xh," X h'0 XX hy e () Yox hy 1;, 2 (A8)

Let k£ > p. (i) Assume k = p + 1. We shall prove that (A.3) and (A.4) hold. From

Lemma 1 it follows that
p+1 Z ﬁ d) (i—1)* (Ag)

Applying (3) to h? ) on the right-hand side of (A.8) and rewriting the corresponding

t—(p+1

result using (A.9) yield

P54 p+l p+1 ,
[T rZi =TI exp{eyao} 1 exp{o;a’ge—i}
i=1 i=1 i=1
P P
2261(17177('572) 2281(:);)7(1'73)
=1 =2
xh," (p+1)— X h, Cp1)—2 X -
2(8,19p11 +8,9,) 28,9511
Xhtf(;ﬁﬂ):(p—ls Txh, (pf}»l) (A.10)
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From the right-hand side of (A.10) and Lemma 1 we find

P
w(p+1)+1 = 21 ﬁi(/)pf(ifm = ¢p+2
P
V42 = 22 BiPp—(i—3)
...... (A.ll)
Vipt1)r-1) = Bpo1Ppy1 T 0Py
1/)<p+1)+p = BpPptr-

From (A.10) and (A.11) it follows that (A.3) and (A.4) are valid for k = p+1. (i7) Assume

now that (A.3) and (A.4) are true for kK = m > p + 1. This implies

rd 28, m m , P 21/]’”/“/
‘H1 hy~5 :‘H1 exp{@;ao} ‘H1 exp{o;a'gi—i} 'H1 h (A.12)
where
w7n+1 = (/)erla
w77’b+2 = ﬁQd)m + o+ 6p¢7n+1—(p71)7
Uprs = B3m + oo+ BpPri1—(p-2) (A.13)
wm-&-p = 6p(/)rm-

We prove by induction that (A.3) and (A.4) are valid for & = m + 1. Applying (3) to

h2_ (m+1) o0 the right-hand side of (A.12) while noting that v, . | = ¢, 1, gives

28, et met B2y B 2
IT = = 11 expi{¢sao} [I exp{da’gemi} ]I ht_i_(ﬁﬂ) I1 h it
i=1 i=1 i=1 i=1 =2

m—+1 m+1 ,

= ]I exp{g;a0} I exp{d;a’gii}
=1 i=1
2B 1T ¥ma) 208y my1+¥ms) 2(85% 1+ Pma)
Xhtfli(mtil) X htf;f(mtrll) U ht—3i(mtr11) -
28,1 Y1 T ) 28,41
X X htf(;)gl)f(n‘lJrl) Xy 1y (A.14)
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From (A.14), (A.13) and Lemma 1 we obtain

ﬁl¢m+l + 1/}m+2 = ¢7n+2

ﬁ2¢'m+l + 1/}m+3 = 52¢m+1 + ﬁ3¢7n +oe ﬁp¢7n+1—(p—2)

ﬁ31/}'m+1 + 1/}m+4 = 53¢m+1 + ﬁ4¢7n +oet ﬁp¢7n+1—(p—3) (A15)
61)711/]7714»1 + 1/]7n+p = 6p71¢m+1 + ﬁpd)m

ﬁpwm+1 = ﬁp(/)7n+1

From (A.14) and (A.15) we see that (A.3) and (A.4) are valid for k=m+1. m

Proof of Theorem 1. We prove the case m = 1. Without loss of generality, the results
apply to the case of any positive integer number m by raising both sides of equation (A.16)
below to the power m.

p
Let & > p. Applying Lemma 2 to [] hff; on the right-hand side of (3) yields
i=1

k k p Wy,
h; :Ho exp{¢;ao} 1:[0 exp{¢; /g } 1:[1 he i, (A.16)

where ¢; and ¢, ; are given in (5), (6) and (A.4). Multiplying by 27 and taking expecta-

tions on both sides of (A.16) leads to

k k P 2, .,
£t — vaexplan 3 o EI] explo’et [T 1750
As k — oo,
Ee? = voexpl{ag . & }E [] exp{¢;/gi—;} (A.17)
=0 =0

if and only if A(T") < 1 because klim Yy = 0 if and only if \(T') < 1.

