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1. Introduction

Since the development of the stochastic frontier production function (SFPF) by Aigner et

al (1977) and Meeusen and van den Broeck (1977), evaluating the efficiency of individual firms

and industries has become popular with the increasing availability of firm-level data and growing

capacity of computers to process them1.  Econometrically, the most common approach to

estimate SFPF is to specify a deterministic, parametric production function common to all

economic units and a stochastic component that consists of a two-part error term2.  The first

component of this error term is a symmetric disturbance that represents statistical noise and

follows a normal distribution.  The second part is a one-sided error that represents technical

inefficiency and which typically follows a half-normal or truncated normal distribution3.  This

approach implicitly assumes that the explanatory variables or factors of production are measured

without any errors.  It is difficult to justify that the data collected on input use represents true

measurements of their theoretical counterparts.  For example, a major source of measurement

error in measuring flow of services from capital is the lack of information on the vintage nature

of capital stock.  Additionally, the labor usage figures reported by firms can also be mismeasured

due to the non-availability of information on the skill levels of the labor force being used.

Consequently, the bias introduced by measurement errors can potentially be rather severe and

this paper devises a methodology to investigate the severity of this bias.

                                                
1 Both economists and policy makers have made use of this trend as the notion of frontier is consistent with the
theory of optimization in addition to identifying factors that can explain relative efficiencies of economic units.  A
partial list of studies that use the SFPF approach for efficiency measurement related issues is: Kumbhakar
(1987,1988), Battese and Coelli (1992), Bauer (1992), Kumbhakar and Hjalmarsson (1995) and Dhawan and Gerdes
(1997).
2 Bauer (1990) and Greene (1993) contain detailed surveys of different econometric techniques for estimating SFPF
and technical efficiency.
3 An estimate of the technical inefficiency is then obtained from the mean or mode of the conditional distribution of
the one-sided error term given the composed error term (Jondrow et al 1982).
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We utilize and extend Fuller’s (1987) reliability ratio concept to investigate the

measurement bias due to errors-in-variables in cross-sectional SFPF framework4.  Briefly, the

concept is as follows.  If x is the true (but unobserved) value of a variable, u is the measurement

error and z = x + u is the observed measurement, then the reliability ratio may be defined as the

ratio of variance of x to z.  This means that a variable with no measurement error (z = x) has a

reliability ratio of one.  Thus, lower the value of reliability ratio, higher is the degree of

measurement errors in the observed data.  Next, given the reliability ratio consistent estimates

can be derived for the parameters of the model under consideration.  As the reliability ratio may

be unknown most of the time in a practical setting, the best alternative is to derive a range of

estimates given plausible values for the reliability ratio5.  One can then examine the sensitivity of

the estimates to this range in the reliability ratio.  For example, while estimating the SFPF model

an issue is how sensitive is the estimated firm-specific technical efficiency to the degree of

measurement errors in the input data.

The outline of the paper is as follows.  In section 2, we set up the cross-sectional SFPF

with no measurement errors as developed in Aigner, Lovell and Schmidt (1977).  We then define

the setup of a SFPF model when inputs (capital and labor) are measured with errors and discuss

how to estimate it.  Section 3 presents a Monte-Carlo simulation study that illustrates the

superiority of the method developed to deal with measurement errors in section 2.  An empirical

                                                
4 The concept of reliability ratio is not new and Fuller (1987) contains a detailed exposition of how to use this
concept to derive maximum-likelihood estimate of a multiple regression equation when the reliability ratio is
known.
5 The word plausible is used in the statement as not all degrees of measurement errors or reliability ratios can be
supported by the data or valid in practical setting.  Thus, in this paper we also derive the expression for the upper
bound for the variance of the measurement error  (lower bound for reliability ratio) that can be supported by a given
empirical data set.
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example based on U.S. firm-level data is given in section 4.  Section 5 concludes with a

summary of findings and directions for future research.

2.  SFPF in Cross-Section

2.1 Basic set-up

Starting with Aigner et al. (1977), the cross sectional SFPF may be written as:

 yi = f( xi ; β) + ε i - ξ i . (1)

where, for each firm, yi is output in logs and xi is the (actual)  k × 1 vector of inputs in log terms.

εi is an IID random variable which represents the statistical noise to the production and β is a k ×

1 vector of unknown parameters.  Aigner et al. assume that εi ∼ N(0, σε
2) so that the maximum

output firm i can produce using xi is then f(xi ; β ) + εi.  They also focused on a linear model, i.e.

f(xi ; β ) = α + xi’β  that is consistent with the Cobb-Douglas type production function

assumption.  Technical inefficiency is then introduced as a positive random variable ξi.  The

most common assumption made in the literature is that ξi follows a truncated normal with mean

zero (the positive half), i.e. ξi ∼ iidN+(0, σξ
2) 6’7.  Defining ei = εi - ξi as the compound residual,

equation (1) can be written as:

yi = α + xi’β + ei. (2)

The density of ei is well known (see Weinstein (1964)) and given below:
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6 Other common assumptions are exponential (Meeusen and van den Brock (1977) and also in Aigner, Lovell and
Schmidt (1977)), gamma (Beckers and Hammond (1987) and truncated normal with non zero mean (Stevenson
(1980)).  See Greene (1997a) for a detailed discussion regarding the merits and shortcomings of these different
distributional assumptions.
7 Where the variance of ξ i is equal to (1-2/π)σξ

2.
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and erfc(x) is defined as 1-erf(x) where the error function erf(x) is defined as:

erf( )x e dttx
= −I2 2

0π
.

λ is directly related to the skewness of e while σ2 is directly related to the variance of e8.

The empirical distribution of e is key to estimation of the SFPF model in equation (2) as the

variance of the technical efficiency (σξ
2) is derived from the estimated skewness of e.

With no measurement errors, estimation of parameters (α, β, λ and σ2) in equation (2) is

straightforward.  OLS will give us a consistent but inefficient estimate of β and an inconsistent

estimate of α.  OLS, however, would not allow us to estimate the variance of the technical

efficiency σξ
2 9.  An alternative is to use maximum likelihood method.  The log-likelihood

function following Aigner et al. (1977) can be written as:
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where the above likelihood can easily be modified for a different specification of the production

function f(xi ; β) as well as for different distributional assumptions on ξi.

