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Abstract

This paper introduces a new non-parametric approach to examine the pre-

dictability of the real return for different investment horizons for five portfolios

of Swedish stocks and bonds. In our setting the problem reduces to generating new

generalizations from a known empirical Markov chain. We find that the stocks yield

a real return of about 7.5% and bonds about 3.0%. Our results suggest that an

investor ought to avoid bonds in the long run. Finally if the investors goal is to

minimize the risk of capital destruction the preferable long-run passive portfolio is

a mix of bonds and stocks.
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1 Introduction

The most important issue when investing is the concern of what real value growth one

is likely to receive. Or as important, what is the risk of capital erosion when investing?

Today eight out of ten Swedes invests in the stock market.1 The number of shareholders

and investments in mutual funds has increased dramatically during the last decade. In

2000 the Swedish government floated a new public pension system, the premium pension,

in which the individual decides how 10 per cent of her retirement funds should be invested

in a selection of about 450 mutual funds.2 Altogether this underlines the importance of

what real return an investor can expect to receive when investing in Swedish stocks and

bonds.

The contribution of this paper is twofold. First, we utilize a new non-parametric

approach to examine the predictability of the real return for different investment horizons

for five mixed portfolios of Swedish stocks and bonds. The non-parametric approach

enables us to find the empirical probability density functions of the annual real return for

each investment horizon. Hence we are able to find the expected real return for Swedish

stocks and bonds. Further we are able to find the probability of actually receiving a specific

return, which make our approach applicable in risk management. Second we introduce a

new Markov chain Monte Carlo method based on the empirical properties of the data for

generating resamples. Our contribution is that we introduce a new general decision rule

that governs the transition probabilities in the Markov chain (see also Carlstein, Edward.

Do, Kim-Anh., Hall, Peter., Hesterberg, Tim and Hans R. Kunsch (1998), Paparoditis

and Politis [2001a, 2001b]). In the empirical part of the paper the volatility governs the

probability of moving between the states, this is analogous to the well-known time varying

volatility of financial time series. The time varying volatility of Swedish stocks have been

documented by Hanson and Hördahl (1997).

We find that the most likely real return from stocks varies between 7.5 per cent to

8.3 per cent and the real bond returns varies between 2.4 per cent and 3.1 per cent

depending on the investment horizon. With our definition of risk as the probability that

the investment yields a negative real return we find that the best solution avoiding capital

erosion for a passive long-term investor is to diversify into mixed stock-bond portfolios.

1According to Aktiespararnas förening.
2The Swedish public pension funds have today an inflow of about 18.5 per cent of the individuals

annual taxable income. 16 per cent is managed by the authorities in income retirement funds, allmäna
pensionsfonderna. The remaining 2.5 per cent are invested according to the individuals choice of a
selection of about 450 mutual funds. See also www.PPM.nu.
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Notable is that for a long-run investment horizon the bond portfolio has about 10 per

cent risk of reducing in real value. This is a significantly higher risk in comparison to the

other portfolios in the study.

The outline of the paper is as follows. Section 2 specifies the framework utilized

to investigate the predictability of real returns from Swedish stocks and bonds. The

methodology and data are thoroughly described in section 3 along with the markovian

bootstrap framework. The results and the empirical evidence are presented in section 4.

Section 5 concludes the paper. The resampling methodology is presented in the appendix.

2 Predicted return

The purpose of this paper is to study the empirical distributions of mean annual real

return from Swedish stock and bond portfolios for different investment horizons. The

common approach is to focus on the mean and standard deviation of the return under

the assumption that returns are normally distributed. However empirical research have

found that the real world is more complex as financial assets often exhibit fat tail distri-

butions and skewness (see Sweden: Frennberg and Hansson [1993] and US: Ibbotson and

Singuefield [1976]). Jones and Wilson (1999) study the returns for different horizons by

fitting lognormal distributions on for different U.S. stock and bond portfolio returns. In

this approach they make the assumption returns actually are lognormal distributed and

discard the fact that asset returns often exhibit heavy tail distributions.

The issue in this paper is to find the distribution of the annual mean real return, F (x),

for different investment horizons. However the distribution F (x) is generally unknown.

In this paper we introduce a new Markovian moving block bootstrap methodology that

enables us to replace the unknown distribution F (x) by its empirical distribution Fn(x).

This approach has several advantages as it enables us to capture possible fat tails and

skewness of the returns. The framework of bootstrap original data a large number of

times to capture the empirical distributions was first introduced by Efron (1979).