Note that {2} is a sequence of i.i.d. variables. Thus,
E [ exp{¢;e’gii} = Eexp{aigog(z-1)}
i=0
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xEexp{(a1; + aadg)g(zi-2)} x -

xEexp{(a1¢, 1 +aad, o+ + app)g(z—p)} (A.18)
xEexp{(a1¢ (1)1 T 20112 T+ by p) (2 (pr1) }
<.

xEexp{(a1¢y 1 +adp o+ -+ apdy_,)g(2ep)}

X oo

Defining ¢;, ¢ > 1, as the coefficients of g(z_;), respectively, in (A.18), we see that (10)
holds.

Next we show that, under (5) and (6),

p

Zéo ¢y =(1— > B;)"

=1

if and only if A(T") < 1. It follows from (5) that

i% = Zi:o(/)ﬁ‘ i ?;

i=p+1

= Lotd S T

1=p+1

P !

- $oeBa-T
op

= (1—;@)_1

if and only if A(T") < 1, since

I-o)*
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P P
1 Z:Qﬂi Z:sﬂi o By 406, By
1 ]-_ﬂl ﬂz

1 1-8; 1-(B;+8)

p—2
1 1-6; 1-(81+8) 1*;@-

]7;1; p—1
1 1-8, 1—(B8,+0) 1—;@ 1—;@

Lemma 3 Assume that p = 2. Then

> (BT’
By + 46385 + 4818, + 26785 — B3 + 55 + 361585 — 26165 + BS8, — B3
1— By — 01— 65— BB+ 35

(A.19)

if and only if \(T') < 1.

Proof. Write

S (8T"¢)> =3 BT*AT"¢ = F'B¢
k=0 k=0

where A = ¢3 and B = Y I'*AT*. Furthermore,
k=0

vec(B) = ivec(l"kAI‘k)
— 3 (I @ T)vece(A)

= ,;::o (I'w I‘)kvec(A)

= I'®I-T'®T) 'vec(A)

if and only if \(T") < 1, where vec(-) is the vectorization of a matrix and ® is the Kronecker
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product of the matrices. We have

. 1 B1(By + B + B3+ 67 — 53)  Ba(By + 67 — 53)
- _ 2 2 92 3
PR AT REARER 2y g B, - 8 6168,

Then (A.19) holds. m
Proof of Corollary 3. It follows both from Theorem Al.l of Nelson (1991) and

Corollary 1 that the kurtosis of the process equals

ke = 3exp{6® Y ¢7}.
=1

Next we shall prove when p = 2

D R P (420
if and only if A(T") < 1. Write
') 9 4 9 ') 2 i1 9
Yo = dowit . (X BT ‘)
i=1 i=1 i=5 j=1
4 o0 . o0 .
_ ; 8012+ 2_35 (alﬂlrz—4¢)2+ ;) (azﬂlrz—5¢)2
123 aras(BT BT 5¢). (A.21)
i=5

Applying Lemma 3 to the last three terms of the right-hand side of (A.21) gives (A.20).
Then equation (13) holds. m
p
Lemma 4 Let k > p. Under (3), the product [] h?i where 37 >0 for i =1,...,p can
i=1

) Dooyr
be expressed in terms of the product [] hy ™, such that
i=1

i 2837 k * k * 7 D 2¢;;+i
[T h—i = (11 exp{aog; })(I] exp{o;a’g:—i}) T1 b7 (A.22)
i=1 i=1 i=1 i=1
where
r = BT P lgp* (A.23)
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and

1/’Z+1 = ¢Z+17
Vpre = Bodp+ ..+ ﬁp(/)zﬁ»lf(pfl)?
1/);;+3 = 63(/)2 + ...+ ﬁp(/)erlf(pr): (A24)

¢Z+p = ﬁ;ﬂ’z

In (A.23), B and T are defined in (5) whereas ¢ = (¢, ..., 1) with

P
¢ = B,

j—1

Proof. The result follows by appropriately substituting 8; for 3;, i = 1,...,p, in the
proof of Lemma 2. m
In Lemmata 5-7 we give an expression for the cross-moment Ec?e? , for n > 1.

Lemma 5 Assume that (8) holds, v(-) < oo, 85, > 0 for i = 1,...,p, and 1 < n < p.