2.2 Technical efficiency

The production function implicit in equation (2) when written in level terms is:

Y Xi ij
j
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8 Note that σ2 is not exactly the variance of e which is given by the following expression:
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9 But OLS does a good job of testing whether the error term is skewed or not. Another alternative would be to use
Corrected OLS which gives consistent but inefficient estimates of the regression parameters (see Greene (1997)).
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where the output Yi and input Xij  are in levels.  Thus, the technical efficiency of firm i

can be defined as ϕi = exp(-ξi)
10 and it may be interpreted as the percentage of maximum

possible output achieved when the residual εi is zero. This involves the technical inefficiency

effect ξi , which is an unobservable random variable.  Even if the true value of the parameter

vector β in the stochastic frontier model (2) was known, only the difference, ei = εi - ξi, could be

observed.  If ei is the compound residual for firm i then the best predictor of firm-specific

technical efficiency is the random variable (ϕi | ei).  The expected value of (ϕi | ei), with ei

replaced by the residual $ei, is our best prediction of technical efficiency for firm i given the

residual $ $ $e y xi i i= − − ′α β .  Jondrow et al. (1982) compute E(ξi | $ei) as the predicted technical

inefficiency.  This is based on the approximation that ξi = -lnφi ≈ 1 - φi.  We prefer to avoid this

approximation and calculate directly the conditional expected value of φi as suggested by Battese

and Coelli (1988).  This after some tedious algebra is11:

E[exp(-ξi) | $ei] = exp
2
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The mean or average technical efficiency of firms is straightforward to derive as:

E[exp(-ξi)] = E(ϕi) = 2exp(σξ
2/2)[1-Φ(σξ)] (6)

2.3 SFPF with errors-in-variables

Let xi denote the actual (unobserved) k × 1 vector of inputs in log terms for firm i.  We

also observe an equal number of variables zi which are related to xi in the following manner:

zi = xi + ui (7)

                                                
10 Since ξi ≥ 0, the technical efficiency will always be between zero and one.  A firm is defined as fully efficient or
located on the frontier if ξi = 0 in which case the technical efficiency measure is equal to one.
11 Note that this expression converges to exp( $ei ) as σε

2 → 0 which is what we should expect since $ei  in this case

estimates -ξi.



6

where ui denotes the k × 1 vector of measurement errors (also in logs) and E(ui | xi) = 0.

This is the error model approach12, which implies that the measurement errors are multiplicative

in nature13.  In addition this model is non-calibrated in the sense that zi is not specified to be

related to xi in a systematic manner 14.  The non-calibrated model is more suitable as we have no

reason, a priori, to believe that there is a systematic bias in the measurements of inputs.  Given

the production function specification in equation (2), and assuming normal distributions for the

measurement errors and the unobserved explanatory variables, we get the following model

specification:

yi = α + xi’β + εi - ξ i

zi = xi + ui ,  where E(ui | xi) = 0, (8)

εi ∼ N(0, σε
2),  ξi ∼ iidN+(0, σξ

2),  xi ∼ N(µ,Σx) and  ui ∼ N(0, Σu).

This specification implies that x and u are independent and that zi ∼ N(µ, Σz) with Σz = Σx

+ Σu.
15  Finally, we assume that the true factors (xi), the measurement errors (ui), the stochastic

frontier error term (εi) and the technical inefficiency (ξi) are all independent random variables for

all i.

                                                
12 The other approach to modeling errors is the Berkson model where xi = zi + vi , and vi are the measurement errors.
Here, E(vi | zi) = 0 which implies that the expectation conditional on observed zi is zero as opposed to the error
models where the expectation conditional on actual xi is zero.  In addition, in the error model, the observed value is
correlated with the measurement error while the actual value is correlated with the measurement error in the Berkson
model.  Which approach to use depends on what one believes is independent of the measurement errors: the true
values of inputs or the observed values.  In our view it is natural to assume that the true values are independent of
the measurement errors and thus we follow the error model approach.
13 They are multiplicative in the sense that that exp(zi) = exp(xi) · exp(ui) where exp(zi) is the actual observations on z
(not in logs) and similarly for x and u.
14 An error model would be calibrated if it was specified that zi = γ0 + γ1xi + ui.
15 Pal, Neogi and Ghosh  (1998) have analyzed a similar setup with nonstochastic explanatory variables (both
observed and unobserved z and x). Although this approach has some advantages, in the sense that the the estimated
coefficients do not depend on the distributional assumption made for x and z and the likelihood function is easier to
derive, it is an unconventional assumption in the errors-in-variable literature (see for example Fuller (1987) and
Greene(1997b)). It is hard to motivate the errors-in-variables assumption that zi = xi + ui assuming that the
measurement errors are stochastic without assuming that x and z are stochastic too.
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At this point it is clear that the model (8) is unidentifiable as we only observe zi while xi

and ui are unobserved.  This implies that Σu and Σx cannot be identified separately which means

that one needs additional information such as instrumental variables.  As appropriate instruments

for labor and capital are hard to justify, one can then try to identify the “consistent bounds” for

parameter β as advocated by Klepper and Leamer (1984).  In Klepper and Leamer approach ones

identifies all β’s that imply positive estimates for the variance of ei = εi - ξi and positive semi-

definite estimates of Σx and Σu.
16  For the specification in equation (8) we cannot use this

approach as OLS does not provide estimates for σξ
2 which is needed to calculate the conditional

as well as unconditional technical efficiency estimates. Instead, we will follow (and extend)

Fuller’s reliability ratio approach which, although computationally more expensive, allows us to

use maximum-likelihood method to consistently estimate all the parameters of the model as well

as the technical efficiencies.

The relevant reliability ratios are defined as following:

πi = Var(xi)/Var(zi)  i = 1,…,k (9a)

πij = Cov(xi, xj)/Cov(zi, zj) = Cov(xi, xj)/[Cov(xi, xj) + Cov(ui, uj)]

                                               i = 1,…,k  and j = 1,…,k, i ≠ k (9b)

where πi is the (traditional) reliability ratio associated with variable i, 0 ≤ πi ≤ 1 and πi is equal to

one if there are no measurement errors for variable i.  Typically, one specifies the covariance

matrix of the measurement errors u to be diagonal (see for example Klepper and Leamer (1984)).

If this is the case, the reliability ratio πi’s are all we need for identifying the model.  However, we

would like to allow for covariances between the different measurement error, ui’s, which then

warrants the introduction of πij.  πij is the ratio of the true (unobserved) covariance between two

                                                
16 The consistent bounds are found by running k + 1 regressions and if all these regressions are in the same orthant,
then the set of maximum likelihood estimates will be the convex hull of these estimates.
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variables to the observed covariance and will be called the covariance reliability ratio.  Note that

if one assumes that the measurement errors of different variables are uncorrelated, then all the

πij’s are equal to one17,18.  Since xi and ui are independent, it follows that:

Var(ui) = (1 - πi)Var(zi) i = 1,…,k (10a)

Cov(ui, uj) = (1 - πij)Cov(zi, zj)  i = 1,…,k  and j = 1,…,k, i ≠ k. (10b)

It is possible to collect all the reliability ratios into one matrix Π where:

Π =
�

!
   

"

$
###

π π

π π

1 1

1

L

M O M

L

k

k k

With this notation, we may write, Σx = Π.*Σz  and  Σu = (1 - Π).*Σz where the notation “ .* “

means element by element multiplication and where 1 is a k × k matrix of ones.  Because zi is

observed, it is possible to estimate the variance matrix Σz.  In order to identify the model we have

specified so far we must also know either one of Π, Σx or Σu
19.

