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Abstract

This note examines the accuracy of methods that are commonly used to approxi-
mate AR(1)-processes with discrete Markov chains. The quadrature-based method
suggested by Tauchen and Hussey (1991) generates excellent approximations with a
small number of nodes when the autocorrelation is low or modest. This method how-
ever has problems when the autocorrelation is high, as it typically is found to be in
recent empirical studies of income processes. I suggest an alternative weighting func-
tion for the Tauchen-Hussey method, and I also note that the older method suggested
by Tauchen (1986) is relatively robust to high autocorrelation.

JEL classi�cation: C60
Keywords: numerical methods; income processes; autoregressive process

1 The Problem

This note considers the accuracy of di¤erent methods that are commonly used to approxi-
mate autoregressive processes by Markov chains. We thus want to approximate the AR(1)
process

zt+1 = (1� �)�+ �zt + "t+1
by an n-node Markov chain fZ;�g where Z =

�
z1; z2; :::; zn

	
and � = f�i;jg where �i;j

is the transition probability from zi to zj . Here " � N
�
0; �2"

�
, and consequently the

unconditional standard deviation of z is �z = �"
�
1� �2

��1=2.
Five alternative methods are used to approximate this AR(1) process. The �rst method
follows Tauchen (1986). The nodes Z are equally spaced between �1:2�z lnn, and the
transition probabilities � are the probabilities �i;j = Pr

�
z0 2

�
zj � s; zj + s

�
jz = zi

�
im-

plied by the AR(1) process. The step size s is half the distance between nodes, i.e.
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s =
�
z2 � z1

�
=2, except at the extreme nodes where the intervals are

�
�1; z1 + s

�
and

[zn � s;1).

The following three methods all build on Tauchen and Hussey�s (1991). The nodes
�
zi
	

are then the Gaussian nodes for some normal distribution N
�
�; �̂2

�
, and the di¤erence

between the approximation methods I use is the choice of �̂2.1

To summarize Tauchen and Hussey�s method, let
�
zi
	
and

�
wi
	
denote the Gaussian

quadrature nodes and weights for the normal distribution N
�
�; �̂2

�
. Suppose now that

zt = � and that �2" = �̂2. Then these Gaussian nodes and weights typically provide an
excellent approximation of how z will develop in the next period. The problem is that
if zt 6= �, Gaussian quadrature would imply other nodes (and weights), but the Markov
chain requires that the nodes are �xed. So, can we �nd nodes Z and probabilities � that
provide an approximation to the process for any zt 2 Z? Gaussian quadrature provides
nodes

�
zi
	
and weights

�
wi
	
so thatZ
g (�) f (�) d� �

X
g
�
zi
�
wi

where g is some function, � � N
�
�; �̂2

�
, and f is the density function for �. Tauchen and

Hussey (1991) note that if

zt+1 = (1� �)�+ �zt + �t+1

then Z
g (zt+1) f (zt+1jzt) dzt+1 =

Z
g (zt+1)

f (zt+1jzt)
f (zt+1jzt = �)

f (zt+1jzt = �) dzt+1;

i.e. Z
g (zt+1) f (zt+1jzt) dzt+1 �

X
g
�
zi
� f (zt+1jzt)
f (zt+1jzt = �)

wi:

They therefore propose that the AR(1) process should be approximated by the nodes
�
zi
	

and the transition probabilities

�i;j =
f
�
zj jzi

�
f (zj jzt = �)

wi:

As already mentioned, I consider three variants of the Tauchen-Hussey method. First, as
suggested by Tauchen and Hussey (1991) I use �̂2 = �2". Most subsequent implementations
of the Tauchen and Hussey method (e.g. Burnside, 1999) use this alternative, and Tauchen
and Hussey (their section 3.3) argue that numerical evaluations support this choice. I refer
to this speci�cation as �" in the tables below.