Then
7 p—J P 9gr
E( Hl eXP{(¢n—j 2:1 Oéj-s-z‘)g(zt—(n-s-i))})(nl ht_;-”_(n_l))
j= 1= 7=
(e p—n n
= (I—Il eXP{O‘OCbrn})( H1 ,Y(eg7 z:l d)nfiajﬁ*i + @;71))
1= i= i=
n—1 g o0
x( H1 (e, 21 Pr—iOp—jti + i) (1T 7(e?: 50)) (A.26)
J= 1= 1=p
where
* J * .
Pin = 231 aid)(‘jﬁ»l)fi,n fO’I" J= 17 P
P
Cin = 2 f(ii1y i forj>p (A.27)

i=1
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such that

P1n = Bin:
j—1 )
Bin = 2 Biti—int Bind =2
=1

Pin = BTI7P gy for j>p (A.28)

with ¢, = ($pns - P1n)-

Proof. Rewrite

E(IT expl(én ; gD 172 )

Jj=1
p—n

= E| H exp{(Z Pr—i@i+i)9(2t— (n4)) }

=1
—1

x T expl(35 bustp 510090t p-n J>>}<n o)) (A29)

j=1 i=1

on the right-hand side of (A.29) gives (A.26)-(A.28).

p .
Applying Lemma 4 to [] hfif (1)
i=1

Lemma 6 Assume that (8) holds, v(-) < o0, 35, >0 fori=1,...,p and n > p+1. Then

(jljl bl (5 osasdate DT 175, )
- eXP{aoébfn})(jl:[i (e, ; Sumstiss +f)) (L2 61,)) - (A30)

where %, and ¢}, for j > 1 are given in (A.27) and (A.28).

Proof. Let k > p. Applying Lemma 4 to (H hfﬁ;” (n— 1)) on the left-hand side of (A.30)
yields
pd P og:
(H eXP{(Z Pr—iiti)9(Ze—(n+) )})(H hy i (ney)
=1
p—1 k N
= [(H eXP{(Z Pni®jti)g (Zt—<n+j>)})(H1 exp{ao®;y, })
Jj=1 =
k * 7 2 2¢2£Is:+i)n,
X(Hl exp{¢y, a gt*”*i})(l:[l ht*(nfl)—i—k)] (A.31)
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where the corresponding ¢;,, and ;) can be defined by substituting 37, for §; in

(A.23)-(A.25) such that

Pen = BT P71, (A.32)
with @, = (é3,,, .-, #1,,)" Where
d)Tn BT’HJ
* il * *
(/)jn = Z:l ﬁi(/)jfi,n + ﬁjna .7 = 27 o P- (A33)
and
¢Z+1,n = d)erl,n:
¢Z+2,n = ﬁQ(/)Zn +o+ ﬁpd)erlf(pfl),na
¢2+3,n = ﬁ?;(/)zn ot ﬁp¢z+1—(p—2),n7 (A34)

wz-&-p,n = ﬁpdﬁgn

From (A.32)-(A.33) we see that (A.28) holds.

Assume that A\(T') < 1 holds. As k — o0, the left-hand side of (A.31) becomes

p—1 p—J P g
ECTT exp{( X ums0s41)9(ze—ran)) DT A7 )
Jj= 1= 1=

o

- (I exp{<f;f bui 1091 i) DT explaods, )

=1 i=1

<(IT expltu(er i)
= jjl eXP{aoéﬁn}
€T o((S 605000 o)D) T opletstee ra)))

j=1 =1

XE(]] exp{¢59(2e—(n+i))})
i=p

= H eXp{a()d)rn}

i=1
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p—1

VBT exp{(S bustzii + 230)0 (e

Jj=1 =1
XE(I] exp{¢59(2e—(n+0))})
i=p
= * p_t ~ Py * = *
= Hl exp{apd,, H H1 (e, Zl Pr—iri + €50))(TT (€7, 7)) (A.35)
1= J= i= i=p
such that
(pﬂ{ﬂ/ = ald)?n
P = 1Py, + 2],
...... (A.36)
(p;n = ald);n + QQ(/);n +oee ap(/qn
P ,
Crn = Y BT Py, for k> p.
i=1
It follows from (A.35) and (A.36) that (A.26) and (A.27) hold. m
Lemma 7 Assume that (8) holds and ~(-),7(-),7(-) < co. Then
n—1 o0
B(eicin) = v2(Tup(e’ ) ([T exp{aods))(IT exp{aodi, )
such that
n—1 oS}
My(n) = v(e?, ;) TT v(ef,95,) for n>1 (A.38)
i=1 i=p
p—n n . n—1 . 7 .
Ma(n) = ( H1 (e, Zl Pr—iCjti T P5n))( H1 (e, 21 Pr—iQp—jti + Pp_jn)) for 1<n<p
i= i= i= i=
(A.39)
p—1 p—J .
Ms(n) = -H1 fyjp(eg, Z:l i Qjri + cpjn) forn>p+1 (A.40)
i= i=
with
Bin = ¢,+1 foranyn>1 (A.41)
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=
3
\