2.4 Maximum likelihood estimation

Our goal is to estimate the parameters α, β, σε
2, σξ

2, or equivalently, α, β, σ2 and λ, in model (8)

given different values for reliability ratio Π. However, the joint distribution of the observations

on yi and zi will involve all the parameters. Given the matrix of reliability ratios Π these

parameters are given by ω´ = (µ´, vech(Σz)´, α, β´, λ, σ2).  We will use a two-step procedure also

known as the method of limited information maximum likelihood (LIML) to maximize the

likelihood function20. In the first step of this procedure we use the sample moments of z to

                                                
17 Also, unless the measurement errors are negatively correlated, the πij’s will be less than one.
18 If the variables xi and xj are uncorrelated, we let πij be equal to zero, irrespective of the fact whether the
measurement errors are correlated or uncorreleated.
19 Now, even if the reliability ratio is unknown for the particular variables under study one can then investigate the
sensitivity of the estimates to the changes in the reliability ratio.

20 Estimating these parameters using full information maximum likelihood (FIML) could not be done as the
likelihood function was too flat, mostly due to the elements in Σz, to allow us to find the maximum.
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estimate µ and Σz. Substituting these estimates into the full likelihood will, under weak assump-

tions, lead to consistent estimates of (α, β´, λ, σ2). This second stage likelihood function is much

easier to maximize than the full likelihood, but the estimated covariance matrix of (α, β´, λ, σ2)

at this stage will no longer be consistent. However, by using the results of Murphy and Topel

(1985), we will show how the estimated covariance matrix of (α, β´, λ, σ2) can be adjusted to

yield consistent results.

Now, if we assume that x, and therefore z, is weakly exogenous with respect to (α, β´, λ,

σ2) we can then write the log-likelihood of the parameters as:

l( ) ln , ln ln , ,ω ω ω ω ω= = +
= = =
∑ ∑ ∑f y z f z f y zi i
i

n

i
i

n

i i
i

n

1 6 2 7 2 7
1

1 1
1

2 1 2
1

(11)

where ω1´ = (µ´, vech(Σz)´) and ω2´ = (α, β´, λ, σ2).

In LIML procedure we first maximize the first part of the likelihood expression in (11):

l1 1 1 1
1

( ) lnω ω=
=
∑ f zi
i

n

2 7  (12)

over ω1. This will give us an estimate $ ( )ω1 z , which is then used to maximize the remaining

portion of the likelihood:

l2 1 2 2 1 2
1

( $ , ) ln , $ ( ),ω ω ω ω=
=
∑ f y z zi i
i

n

2 7 (13)

over ω2.  This gives us an estimate $ ( , )ω 2 y z . The exact expression for the first-step likelihood is:

l1 2 2
1

2
1= − − − − ′ −− −constant n

z
n

z z
n

zS z zln ( ) ( )Σ Σ Σtr µ µ  (14)

where S z z z zz n i ii
= − − ′∑1 ( )( ) . It is well known that z  and Sz are the ML estimates of µ and Σz,

and that they are independently distributed as N n z( , )µ 1 Σ  and n
n n z n− −1

1 11 6 1 6Wishart Σ , . The

sample moments thus consistently estimate the population moments.

These results enable us to calculate an estimate of V1, the asymptotic covariance matrix

of $ ( $ , ( $ ) ) ( , ( ) )′ = ′ ′ = ′ ′ω µ1 vech vechΣ z zz S . Although we are not directly interested in an estimate of

V1, it is needed later to obtain a consistent estimate of V2 which is the asymptotic covariance
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matrix of $ ( , )ω 2 y z .  The asymptotic covariance matrix V1 is of dimension 1
2 3k k( )+  and can be

written as following:

V
V V

V V1

1 1

1 1

=
�
��

�
��

µµ µσ

σµ σσ
.

If we define S z z z zi i i= − −( )( ) then we can write following Edgerton and Jochumzen (1999) the

elements of V1 as:

$V Sn z1
1

µµ =  

$ )( )) )( ))V S S S Sn n i ii z z1 vech( vech( vech( vech(σσ = ′ − ′∑1 13 8J L
$ ( )( ( ))V z z S

n i ii1
1
2σµ = − ′∑ vech= B

Note that if zi is normal, the estimate of V1σµ will be zero.

To calculate the second-step likelihood we need to find the conditional distribution of y

given z. Let v be the random variable x’β. Then by considering the joint density of y and v we

have:

f y z f y v z dv f y v z f v z dvy z y v zv y v z v zv| , | | , |( | ) ( , | ) ( | , ) ( | )= =I I (15)

Because we are conditioning on z and x’β, we have:
f y v z f y v v z

f y v v f y v

y v z e v z

e v e

| , | ,

|

( | , ) ( | , )

( | ) ( )

= − −

= − − = − −

α
α α

(16)

The last equality follows because e is independent of z and x’β. By substituting (16) into (15) we

get:

f y z f v z f y v dvy z v z ev| || | ( )1 6 1 6= − −I α (17)

where the integral is a single one over all possible values of x’β. Since x and z are normal, v | z

will also be normal. Straightforward application of the results for conditional density of a

multivariate normal gives us the expected value and variance of x’β | z 21

                                                
21 Since E(xi’β) = µβ and Cov(xi’β, zi) = Σxβ we have
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E(v | z) = µ’β + (z - µ)’Σz
-1Π.*Σzβ (18a)

and

Var(v | z) = β ’(Π.*Σz - Π.*Π.*Σz)β = β ’(Π.*Σz .*Πc)β (18b)

where Πc = 1 - Π.

Thus, the density fv/z can be written as:

f v z
x z

v z

z
c

z z

z
c| ( | )
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Therefore, the conditional density of yi given zi is:
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and the second step likelihood function l2  is given by
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The LIML estimates are found by substituting the first-step estimates of µ and Σz (z  and

Sz) into (21) which is then maximized. It is possible to show that this integral will not simplify

unless every reliability ratio in Π is equal to one in which case the density above will converge to

the density of e in section 2.  However, it is possible to evaluate the likelihood function

                                                                                                                                                
Then using the formula for the conditional distribution of xi’β given zi we get xi’β | zi ∼ N[µ’β + (zi - µ)’Σz

-1Σxβ, β’(Σx -
ΣxΣz

-1Σx)β].  This using Σx = Π.*Σz could then be written as N[µ’β + (z - µ)’Σz
-1Π.*Σzβ, β ’[Π.*Σz.*(1 - Π)]β].
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numerically for any matrix Π22. Note that the likelihood function will simplify further if all the

reliability ratios are equal to one common value say 
)π . Conditional on this reliability ratio 

)π , we

have:

E(xi’β | zi) = β ’µ + 
)π β ’(zi - µ) (22a)

Var(xi’β | zi) = 
)π (1-

)π )β ’Σzβ (22b)

and a simpler form for the conditional density of y given z is:

f y z
y v

y v v z
dv
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(23)

The adjusted asymptotic covariance matrix of the second-step estimates ω2 (V2
∗ ) has to be

calculated as following:

V V V CV C RV C CV R V2 2 2 1 1 1 2
∗ = + − −( )  (24)

where V2 is the unadjusted second-step covariance matrix.  Also, C and R, following Murphy and

Topel (1985) who establish consistency of LIML under the usual regularity conditions, are

defined as following23:
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2.5 Bounds on reliability ratio

Not all Π-matrices are possible as some Π-matrices will give rise to negative estimates of

the variance of εi.  The reasoning is as following.  Combining equations  (2) and (7) one gets:

yi = α + zi’β + εi - ui’β - ξi (25)

                                                
22 We need to evaluate n integrals each time we calculate the value of the likelihood function which is not a problem
for a fast computer.
23 The gradient vectors are difficult to calculate analytically so we used numerical derivatives to calculate C and R.
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where the error term is now composed of three parts.  Since uiβ is normal, the skewness

of the data will determine the relative share of the variance between εi – uiβ on one hand and ξi

on the other in equation (25). Given this division, the data will determine variance of  εi – uiβ

(s uε β−
2 =σε

2 + β’Σuβ ), but not how s uε β−
2  is shared between the two terms εi and uiβ.  With no

measurement errors, all the s uε β−
2  variance can be attributed to the variance of the residual ε.  As

the variance of u increases, more of the  s uε β−
2  variance will be due to the variance in uiβ.  In the

extreme case all the variance of  εi – uiβ is due to measurement errors.  In this case σε
2 = 0 and

s uε β−
2 = β'Σuβ.  Attempting to increase the variance above this limit will result in negative

estimate of σε
2.  This in turn determines the lower limit for the reliability ratios.  In practice, the

estimated variance of ε decreases when we decrease the reliability ratios and the lower limit of

the reliability ratios will be found where the estimated variance of ε goes to zero.

If we define bΠ as the estimated value of β given the reliability ratio matrix Π, the

restriction that the estimate of σε
2 ≥ 0 is equivalent to bΠ 'ΣubΠ  = bΠ '(1-Π.*Σz)bΠ  ≤ s uε β−

2  which

is the restriction for determining feasible values of Π.  Additional bounds on the reliability ratios

may be found if some other simplifying assumptions are made.  This will be discussed in detail

in when doing the simulation exercise in section 3.

2.6 Technical efficiency with errors-in-variables

Our aim is now to estimate the unconditional technical efficiency and the conditional

technical efficiency for each firm again for different values of the reliability ratio Π.  The

expression for the expected value of the mean technical efficiency, E[exp(-ξi)], is the same as in

equation (6) even with measurement errors since the distribution of ξi is unaffected.  However,

the expression for the technical efficiency for firm i requires a slight modification.  With

measurement errors, the compound residual will be given by ei* = εi - ui'β - ξi (see equation (25))
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instead of ei = εi - ξi as in the case of no measurement errors.  Since ui’β is normal, the expression

we derived for E[exp(-ξi) | $ei]  in equation (5) will be valid if we replace εi by εi - ui’β and

redefine σ2  and λ  as following:

σ*
2 = σε

2 + β’Σuβ + σξ
2 and λ

σ

σ β β
ξ

ε
* =

+ ′2 Σu

(26)

Consequently, the expression for conditional technical efficiency under errors will then be:

E[exp(-ξi)| $ei*]=
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3.  Simulation Study

3.1 Simulation set-up

This section compares the new estimator for the cross-sectional SFPF developed in the

previous section (henceforth called the EIV estimator) with the traditional ML estimator on

simulated data.  The aim is to investigate the bias introduced by measurement errors in

estimating the production function parameters and the resulting technical efficiency estimates.

The model that we choose to simulate is a Cobb-Douglas production function with two inputs,

capital and labor.  The choice of only two inputs was motivated by the desire to be as similar to

our empirical example presented in section 4 where the data allows for identification of only two

broadly defined category of inputs: total capital and total labor.  In addition, the basic parameters

for simulation are chosen so as to closely mimic the actual data analyzed in section 4.  The

starting point of the simulation is the following model specification:

ln(Yi) = α + βK ln(Ki) + βL ln(Li) + εi - ξi (28a)

where ln(Ki) = ln(Ki) + ln(UKi) and  ln(Li) = ln(Li) + ln(ULi) (28b, 28c)
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where Ki and Li are actual but unobserved amount of capital and labor of firm i and  Ki and Li are

the measured counterparts.  U, ε and ξ are as defined in section 2 and let σK
2 denote the variance

of ln(Ki), σL
2 the variance of ln(Li) and σKL the covariance between ln(Ki) and ln(Li).

Now, a slight modification of the model in (28) by writing it in per-capita terms is

preferred.  This is achieved by subtracting ln(Li) from both sides of (28a) and  subtracting (28c)

from (28b).  There are three advantages of doing this.  First, it is easier to find the maximum of

the likelihood function when regressing ln(Y/L) on ln(K/L) and ln(L) instead of regressing ln(Y)

on ln(K) and ln(L).  Second, the parameter of ln(L) will directly estimate the degree of departure

from the constant returns to scale.  Third, the per-capita specification allows us to find bounds on

the feasible reliability ratios as we discuss later in the next sub-section.  Thus, after the

transformation the model in equations (28a,b,c) can be written as:

ln(Yi / Li) = α + βK ln(Ki / Li) + (βL + βK – 1)ln(Li) + εi - ξi. (29a)

ln(Ki / Li) = ln(Ki / Li) + ln(UKi / ULi),  ln(Li) = ln(Li) + ln(ULi) (29b, 29c)

or equivalently as:

yi = α + xiγ + εi - ξi.  (30a)

zi = xi + ui. (30b)

where yi = ln(Yi / Li), xi = [ln(Ki / Li), ln(Li)], zi = [ln(Ki / Li), ln(Li)], ui = [ln(UKi / ULi), ln(ULi)]

and γ = [βK, (βL + βK – 1)]24. We simulate x1, x2, u1 and u2 from normal distributions such that xi

∼ N(0,  2
)π ), ui ∼ N(0,  2(1-

)π )) with 
)π  being the common reliability ratio.  Then by adding x to u,

we get z with the desired properties.  Once x and u are simulated we then simulate εi from a N(0,

σε
2) and ξi from a truncated N+(0, σξ

2) with Var(εi) = 0.2 and Var(ξi) = 0.8  which  implies that

σ2 = 1 and λ = 2.  Finally, we create y by selecting α = 1.7, γ1 = 0.6 and γ2 = 0.1.  This implies

                                                
24 Note that xi and ui are independent since ln(Ki / Li) and ln(UKi / ULi) are independent.
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increasing returns to scale with coefficients βK = 0.6 and βL = 0.5. This is the model structure

that we will use for our simulation study.

3.2 Restrictions on the reliability ratios

In contrast to the generalized bounds discussed in section 2.5, we will derive simplified bounds

when simulating independent series for x1 and x2.  The independence assumption implies that the

covariance between actual ln(Ki / Li) and ln(Li) is zero.  Obviously, we do not know what this

covariance is in reality but we can estimate the covariance between observed ln(Ki / Li) and

ln(Li).  In the actual data that we have examined in section 4, this covariance is almost zero25.

