Scandinavian Working Papers in Economics
HomeAboutSeriesSubject/JEL codesAdvanced Search
Department of Economics, Lund University Working Papers, Department of Economics, Lund University

No 2014:40:
Sequences in Pairing Problems: A New Approach to Reconcile Stability with Strategy-Proofness for Elementary Matching Problems

Jens Gudmundsson ()

Abstract: We study two-sided ("marriage") and general pairing ("roommate") problems. We introduce "sequences," lists of matchings that are repeated in order. Stable sequences are natural extensions of stable matchings; case in point, we show that a sequence of stable matchings is stable. In addition, stable sequences can provide solutions to problems for which stable matchings do not exist. In a sense, they allow us to "balance" the interest of the agents at different matchings. In this way, sequences can be superior to matchings in terms of welfare and fairness. A seminal result due to Roth (1982, Math Oper Res 7(4), 617-628) is that no strategy-proof rule always selects stable matchings. In contrast, we show that there is a weakly group sd-strategy-proof rule that selects stable sequences. We call it the Compromises and Rewards rule, CR. We find that stronger incentive properties are incompatible with much weaker stability properties and vice versa. The CR rule satisfies two fairness axioms: anonymity and side neutrality. For the general problem, the Generalized CR rule is sd-5-stable (cannot be blocked by groups of five or fewer agents), weakly sd-strategy-proof, and anonymous. In addition, the Extended All-Proposing Deferred Acceptance rule is sd-stable, anonymous, and individually rational at all times on a restricted domain. We provide a condition under which our results still hold if agents have cardinal preferences and compare sequences using "expected utility."

Keywords: Pairing problems; Sequences; Stability; Strategy-proofness; Algorithms; (follow links to similar papers)

JEL-Codes: C62; D02; D60; (follow links to similar papers)

37 pages, November 24, 2014

Before downloading any of the electronic versions below you should read our statement on copyright.
Download GhostScript for viewing Postscript files and the Acrobat Reader for viewing and printing pdf files.

Full text versions of the paper:

wp14_40.pdf    PDF-file
Download Statistics

Questions (including download problems) about the papers in this series should be directed to David Edgerton ()
Report other problems with accessing this service to Sune Karlsson () or Helena Lundin ().

Programing by
Design by Joachim Ekebom

Handle: RePEc:hhs:lunewp:2014_040 This page was generated on 2014-12-14 19:25:03