3 Methodology

3.1 Description of data

The data consists of monthly consumer price index and nominal returns from Swedish

bonds and the Swedish stock market portfolio, including dividends, all from the Frennberg

3



and Hansson database (Frennberg and Hansson [1992]). Our sample covers the period

January 1919 — December 1999. A total of 80 years of monthly observations. Some

descriptive statistics of the monthly real return is presented in table 1. The null hypothesis

of normal distribution is rejected and the explanation is the very high kurtosis in the data.

This also verifies that fitting a normal distribution to the data is not the correct approach.

[Table 1]

The real return from Swedish stocks and bonds are roughly the same as the returns

reported by Jones andWilson (1999) for the US were stocks yielded an annualized monthly

real return of approximately 7.49% and bonds 2.68%.

3.2 Returns

From the data we construct the following five portfolios; all equity, all bonds, sixty per

cent equity forty per cent bonds, fifty-fifty equities and bonds, and forty per cent equity

sixty per cent bonds. The three latter portfolios are commonly held by institutions. The

monthly real return is computed of the above portfolio as:

xt =
Pt
Pt−1

− CPIt
CPIt−1

(1)

[Figure 1]

The real returns of the portfolios are computed for eight different investment horizons,

q, of one, two, three, five, ten, fifteen, twenty, and twenty-five years. We will compute

non-overlapping returns, as overlapping returns will exhibit a strong autocorrelation with

increasing investment horizon. This will produce n = T
q
numbers of non-overlapping

returns for investment horizon q. Where n is rounded to the nearest floor integer. The

drawback is obvious as q, the investment horizon in months, increases the number of

observed returns, n, decreases and for long investment horizons we will have to few returns

to make any statistical inference.

The solution is to resample the original data, x, to generate new vectors of resampled

return r, and from these construct new asset price paths, I, of the portfolios as:

It = It−1 (1 + rt) =
tY
i=1

(1 + rt) (2)
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Now we can compute a new set of non-overlapping annual mean q-month returns for

each new asset price path, I, as:

rmq =

µ³
Imq−Imq−q
Imq−q + 1

´ 12
q − 1

¶
· 100 for m = 1, ..., n (3)

The returns will converge to the empirical distribution if this is repeated N number

of times, where N is a large number. Hence we are able to compute number N × n of
returns for investment horizon q.

3.3 Markov Chain Monte Carlo Methodology

Resampling time series with serial dependence raises the question of how to keep these

properties, as ordinary wild bootstrap would destroy this dependence.3 One solution

is to bootstrap blocks of the original data (Carlstein (1986)) or utilize a moving block

bootstrap suggested by and Kunsch (1989) and resample overlapping blocks of data.4

However both approaches have been criticized by Carlstein et al (1996) as the dependence

between the generated blocks is ignored. Here we suggest an improvement in line with

the ideas suggested by Carlstein et al (1996) and construct an empirical Markov chain

whose transition probabilities depend on the data. This is achieved by introducing a

decision rule that can match states with similar information. In this sense we rule out

the probabilities of moving between the extreme states.

3.3.1 States

We define a state Si as a set of b number of observations Si = {ri, ..., ri+b}. Thus, we
construct k number of states, where k = T − b . This is a first order Markov Chain as
a random state, Si, conditional upon all of the past events only depend on the previous

state Si−1.
5

3An excellent description of resampling techniques can be found in Hjort (1994) ”Computer Intensive
Statistical Methods”; Shao Jun and Dongsheng Tu (1995) ”The Jackknife and Bootstrap ,” and Davidson
A.C. and D.V. Hinkley (1998) ”Bootstrap Methods and Their Application”.

4See also Davidson and Hinkley (1998) Ch. 8.2.3.
5This is referred to as the Markov property.
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3.3.2 Block length

The idea behind matching blocks is that importance of the dependence between blocks

increases with short blocks, as there is more blocks, and decrease with long blocks. Note

that one should be cautious of using block lengths exceeding the shortest investment

horizon as this introduces a discretization of the non-overlapping returns and that the

problem becomes more severe as the block length increase, a proof of this statement

is given in appendix 2.6 Therefore we utilize a block length of six months as this is

long enough to preserve some of the serial dependence and yet shorter than the shortest

investment horizon.

3.3.3 Transition kernel

The transition probability is determined by a ratio of distances between information in

the previous state and the information in the next state (see also Carlstein et al [1996] and

Paparoditis and Politis [2001a, 2001b] ) Our transition kernel has two advantages. First,

the information set y, twhich governs the transition probability, can easily be altered to

account for dependence between the states, such as volatility. The further the distance

between the information in the states yi and yj the lower the probability of moving from

state Si to state Sj. Second, the strength of our beliefs in the information, y,is determined

by a distance raised to the power, z. If we question the non-equal dependence between

the states, then z is set to zero and all the transition probabilities of the Markov chain is

equal. This is a special case of the decision rule and is commonly referred to as a moving

block bootstrap in the literature (see Kunch (1989)). Further, our transition kernel is

that of an ordinary bootstrap if we set z to zero and the number of observation in each

state to one.