Since Cov(z1, z2) = Cov(x1, x2) + Cov(u1, u2), and unless there is a reason to believe that the

covariance between the measurement errors of ln(Ki / Li) and ln(Li) is far from zero, it seems

reasonable to assume that Cov(x1, x2) is close to zero as well.  The implications of setting these

covariances to zero are as following:

1. σKL = σL
2 .  26

2. πKL = πL where again πKL is the “covariance reliability ratio” cov[ln(Ki), ln(Li)] / cov[ln(Ki),

ln(Li)]
27.  This simplification is very useful since it decreases the number of unknown

parameters from three to two when we do the simulations.

3. Var(z1) = Var[ ln(Ki/Li) ] = σK
2  - σL

2, Var(z2) = σL
2.

4. Var(x1) = Var[ ln(Ki/Li) ] = πKσK
2 - πLσL

2, Var(x2) = πLσL
2.

5. Var(u1) = Var[ ln(UKi/ULi) ] = (1-πK)σK
2 - (1-πK)σL

2, Var(u2) = (1-πK)σL
2.

                                                
25 The actual correlation between ln(Ki / Li) and ln(Li) in the empirical data of section 4 was -0.03.
26 Since Cov(z1, z2) = Cov[ ln(Ki/Li), ln(Li) ] = Cov[ ln(Ki), ln(Li) ] – Var[ ln(Li) ] = σKL - σL

2 =0, it follows.
27 Since Cov(x1, x2) = Cov[ ln(Ki/Li), ln(Li) ] = Cov[ ln(Ki), ln(Li) ] – Var[ ln(Li) ] = πKL·Cov[ ln(Ki), ln(Li) ] - πL·Var[
ln(Li) ]=0 and Cov[ ln(Ki), ln(Li) ] = Var[ ln(Li) ] from (1), this follows.
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6. The reliability ratio of the variable ln(Ki/Li) expressed in terms of the reliability ratios of

Capital and Labor is Var[ln(Ki/Li) ] / Var[ ln(Ki/Li) ] = (πKσK
2 - πLσL

2)/(σK
2 - σL

2) by (4) and

(5).  Note that if the reliability ratio of Capital and Labor are equal (to say 
)π ), then the

reliability ratio of ln(Ki/Li) is 
)π  itself.

By noting that the reliability ratio of ln(Ki/Li) must itself be between zero and one we can

find feasible bounds on the reliability ratios for capital and labor.  These bounds are28:

π σ
σ

π π σ
σ

σ σ
σL

L

K
K L

L

K

K L

K

2

2

2

2

2 2

2≤ ≤ + −
(31)

This expression evaluates to 0.845πL ≤ πK ≤ 0.845πL + 0.155 using σK
2 = 8.15 and σL

2 = 6.17 as

observed in the empirical data analyzed in section 4.  These are powerful restrictions that

together with the condition that the estimate of σε
2 be positive will limit the set of possible

reliability ratios that we can consider during the simulations.  Table A1 in the appendix shows

feasible values for πK given the values of πL.  For each simulation round, we start by setting πL

and πK in such a way that they are within the bounds defined in equation (31).  In practical terms

this implies setting πL = πK as the bounds expression do allow πL to be equal to πK 
29.  Thus, what

matters during the simulations is whether πL and πK are large (close to one) or small.

3.3 Simulation results: parameter estimates

Each simulation round consisted of 500 observations to estimate the parameters and this

was repeated 100 times.  Table 1 presents the averages and the standard deviations of the

estimated parameters for the MLE method and the EIV estimator under different levels of

                                                
28 The bounds are calculated by equating the expression (πKσK

2 - πLσL
2)/(σK

2 - σL
2) equal to 0 and 1, respectively.

29 If we assume that the covariance between x1 and x2 is less than 0.05 in absolute terms, then -0.00727 + 1.0058πL ≤
πK ≤ 0.00727 + 1.0058πL is the equation that defines the bounds.  Then if πL = 1, πKL must be between 0.9985 and
1.013 and if πL = 0.9, πKL must be between 0.8979 and 0.9124.  Thus, setting πKL = πL seems to be the most
reasonable choice.
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reliability ratios.  In the table estimates of σξ
2 and σε

2 are derived from the estimates of σ2 and λ

using expressions defined in equation (3).  The most striking result of the simulation study is the

severe downward bias in the MLE estimate of γ1 and γ2 as the common reliability ratio falls.

This implies that (where γ1 = βK and γ2 = βL + βK – 1) we underestimate the elasticity of capital

while we overestimate that of labor when there are measurement errors.  For example, in the

simulated data the elasticity of capital was 0.6 while that of the labor was 0.5.  With 80%

reliability in the data, the capital elasticity is underestimated by 20%, and for 70% reliability

ratio the estimates are completely reversed: 0.4175 for capital and 0.6499 for labor.  Thus, the

biases are quite severe and clearly show the need for a procedure that consistently estimates the

elasticity parameters under even reasonable degree of measurement errors.

Table 1 results also imply that MLE tends to underestimate the return to scale parameter

γ2 .  Therefore, if one wants to test for increasing returns, the MLE does a poor job whereas the

EIV estimator will pick out true increasing returns even for a 70% reliability ratio.  Table 1 also

shows that the MLE based λ estimate is biased downward and σ2 is biased upwards.  The

combined effect of these two on the estimate for the variance of technical efficiency (σξ
2) is that

it seems to be estimated consistently whereas the variance of the residual (σε
2) is biased upwards.

This is not surprising as the measurement errors being normally distributed, will be captured in

the σε
2 term, thus biasing it upwards, leaving the σξ

2 estimate to be unaffected.  Thus, there will

be an upward bias in estimated σ2 and a downward bias in estimated λ under MLE.  From table 1

it is clear that both σ2 and λ are consistently estimated by the EIV estimator.  To sum, even with

extreme measurement errors, the EIV estimator succeeds in estimating the elasticity parameters,

returns to scale and the relevant variance estimates consistently.
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3.4 Simulation results: technical efficiency

Table 2, column 2 presents the mean technical efficiency estimates for different

reliability ratios where the true expected value of the unconditional technical efficiency using

equation (6) and σξ
2 = 0.8 is 0.5536.  Column 3 and 4 respectively have estimates of the

expected value of the technical efficiency based on MLE and EIV estimates from table 1.  Here

the MLE estimator does as well as the EIV estimator when it comes to estimating the mean value

of the technical efficiency.  This happens because both MLE and EIV produce estimates of  σξ
2

that are identical to the third decimal, and that is the only parameter that determines the average

technical efficiency.  Hence, if you are only interested in mean technical efficiencies, you may

just as well use the traditional MLE estimator, even if the data suffers from measurement errors ,

as long as these are normally distributed.