Bijt(i—1)Pn—j for 1<n<p—(i—1)and2<i<p—-1 (A42)

Jj=1
p
Bin = Z Bibnti—ny—j forp—(i—2)<n<pand2<i<p-1 (A43)
Bon = Bpbn_y for1<n<p (A.44)
p+1—1
Bin = >0 Bitjo1Pn—j forn>pand2<i<p (A.45)
j=1

where ¢;, @i, Gi, and @F, for any i and n are defined in (5)-(6), (10), (A.28) and (A.27).
Proof. First consider the product h?h?_, for 1 < n < p. Applying (3) to h? in hZh2_,
and using (A.5)-(A.8) in the first part of the proof of Lemma 2 we obtain, for 1 < n < p,

n—1 p—(n—1) QZB;+: 1P —i

h%h?in = <H eXP{O‘OCbiO/gti})X Hl htfjlf(nfn

=0 i=

X h'o hZ (A.46)
Jj=
p—(n—1) 225;%?1‘7’71%
(¢) Consider j = 1 in the second product term Hl h,” i (n=1) on the right-hand
‘7:

side of (A.46). This term multiplied by h?_,, has the form

2() 8,0, +1)
i=1
htfn

which implies
Bin = Bitp_s +1=0¢, +1for 1 <n <p.
i=1

Thus, (A.41) holds for 1 < n < p.

J
n—1 22/6177741'(7)7171'

(i¢) Set 7 =1 in the third product term H h,’ on the right-hand side of

th

(A.46). This yields h 200%:=1 \hich shows that

t—p—1
6;71 = 6p¢n_1f0’f' 1 S n S p-
Thus, (A.44) holds.
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(7i) Consider the remaining case: j = 2,...,p—(n—1) in the second and j = 2, ...,n—1

in the third product term on the right-hand side of (A.46). Thus,

Qiﬁjﬂ—l‘%—i

hti:j'i(nil) for2 < j<p—(n—1) (A.47)
225;)7_7'4,»;(1)”,,;

htfplfj for2 < j<n-—1. (A.48)

Formulas (A.47) and (A.48) indicate that (3,, ¢ = 2,...,p — (n — 1) can be defined by
setting j =2,...,p—(n—1) in (A47) and 3},, i =p— (n—2) <i < p—1, can be defined

by setting j =n —1,...,2 in (A.48). Equivalently, for 2 <i<p—1,

Bjti-1Pn—j, 1<n<p—(i—1)
1

BiPinyi-1)—jr P — (i1—2)<n<p.

XK
g*
I
7= TM:

Il
=

J

As a result, (A.42) and (A.43) hold.
Next, let n > p. It follows from Lemma 2 that the corresponding representation of

hZh?_,, can be obtained by setting k =n — 1 in (A.3) and (A.4). This gives

n-t LENSS
h%h%ﬁn = ( HO eXp{aOd)ia/gt*i}) H hffif(;l)jl)hgfn
i= =1
where
1/}(n—1)+1 +1 = d’n +1= ﬁTn

1/}(71—1)-&-2 = ﬁQd’n—l +---+ ﬁp(rzsn—(p—l) = ﬁ;n

1/}(71—1)-&-3 = ﬁ{id’n—l +---+ ﬁp(rzsn—(p—Q) = ﬁ;u

1/](77,71)4»1) = ﬁp(rzsnfl = ﬁ;n

This shows that 57, in (A.41) for n > p+ 1 and 5}, for n > p and 2 <7 < p in (A.45)

hold.
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Finally, consider

E(cle? )

E(z 2, hihi )