The second variant I consider is �̂ = �z. Tauchen and Hussey (1991) also mention this
as a possible choice, and Klein (2007) suggests this speci�cation, which I refer to as �z in
the tables. The third variant I consider is �̂ = w�" + (1� w)�z where w = 1=2 + �=4.
The variance �̂2 is then set to a weighted average of the conditional and unconditional

1Di¤erent choices for the mean � could also have been considered.
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variances, and more weight is given to the conditional variance when the process is highly
persistent. This variant is referred to as w in the tables.

Finally, the �fth method considered is outlined in Adda and Cooper (2003). This method
�rst chooses n intervals such that z has equal unconditional probability to fall in each
of the intervals. Second, one node is chosen for each interval, and this node is set to
the expected value of z conditional on z being in that interval. Third, the transition
probabilities are calculated as with Tauchen�s (1986) method.

Using these �ve approximation methods, I consider the accuracy of approximations to
di¤erent speci�cations of the AR(1) process

zt+1 = �zt + "t+1:

The Markov chain approximations are often used in economics to model income processes,
and I �rst consider the accuracy of approximations to three processes that have often
been adopted in the literature. The �rst speci�cation follows Aiyagari (1994) and sets
� = 0:60 and �2" = 0:013, while the second follows Hubbard et al. (1995, HSZ) and sets
� = 0:95 and �2" = 0:030. The �nal speci�cation, suggested by Storesletten et al. (2000),
is even more persistent and sets � = 0:98 and �2" = 0:020. In addition to examining these
processes, I also examine the methods�accuracy for a broader set of autocorrelations.

2 Results

Table 1 reports the autocorrelation, conditional standard deviation, and unconditional
standard deviation implied by the Markov chains that are obtained with the di¤erent ap-
proximation methods with n = 5; 9, and 15 nodes, and Table 2 reports the accuracy of
approximations for a broader set of autocorrelation parameters for n = 5 and 9 nodes.2

The tables �rst show that processes with relatively low persistence (for example Aiya-
gari�s process with � = 0:60) are well approximated with all methods even with a small
number of nodes. For these process, we however see that Tauchen and Hussey�s quadra-
ture based methods consistently deliver better approximations than Tauchen�s and Adda
and Cooper�s methods. The approximations are less precise when persistence is high.
Tauchen�s method appears to be relatively robust and never completely fails to capture
any of the three moments.

The standard Tauchen-Hussey implementation based on the conditional variance provides
a decent approximation of the autocorrelation and the conditional variance. But with
high persistence, the unconditional variance is much larger than the conditional, and
this method chooses nodes that are close to the mean of the process. Consequently, as
demonstrated in Table 1, the method generates an unconditional variance that is much
lower than the true unconditional variance. This result is not surprising when one considers
that the method was designed to generate an accurate approximation of the conditional
development of z (starting from the unconditional mean of the process). When persistence
is high, the unconditional distribution is very di¤erent from the conditional, and the
resulting approximations are imprecise.

2Computer code is available at www.hhs.se/personal/�oden.
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The Tauchen-Hussey method based on the unconditional variance has the opposite prob-
lem; it chooses nodes far from the mean of the process, and with a small number of nodes
the implied transition probabilities from one node to another are miniscule. As expected,
the resulting approximation is relatively accurate for the unconditional variance, but typ-
ically at the price of a much too high autocorrelation and a too low conditional variance.

The third implementation of the Tauchen-Hussey method is a compromise between the
other two and aims at delivering more robust approximations when the autocorrelation is
high. I have experimented with di¤erent weighting schemes before choosing w = 1=2+�=4.
These weights deliver approximations that are relatively accurate and robust, except when
the autocorrelation is very high and only a small number of nodes are used.