Next, we analyze technical efficiency of firm i once we have estimated the residual for

that firm. For each simulation round we compare the true technical efficiencies to the estimated

technical efficiencies calculated using the MLE and EIV techniques.  This comparison was done

by calculating the average absolute deviation between the true technical efficiency and the MLE

and EIV estimates of it. This then results in two numbers for each simulation round.  The means

and standard deviations of these 100 simulation rounds are presented in table 3.  It is clear from

the table that EIV is much more successful at estimating technical efficiency of individual firm.

The average absolute deviation between the true value and the MLE estimate rises as the severity

of the measurement errors increases, unlike for the EIV estimator where the absolute deviation

stays about the same. In the last column of table 3 we report another test that proves the

superiority of EIV over MLE based firm-specific efficiency estimates. This test is for what

percentage of the 500 observations the EIV technique results in an estimate closer to the true
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value in comparison to the MLE.  Based on this test EIV estimator based test outperforms MLE

very convincingly.

To summarize, the MLE estimator is seriously biased when it comes to estimating the

elasticity of labor and capital under measurement errors.  MLE is also a poor choice if you want

to estimate the technical efficiency for a particular firm.  However, both MLE and EIV estimator

estimate the mean technical efficiency level very well. Thus, in the presence of measurement

errors in the input data the EIV estimator developed in section 2 is the preferred choice.

4.  Empirical Example

4.1 Data

In this section we examine the impact of measurement errors on SFPF estimates of a

production structure in actual data.  We draw a cross-section of firms from the COMPUSTAT

industrial data files maintained by Standard and Poor.  These files consist of all the publicly traded

firms on the U.S. stock exchanges for the period 1970-1989.  The files provide information on

balance sheet components, cash flow and income statements and other relevant financial

information.  The frequency of reporting is annual.  We chose the year 1988 for our analysis as it

provided the most number of firms with relevant information30.  The number of employees (Li) it

employs measures Labor use by a firm.  Standard practice is to define labor in terms of hours

worked but this information is not available in COMPUSTAT.  As we don’t know the proportion of

skilled versus unskilled workers as well as their quality level, this imparts a source of measurement

error to our labor use variable.  To calculate the output of a firm or the value added Yi, the cost of

                                                
   30 We could have chosen the year 1989 which is the terminal year of the database.  Because of non-reporting of
relevant information by quite a number of firms, the highest number of firms with usable information was present in
1988.  Another reason for choosing 1988 was the fact that this year was characterized by a stable economic
environment, especially the inflation situation and financial market volatility.
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goods was subtracted from the sales figure31.  To complete the value added calculations, total

inventories were added to the above measure.  The measure of capital Ki is the book value of total

assets of a firm32.  Thus, we have full information to estimate the production structure, and

accompanying level of technical efficiency for 484 firms.

4.2 Production structure

The model that we estimate is identical to the one considered in the simulation study (see

(30)).  Tables 4a, 4b and 4c provide the necessary summary statistics for the data variables.  In

particular note that the covariance between z1 and z2 is almost zero.  As before, πK = Var(ln(K)) /

Var(ln(K)) and πL = Var(ln(L)) / Var(ln(L)) are the reliability ratios of capital and labor

respectively, while πKL is the “covariance reliability” ratio equal to Cov(ln(K), ln(L)) /

Cov(ln(K), ln(L)).  As explained in the simulation section, it is reasonable to set πKL = πL if

cov(z1, z2) is close to zero which is the case here.  Also, we will only consider cases where πK =

πL = 
)π  33.  Based on the summary statistics in table 4c, we can derive consistent estimates of the

expected value and the variance of z.  Given a particular reliability ratio 
)π , we can then find

consistent estimates of the expected value and variance of x as well as of the variance of u and

these are:

                                                
   31 Because the reporting procedure for the cost of goods component contains labor expenses, a component of the value
added by a firm, the labor expense component was added to the above calculation.  Since not every firm reports this item
as an expense separate from cost of goods, this correction dropped the number of firms that could ultimately be used in
the analysis.
32 Using total assets as a proxy for productive, physical capital requires qualifications.  First, this measure of assets
includes the current investment component of a firm.  Second, this measure includes cash and other short term liquid
investments which may not be appropriate measures of physical capital.  A justification for using this measure is the
theoretical models and empirical evidence that extend the notion of production structure by incorporating the effects
of liquidity and borrowing constraints [for e.g.  see Gertler and Hubbard (1988), Dhawan (1997) etc.].
33 Given a value of πL , πK may deviate according to table (A1) in the appendix but we found that the estimated
coefficients were not affected by setting it apart from πL .



22

$
.

.
µ x = �

��
�
��

4 93

115
  $

. .

. .
Σ x =

−
−

�
��

�
��

)π
131 0 03

0 03 6 90
  $ ( )

. .

. .
Σu = −

−
−

�
��

�
��1

1 31 0 03

0 03 6 90
)π

Thus, given this information and the discussion regarding reliability ratio bounds in section 3.2,

the lowest possible value for the reliability ratio is 0.86. Any value lower than that is not feasible

given that data characteristics.

4.3 Parameter estimates

Table 5 presents the estimates of the parameters in equations (30a) and (30b) using three

techniques: OLS, the traditional MLE and the EIV estimator developed in this paper.  The first

row presents the estimates when simple OLS technique is used which can be characterized as

estimating an average production function.  As is well known, with no measurement errors, OLS

will provide us with consistent but inefficient estimates of γ, an inconsistent estimate of α and no

estimates for σε
2 and σξ

2.  With measurement errors even the OLS estimate for the parameter γ

is inconsistent.  In the second row the MLE based estimates are presented. Rows 3 to 9 display

the estimates using the EIV technique based on likelihood function from equation (23).  Each

row provides a set of estimates for a particular common reliability ratio.  These results should be

interpreted as following: If the reliability ratio of labor and capital is 0.94 (say for example), then

the consistently estimated coefficients are in this row.  Based on these estimates for α, β, σ2 and

λ, we can then derive estimates for the elasticity of capital and labor (βK and βL) as well as the

variances of ε and ξ (σε
2 and σξ

2) presented in table 6.

A number of interesting but not surprising results, given our simulation experience, are

apparent from Tables 5 and 6.  First, MLE underestimates the elasticity of capital.  According to

MLE, the return to capital is 0.6261 while it is as much as 0.7280 using the EIV technique and

for the reliability ratio is 0.86.  We also find that MLE estimates return to scale very well which
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then implies that it is over estimating the elasticity of labor.  Second, as the reliability ratio

decreases the estimated λ increases while estimated σε
2 goes to zero.  This happens because as

the reliability ratio decreases, the variance of uβ increases.  Since it is the same data set, this will

happen at the expense of a decline in the variance of ε, and as it goes to zero λ which is equal to

σξ/σε will increase34.  Third, we find that MLE estimates, σξ
2, the variance of ξi very well.  This

has important implications for the estimates of the technical efficiencies as discussed later in the

next sub-section.  MLE also overestimates the variance in εi, which is natural, since it assumes

no measurement errors.  Finally, the estimate of the intercept using MLE is significantly higher

than the OLS estimates.  This comes as no surprise since OLS ignores the ξ  term and as the

expected value of ξ is positive, this explains the difference.