— 267,

n—1 n
= Bt (11 exploon (T expl{dia’e- (T 1%,

1=0 =0

)]

(A.49)

where 37, for i = 1,...,p and n > 1 are given in (A.41)-(A.45). Assume now that (8)

p *
holds. Then it follows from Lemma 4 that [] h?if (n—1) O the right-hand side of (A.49)
i=1

can be expressed as a function of k. As k — oo, (A.49) converges to

E(c7ei—n)

= E222,(TT explood, (T expid.alsi))

i=0 1=0
o0

<(I1 explaodiu)) (1T explin(er i)
= (1] expteos;N(IT explaodiu})

1=0 i=1

XE[2?771(T%H exp{éia’gm})(ﬁ exp{ing(Zt—(n+i)) })]-

1=0 i=1

Rewriting the right-hand side of (A.50) gives, when n > p+ 1,

n—1 0

E(cfein) = va([] exp{aos;})([] exp{and},})

1=0 i=1

<E[22, (1T exp{pig(21-1)})

=1

p—1

«(TI exp{f;f b i0549e—mrg))})

Jj=1
0

><(il;[1 exp{ i g(2e—(m+i)) D],

while 1 < n < p it has the form

n—1 o]
E(etet ) = va(TT expfaos (T explandi,)

xE[z7_,,(T] exp{e;g(z—i)})

i=1
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<(IT {6y S a0

Jj=1
o0

X(TT exp{ei9(ze—(nti)) D]- (A.52)

i=1
Applying the results in Lemma 5 to (A.51) and defining M;(n) and Ma(n) for 1 <n <p
gives (A.37)-(A.39), whereas n > p + 1, applying Lemma 6 to (A.52) and defining M- (n)
and Mz (n) for n > p gives (A.37), (A.38) and (A.40). Noting that in (A.51) and (A.52)
E(z2 ,exp{©,9(2—n)}) = Tpp(€?, ©,,), we then complete the proof of Lemma 7. m
Proof of Theorem 2. We assume that (8) holds. To derive expression (15), we have

to show that for any n > 1,

n—1

IT explaoty} [T explandi,) = exp(2a0(1-

i=0

B (A.53)

o8

=1

holds. This follows from Lemmata 2 and 4-7. To do so we first show that for any n > 1

P

> i = (X A= X A7 (A5

=1 [ =

Consider

S o, §¢zn+ S

i=p+1

P S
> b+ B Y TPl
=1

i=p+1

- ; G+ B I-T) "¢, (A55)

Since (I—T) ' is known (see Lemma 2), it is sufficient to consider the case p = 2. Then

(A.55) becomes, by (A.33),

¥ G = Gt Bt T
. in T 1n 2n T T _ 3 1 R\ ﬂ ﬂ
i=1 1—(By+8,) Pt 72 1 1-8, na
dﬁn + (Z);n 7 ﬁl dﬁn
1— (81 + B2)
_ ﬁ?n + ﬂzn A
GRS (4.56)
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Next we show that (A.53) holds for any n > 1.

(i) Let n = 1. Then (A.53) has the form

B11 + B

exploo) [T explaodia) = (explao))fexplaop =iz 2)
20
B Al
Similarly, we check that (A.53) holds for n = 2.
(i7) Assume now that (A.53) holds for n = m > 2, that is,
m—1 o0 2
1 exp{aodit IT exp{aodi, b = exp{2ao(1— Py B (A.57)

We want to show that (A.53) holds for n = m + 1. From (A.57) we have

m

> Pt i d’;mﬂ

i=0
ﬁ;,mﬁ»l + 6;,m+1

m—1
= & T T TG )

o m=1 ‘ BT,W’L +ﬁ;,7n
ARG ey Ot

= 2a9(1— 22:1 B+ (b +

K2

ﬁTﬂn-&-l + ﬂs,m—i-l - BT,m + 6;,7?1
1—(B1+ B2) 1— (81 + B2)

ﬁﬂ{m+1+ﬁ§7n+1 ﬁT7n+ﬁ;m
: il L my, A.
- Gii 8 1-Gesy) A

Now, the second term on the right-hand side of (A.58) equals zero, because 37,1 =