Adda and Cooper�s method is also relatively robust at high persistence levels, and in par-
ticular it then generates good approximations of the autocorrelation and the unconditional
variance. The approximation to the conditional variance is less precise. An advantage with
this method is that the ergodic distribution is uniform over the grid in contrast to the
other methods that tend to put more of the ergodic distribution at the center of the
process. This uniformity facilitates Monte Carlo simulations, in particular when behavior
in the extreme nodes is important (for example if wealth is concentrated among a small
fraction of the population, and equilibrium prices are determined by the aggregate wealth
holdings).

The di¤erent implications of these methods are exempli�ed by Table 3 and Figures 1-2.
Table 3 shows the Markov chain approximations for the HSZ process (� = 0:95, �2" = 0:030)
when using n = 5 nodes. In particular, the table demonstrates that the implementation
with the unconditional variance generates a wide grid with extreme persistence in each
node. Figures 1-2 illustrate some aspects of the approximations of the HSZ process when
using n = 15 nodes.3 Figure 1 shows the implied autocorrelation � conditional on the node.
As expected, the �gure clearly shows that all approximations have problems approximating
the true autocorrelation at the extreme nodes where the process only can move in one
direction. Figure 2 shows the implied standard deviations �" conditional on the node and
illustrates a main di¤erence between the Tauchen (1986) and the Tauchen-Hussey (1991)
methods; the former method generates approximations that are good on average while the
latter method generates good approximations when the process is close to its mean.

3 Conclusions

This note has compared the accuracy of methods that are often used to approximate
AR(1) processes by discrete Markov chains. The nodes generated by the Tauchen and
Hussey�s (1991) method are the Gaussian quadrature nodes that provide a good approx-
imation of the dynamics of the process conditional on some current state of the process.
When the process has high persistence, the conditional transition dynamics will di¤er
substantially depending on the current state, and the most common implementation of
the Tauchen-Hussey method has problems generating accurate approximations. In par-
ticular it generates a too narrow grid and cannot approximate the unconditional variance

3The implications of Adda and Cooper�s method are not reported in the graphs.
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in the autoregressive process. I suggest using another weighting function that generates a
broader grid with the Tauchen-Hussey method, but I also note that the Tauchen (1986)
method is relatively robust to high persistence.
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Table 3: Approximations of HSZ�s Processes

row Z �

Tauchen
1 �1:0713 0:8920 0:1080 0:0000 0:0000 0:0000
2 �0:5357 0:0445 0:8735 0:0820 0:0000 0:0000
3 0:0000 0:0000 0:0610 0:8780 0:0610 0:0000

Tauchen-Hussey: �"
1 �0:4948 0:7376 0:2473 0:0150 0:0002 0:0000
2 �0:2348 0:1947 0:5555 0:2328 0:0169 0:0001
3 0:0000 0:0113 0:2221 0:5333 0:2221 0:0113

Tauchen-Hussey: �z
1 �1:5848 0:9999 0:0001 0:0000 0:0000 0:0000
2 �0:7520 0:0000 0:9998 0:0002 0:0000 0:0000
3 0:0000 0:0000 0:0001 0:9998 0:0001 0:0000

Tauchen-Hussey: w
1 �0:7809 0:9207 0:0792 0:0001 0:0000 0:0000
2 �0:3706 0:0476 0:8486 0:1037 0:0001 0:0000
3 0:0000 0:0000 0:0873 0:8252 0:0873 0:0000

Adda-Cooper
1 �0:7765 0:8232 0:1701 0:0067 0:0000 0:0000
2 �0:2950 0:1701 0:5919 0:2233 0:0146 0:0000
3 0:0000 0:0067 0:2233 0:5401 0:2233 0:0067

Note: The table shows the Markov chains generated by the di¤erent methods
to approximate the process � = 0:95 and �2" = 0:030 when n = 5 nodes. Since
Z and � are �symmetric�, only the �rst three rows are reported.
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Figure 1: Approximation of the HSZ process with 15 nodes, true (red)
� and � conditional on node (blue, marked)
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Figure 2: Approximation of the HSZ process with 15 nodes, true (red)
�" and �" conditional on node (blue, marked)
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