4.4 Estimates of Technical Efficiencies

Given that we have 486 firms, it is not possible to present the estimates of technical

efficiency for each firm.  We begin first by considering the mean average technical efficiency

under varying degree of measurement errors presented in table 7.  It is interesting to note that the

average level of firm efficiency is almost independent of the assumption on measurement errors.

The EIV estimates are also close to the MLE estimate of the expected value of the unconditional

technical efficiency.  This happens because the only parameter that determines the distribution of

the technical efficiencies, σξ
2, is almost identical for MLE as well as for EIV technique

regardless of the degree of measurement errors.  At first, this may suggest that measurement

errors are not an issue when it comes to technical efficiencies.  However, as we know from the

                                                
34 As a matter of fact, 

)π  = 0.86 is a lower bound for the reliability ratios.  There simply is not enough variation in
the data to support more measurement errors than this.  With 

)π  = 0.86, the only disturbance to the model, except for
the technical inefficiencies, are measurement errors as ε vanishes in this case.
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results of the simulation section, the EIV estimator outperforms the MLE estimator for firm-

specific efficiency quite well.

To get an idea of the bias caused by measurement problems, we present technical

efficiency estimates of the first ten firms in table 9.  From this table, we note that one cannot

predict the direction of the bias as the changes seems to be random.  To explore this more, and to

get an idea about how severe the problem could be, we ranked all the firms in the sample by their

MLE based technical efficiency estimates.  Then, as the reliability ratio was decreased, it was

found that the relative ranking of the firms changed.  For the reliability ratio 0.98 the maximum

rank change was 23 on the upper side and 19 on the lower side.  In addition, 50 percent of

changes in ranks were between plus 2 to minus 2.  For the lowest feasible reliability ratio of 0.86,

50% of the rank changes were within plus 15 and minus 16.  For this particular reliability ratio

the maximum rank change was 132 on the upper side and 131 on the lower side!  In percentage

terms the maximal change in firm level efficiency was 22% on the up side and 14% on the down

side.  This is an important outcome since the technical efficiency estimate tells us what

percentage of “frontier output” the firm is delivering.   This precludes the researcher, using MLE

method under measurement errors, from establishing a comparative efficiency rankings of the

firms in the sample as evident from the EIV estimate35.

                                                
35 In fact, we tested whether the changes in rankings was predictable (non-random) or not by running an AR(1)
regression on a given firm’s efficiency estimates for different reliability ratio assumption.  It was observed that 90%
of the auto-regressive coefficients were above  0.95 , with at least 50% of them being at or above 1, making the rank
changes to be very much a random outcome.  A proper unit root test on these coefficients, although desirable could
not be conducted as only 8 observations exist for each firm, which is not enough to test for presence of unit root.
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5.  Summary and Conclusions

This paper investigates the impact measurement errors in inputs have on estimates of

production function parameters and firm-specific technical efficiency estimates in a cross-

sectional SFPF setting.  We first develop the methodology for estimating the standard cross

sectional SFPF with measurement errors by using Fuller’s reliability ratio concept.  Next, our

numerical simulation results show that the estimates (elasticity parameters) of the deterministic

frontier, the distribution of the stochastic part of the frontier and the distribution of the technical

inefficiency are very sensitive to the degree of measurement error.  Our simulation results

indicate that MLE will bias the elasticity coefficient estimates, and consequently the returns to

scale feature.  These biases are quite severe and clearly demonstrate the need for a method that

consistently estimates the production function parameters for even small degree of measurement

errors. The simulation exercise also shows that while MLE overestimates the variance of the

composite error term, it underestimates the skewness parameter with the result that the variance

of the technical efficiency parameter is consistently estimated.  Although the mean level of

technical efficiency or average sample efficiency is unaffected by the presence of measurement

errors, the firm-specific estimate of technical efficiency will be seriously biased as it depends

upon the estimated skewness parameter.  Additionally, we also develop theoretical bounds

regarding the possible values for the reliability ratios given the data summary statistics.  These

bounds are extremely useful for a researcher in a practical setting when he/she is analyzing the

sensitivity of parameter estimates to the varying degree of belief regarding measurement errors.

Next, a practical applicability of the reliability ratio estimator developed in this paper is

demonstrated by applying it to actual firm level data from the U.S. industrial sector.  For this

data set issues regarding returns to scale feature, elasticity coefficients and firm-specific
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technical efficiency are explored in detail. Here we demonstrate how the relative ranking of the

firms by their technical efficiency estimates changes when the degree of measurement errors is

increased.  Most importantly this change in ranking appears to be random and not related to the

change in the degree of measurement error.  In addition the percent change in the firm-specific

technical efficiency levels from its MLE estimate is quite severe when the degree of

measurement error increases. This exercise has implication for economic researchers who are

engaged in inter-firm or inter-industry comparisons as ignoring measurement errors and relying

solely on simple MLE estimates will most likely lead to erroneous efficiency comparisons.

  The analysis in this paper has been undertaken for cross-sectional SFPF model with

Cobb-Douglas production structure that in many respects is very simplistic. Consequently,

practical issues such as analyzing technical change over time and evolution of a firm’s efficiency

levels that requires a more general production structure (say Translog) in a panel setting are a

subject matter of future research.
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Appendix

Possible values for the reliability ratio of capital given that of labor

Table A1

πL 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 0.82 0.80 0.78 0.76 0.74

Min. πK 0.84 0.83 0.81 0.79 0.78 0.76 0.74 0.73 0.71 0.69 0.66 0.66 0.64 0.62

Max. πK 1.00 0.97 0.97 0.95 0.93 0.92 0.90 0.88 0.86 0.85 0.83 0.81 0.80 0.78



Table 1.  Traditional Maximum Likelihood Estimates of SFPF for Simulated Data

α γ1 γ2 σ2 λ σξ
2 σε

2

True  Value* 1.700 0.6000 0.1000 1.000 2.000 0.8000 0.2000

Traditional Maximum Likelihood Estimates
)π=1.00 1.711

(0.07)

0.5998
(0.02)

0.1030
(0.02)

1.013
(0.13)

2.132
(0.39)

0.8242
(0.15)

0.1883
(0.04)

)π=0.90 1.691
(0.08)

0.5376
(0.02)

0.09289
(0.02)

1.055
(0.14)

1.757
(0.36)

0.7903
(0.18)

0.2644
(0.05)

)π=0.80 1.685
(0.09)

0.4778
(0.02)

0.08143
(0.03)

1.100
(0.14)

1.606
(0.35)

0.7848
(0.19)

0.3154
(0.06)

)π=0.70 1.676
(0.12)

0.4175
(0.02)

0.06741
(0.03)

1.121
(0.16)

1.494
(0.39)

0.7641
(0.22)

0.3568
(0.07)

EIV Method Maximum Likelihood Estimates
)π=1.00 1.711

(0.07)