¢7n+1 + ]-7 6;,m+1 = 62(/)m and ¢7n+1 = ﬁ1¢7n + ﬁ2¢7n71' Thus7 fI‘OIIl (Z) and (ZZ) we

conclude that (A.53) holds for any n > 1. m
Proof of Corollary 4. Results in Corollary 4 are obtained by setting p = 2 in Theorem

2. We only point out that setting p = 2 in (A.41)-(A.45) implies for any n > 1

ﬁTﬂ, = d)n + ]'7 (A-59)

ﬁzn = ﬁQd)nfl' (AGO)

Then inserting (A.59) and (A.60) into (A.28) and (A.27) gives ¢, and ¢7,,, so that (18)
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and (19) hold. Furthermore, applying (A.59) and (A.60) to (A.39) and (A.40) yields

J\IQ(n) = i(egaa2(/)n71 + @Tn): n > 1.

Then (17) holds. m
Proof of Corollary 5. It follows from Theorem Al.1 of Nelson (1991) that p,, in

Corollary 5 has a simplified form
(1 + 92 )exp{o 592(a2(/)n 1 + 2a2¢n 1410171—"_ Z 4)01+ Z 4)0171)} - GXp{QQ Zjl ip?}

3exp{26° Z ©?} — exp{#? Z @7}

Pn =

(A.61)
The sum Y ¢? in (A.61) is defined by (A.20). We only need to derive an expression for
i=1

> ¢:2 in (A.61), and then the proof of (24) is completed through simple algebra. By
i=1
applying (18) and (19), write
Z:l Qp:{g = Z (P7177/+ Z (P’Lﬂ/
= Z Pit Z (Z aj¢>{i+1)—j,n)2
= Z@ > (Z BT3¢ )2
i=4 j=
= Z Pint Z [(1BT™2¢7)" + (a2BT " ¢})*
+20102B' T 3¢r BT 497 (A.62)
On the other hand, set
=Y rkArT*
k=0
where A¥ = ¢ 3. Substituting ¢35, and ¢7,, for ¢o,, and ¢,,,, respectively, in A and ¢ of

Lemma 3 yields

B;
1
1—By— B — 05— 338, + 55
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Bids, + (8182 + B3 — B3) b1 (B2 — B3) b3 + B153¢1n
(By + 87 — B3) b3 + (B1 — BBy + 8185 — Bt B1Babsn + (B2 — 53 — B162)b1n
(A.63)
Assuming A(T") < 1 and applying (A.63) to the last three terms on the right-hand side of
(A.62) leads to

o0 1
> ‘Pﬁ = [(a% - a%ﬂz - agﬁz + ag + 2013, a3)
= 1— By — 31— 85— BiBy + B3

(207 4 203 — 2020, + dayasf; — 20365)¢, + (A2 +

—0iBy — 0l + 2a1000,) ¢y, + (2016, B2 — 2003

+201 Fi By + 20506, By + 2010285) by b1 + (2017028, + 236, 5,

+2030, 8, + 201028 — 2a10263) by,

+(201 8,020 — 035 — aif; + a3 + alB) (A-64)
Inserting (A.64) into (A.61), simplifying the corresponding results, and defining v(n) as
in (25) we see that (24) holds. =

Proof of Corollary 6. It follows from Corollary 4 and Theorem 1 and Theorem Al.1

of Nelson (1991) that

(Lo = [T expl—y/ Zwrih(@e(w +6) expl0.567(w + 6}
+0(p1(w = 0)) exp(05¢3w — 0}
2y/2w(og +a2) o ) )
= eXP{*W}[ZQ (@(pi(w + 0)) exp{0.5¢; (w + 0)"}
(1w — ) exp{05¢3w — 6P (A.65)
Similarly,
oo 2y/2w(og +a2) o
nga%»—-mm-%;@:E;&gwm%w+mmmmﬁw+@%

+0(2¢;(w — 0)) exp{2¢} (w — 0)%}], (A.66)
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and

n—1

[T exp{- %W%}(@(%(W +0)) exp{0.5¢7 (w + )}

=1

+0(gi(w — 0)) exp{0.5¢2(w — 6)%))
X1 exp{—| 2wt HR(phu(w +0)) exp{0.5¢72(w + 0)2)