0.5998
(0.02)

0.1030
(0.02)

1.013
(0.13)

2.132
(0.39)

0.8242
(0.15)

0.1883
(0.04)

)π=0.90 1.691
(0.08)

0.5973
(0.03)

0.1032
(0.02)

0.9890
(0.14)

2.058
(0.49)

0.7903
(0.18)

0.1987
(0.05)

)π=0.80 1.685
(0.09)

0.5972
(0.03)

0.1018
(0.03)

0.9833
(0.14)

2.095
(0.62)

0.7848
(0.19)

0.1985
(0.06)

)π=0.70 1.676
(0.12)

0.5964
(0.03)

0.0963
(0.04)

0.9681
(0.17)

2.116
(0.85)

0.7641
(0.22)

0.2040
(0.08)

* The data was simulated from the model yi = α + xiγ + εi - ξi with zi = xi + ui.  xi ∼ N(0,  2
)π ), ui ∼ N(0,  2(1-

)π ))
where 

)π  is the common reliability ratio of log of labor, log of  capital (and thus of log capital by labor).  
)π is varied

in the table and  ε ∼ N(0, 0.2) and ξ ∼ N+(0, 0.8) .  The standard errors are reported in parentheses.

Table 2.  Mean Technical Efficiency And Reliability Ratio

Reliability ratio Actual TE Value Estimated TE
(MLE Estimate)

Estimated TE
(EIV Estimate)

1.00 0.5536  0.5496 0.5496

0.90 0.5536 0.5553 0.5553

0.80 0.5536 0.5562 0.5562

0.70 0.5536 0.5598 0.5598
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Table 3.  Comparing Firm-Specific Technical Efficiency Estimates

Reliability ratio
Average absolute
deviation between
EIV and true value

Average absolute
deviation between
MLE and true value

Percentage won by
EIV

1.00* N/A N/A N/A

0.90 0.0542

(1.8×10-3)

0.0755

(1.9×10-3)

94.47%

(1.0%)

0.80 0.0463

(1.6×10-3)

0.125

(3.1×10-3)

99.27%

(0.4%)

0.70 0.0406

(1.4×10-3)

0.161

(2.5×10-2)

99.72%

(0.2%)

 * For a reliability ratio of 1, MLE and EIV will produce exactly the same estimates and the formulas for expected
value of the conditional technical efficiencies will coincide.  N/A implies not applicable here. The standard errors
are reported in parentheses.

Table 4a.  Transformed and Non-Transformed Data Variable Means

ln(Y) ln(K) ln(L) Y = ln(Y/L) Z1 = ln(K/L) Z2 = ln(L)

Mean: 5.55 6.08 1.15 4.40 4.93 1.15

Table 4b.  Untransformed Data Variance and Covariance  Matrix

ln(Y) ln(K) ln(L)

Ln(Y) 8.23 7.17 6.86

Ln(K) 7.17 8.14 6.86

Ln(L) 6.86 6.86 6.90

Table 4c.  Transformed Data Variance and Covariance Matrix

Y= ln(Y/L) Z1= ln(K/L) Z2= ln(L)

Y 0.78 0.76 0.26

z1 0.76 1.31 -0.03

z2 0.26 -0.03 6.90
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Table 5.  SFPF Parameter Estimates: OLS, MLE And EIV*

α γ1 γ2 σ2 λ
OLS 1.5036

(0.33)

0.5781
(0.07)

0.04132
(0.03)

N/A N/A

MLE 1.9195
(0.10)

0.6261
(0.02)

0.00071
(0.01)

0.7146
(0.07)

2.7072
(0.37)

EIV
)π=0.98

1.8565
(0.10)

0.6389
(0.02)

0.00073
(0.01)

0.7041
(0.07)

2.8904
(0.46)

EIV
)π=0.96

1.7910
(0.10)

0.6522
(0.02)

0.00074
(0.01)

0.6931
(0.07)

3.1270
(0.54)

EIV
)π=0.94

1.7226
(0.11)

0.6661
(0.02)

0.00076
(0.01)

0.6817
(0.06)

3.4486
(0.68)

EIV
)π=0.92

1.6512
(0.11)

0.6806
(0.02)

0.00078
(0.01)

0.6698
(0.06)

3.9188
(0.99)

EIV
)π=0.90

1.5767
(0.11)

0.6957
(0.02)

0.00079
(0.01)

0.6573
(0.06)

4.6979
(1.66)

EIV
)π=0.88

1.499
(0.12)

0.7115
(0.03)

0.00081
(0.01)

0.6443
(0.07)

6.376
(4.19)

EIV
)π=0.86

1.417
(0.14)

0.7280
(0.03)

0.00083
(0.01)

0.6307
(0.07)

18.51
(169)

* The standard errors are in parentheses and N/A means not applicable.

Table 6.  Basic Production Structure Estimates

βK βL σξ
2 σε

2

OLS 0.5781 0.4351 N/A N/A

MLE 0.6261 0.3746 0.6288 0.0858

EIV  
)π=0.98 0.6389 0.3618 0.6288 0.0753

EIV  
)π=0.96 0.6522 0.3485 0.6288 0.0643

EIV 
)π=0.94 0.6661 0.3347 0.6288 0.0529

EIV 
)π=0.92 0.6806 0.3203 0.6289 0.0409

EIV 
)π=0.90 0.6957 0.3051 0.6288 0.0285

EIV 
)π=0.88 0.7115 0.2893 0.6288 0.0155

EIV 
)π=0.86 0.7280 0.2728 0.6289 0.00184
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Table 7.  Average Technical Efficiency For the Sample

MLE (
)π=1)

)π=0.98
)π=0.96

)π=0.94
)π=0.92

)π=0.90
)π=0.88

)π=0.86

Mean 0.6008 0.6008 0.6008 0.6008 0.6008 0.6012 0.6068 0.6180

Table 8.  Predicted Firm Efficiency of the First 10 Firms

MLE(
)π=1)

)π=0.98
)π=0.96

)π=0.94
)π=0.92

)π=0.90
)π=0.88

)π=0.86

Firm 1 0.753 0.759 0.765 0.771 0.777 0.783 0.788 0.793

Firm 2 0.487 0.487 0.487 0.487 0.488 0.489 0.489 0.492

Firm 3 0.885 0.886 0.888 0.890 0.891 0.891 0.891 0.891

Firm 4 0.933 0.933 0.932 0.931 0.930 0.928 0.926 0.923

Firm 5 0.810 0.814 0.818 0.822 0.826 0.829 0.832 0.834

Firm 6 0.827 0.829 0.832 0.834 0.836 0.838 0.839 0.840

Firm 7 0.281 0.275 0.271 0.266 0.262 0.258 0.250 0.250

Firm 8 0.615 0.623 0.630 0.638 0.647 0.655 0.664 0.673

Firm 9 0.714 0..712 0.710 0.707 0.704 0.701 0.697 0.694

Firm 10 0.596 0.595 0.594 0.593 0.592 0.592 0.591 0.591