+@(¢h, (w — 0)) exp{0.5¢77 (w — 6)*}]

ool 2oty + 1} @(025,0+ i)+ )
x exp{0.5(a2¢,_1 +¢1,)%(w +6)*}

+@((a2o,_1 + ¢1,) (W — 0)) exp{0.5(azgy,_y + ¢1,)*(w — 6)*}]
exp{— Z @} exp{— wazsf)n 1} exp{— \/7 Z Pin}
x [1_1 (B0 +0)) exp{0563w + 0} + B(s 0 — 0)) exp {0562 — 0)7))]
x [ili (@@ (w + 0)) exp{0.5¢7% (W + 0)*} + @(¢], (w — 0)) exp{0.5¢77 (w — )}]

X [@((a2py_q + ¢1n) (W +0)) exp{0.5(a2, 1 + ¢7,)* (w + )}

+@((a2dy_1 + ¢1n) (W = ) exp{0.5(az,,_y + ¢1,)(w = 6)}]. (A.67)

Applying formula (A1.4) in Nelson (1991) gives

7n2 eg 4,0” \/jeXP{ \/7W(Pn} X D 3 Qpn w + 0)] exp{O 259071((‘} + 0) }

3l @n(w — 6)] exp{0.25¢7 (w — 6)}]. (A.68)

Note that in (A.67),

7 =
SENER TR

V20 + 02) (63, + 67, — 5165)
=3 +5) }

= exp{— (A.69)
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if and only if A\(T") < 1. Insert (A.69) into (A.67), separate the term of exp{—%}
from the product of the right-hand sides of (A.67) and (A.68), define y(n), D,(-) and
D,(x;) as in (28), (29) and (30), respectively. Further simplification yields (27). m

Proof of Corollary 7. Let p =2, g(z) = 0z +w(z —E|z]|) in (2) and {2z} ~GED in
(31). Applying Theorem A1.2 of Nelson (1991) to the results in Corollary 4 gives, for any

i>1,

~v(e?, z;) = S2i(x;) exp{—T(\,v)wz;} (A.70)

where z; = ¢, or ¢}, or 2¢;,

and T(\,v) = A\2/*T(2/v)/T'(1/v). Furthermore, for any n > 1

F2(€%, @) = 227N S10(,,) exp{—wT' (A, v), } (A.71)
where
R ol/v k k k L((k+3)/v)
S1n () —kgo (2" 2p,,)¥[(w + 0)F + (w — 6) }m-

Substitute I'(\, v), Soi(z;) and S1,(g,,) for \/g, ®,(x;) and D, (-) in (27) and separate

the term

wl'(A,v)

m[((ﬁn — (a1 + az) + (aa(1 = B1) + a185) 0,11}

v(n) = exp{—

from the product term 7,,5(e?, ¢,,) M1 (n)Ma(n). Some further manipulation gives (32). ®
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Table 1. The EGARCH(2,1) model estimated for the CRSP excess return series, July 1962

to December 1987. Source: Nelson (1991) (standard errors in parentheses)

~

B4 Ba ay 0 w

Parameter 192938  —0.92941 —-0.9782 —0.1178 0.1559 1.5763
0.99957

estimate  (0.0145)  (0.0145)  (0.0062)  (0.0090)  (0.0125)  (0.0320)

Reduced

Parameter ~ 1.92025  —0.92041 —0.9782 —0.1178 0.1559  1.5763  0.9976.

estimate

0" -the estimated tail-thickness parameter of the GED(v) distribution
X(f‘)zfthe maximum absolute eigenvalue from the estimated I'. A(T) < 1 implies

that the autocorrelations for the estimated model exists.

Table 2. Autocorrelation functions of {¢?} and kurtosis of {¢;} are computed from

the reduced estimated model

Lag

1 2 3 4 3 10 20 30 40 50

0.2597 0.2411 0.2232 0.3634 0.2001 0.0876 0.0130 0.0016 1.9x10~* 2.3x105

Kurtosis

8.2x1080
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Figure 1. The three types of autocorrelation functions of squared observations in

Eq. (24) generated by an EGARCH(2,1) process.
(a) MT') =0.99993 (8, =0.5,3, =0.4999,07 = —0.1,0 =0.1)
(b) A(T") = —0.9659 (B; = —0.5, 85 = 0.45,0q = —0.9,6 = 0.1)

(¢) A2 = 0.8+ 0.557i (8, = 1.6, 8, = —0.95, 4 = —0.9,0 = 0.1)
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