The transition kernel describes the probability to move from a given state Si to a

given state Sj given an information criteria y in the states. vij, denotes the probability

of moving to a given state Sj conditional upon the previous state Si.

vij =

Ã
1−

¯̄
yi,b − yj,1

¯̄
|ymax − ymin|

!z
(4)

Where y is an information vector from the data of interest such as return or volatility.

The suffix i, b denotes the last observation for of the data set in state i, and j, 1 denotes the

6We have also done estimations with block lengths ranging up to 120 months. The results are available
upon request.
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first observation of the information set in state j. The factor z determines the probability

of moving to states with a different value of y. As one can see the decision rule, vij, can

easily be modified to account for time variations in volatility and variance, where
Pb

l=1
r2il
b

can be employed to proxy variance, σ2i , at state, Si, of block length b. Each state is then

associated with a single value of volatility and hence the subscript then denotes the state

as we will have one observation of volatility within the block.

vij =

Ã
1−

¯̄
σi − σj

¯̄
|σmax − σmin|

!z
(5)

In the paper blocks with similar volatility are the most likely to be simulated as this

captures the clustering of volatility. Thus we assume that the real returns are martingale

differences.

3.3.4 Transition probabilities

Given the fact that each realization of a bootstrap is a state in a Markov chain and vij,

denotes the strength of moving to a given state j conditional upon the previous state i,

we can compute the transition probabilities, pij, in a k-state Markov chain as:

pij =
vijPk
j=1 vij

, i, j = 1, ...k (6)

kX
j=1

pij = 1 (7)

The transition probabilities pij, i.e. the probability of moving from one state Si, to

another state Sj, is gathered in a k×k transition matrix P. Where k = T −b and T is the
number of observations and b is the block length. The transition probabilities in a row

vector of the transition matrix P always sum to unity. Each state produces a unique row

vector of transition probabilities for the Markov chain to move to another state. Note that

this is a well-behaved Markov chain with no absorbing states as all transition probabilities

are less than unity, pij < 1.

3.4 Generation via accept-rejection method

According to Casella et al (1999) an ideal accept/reject density g(x), is a density such

that p(x) ≤Mg(x) for all x and for which the ratio p(x)/Mg(x) is relatively constant over
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the range of x where p(x) has most of its mass, where M is a scaling factor. In or case

g(x) is a uniform density, U(01), M = 1 and p(x) is density describing the probability,

vij, of moving from a given state, Si to a given state, Sj. Note that each and every, vij,

is bounded by the [01] space.7

Let r denote the vector of the originally 1-month return series

Step 1: Determine the block length b and compute the number of states, i.e. blocks,

n = T
b
, that will fit in the original return series, where n is rounded to the nearest

lowest integer.

Step 2: Create a vector V of increasing numbers ranging from 1 to k = T − b.

Step 3: Set N = 1 and randomize V to get a scrambled vector of numbers .

Step 4: Set w = 1, a = 1 and use the wth observation of the scrambled vector to pick

the wth block and create a vector r∗i of returns.

We use an accept-rejection kernel in order accept a proposed new state j given the

previous state i.

vij =
³
1− |σi−σj |

|σmax−σmin|
´
, c ∼ U(0, 1).

Set w = w + 1.

Accept if; c < vij,

and set a = a+ 1,

else generate a new state, j.

Repeat step 4 until a = n.

Step 5: Compute a price series from the resampled r∗i .

Step 6: Compute the non-overlapping returns r∗q for all q investment horizons and set
N = N + 1;

Step 7: Repeat step 3 to step 6 until say, N=20.000.

7The accept-rejection methodology have been criticized as being computationally inefficient as samples
are being rejected and does not contribute with information. In our case this is a minor problem (see
table 1).
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The non-overlapping q-horizon returns will converge to their empirical distributions

if this is repeated N number of times, where N is a large number. In our case N is set

to 20.000. Hence we are able to compute N × n number of returns for each investment
horizon q.

3.5 Risk

We will refer to risk as the risk of capital erosion or the probability that the investment

yields a negative real return. If the investor expects the investment to yield a certain

real return, target return, then risk can also be stated as the probability of receiving a

below target return. This is referred to as downside risk in the literature (see Fishburn

[1977]). The empirical cumulative distributions of the returns enable us to compute the

probability of receiving an at least specified return level t, P (r ≥ τ ). Which is computed
as:

P (r ≥ τ ) = # {ri ≥ τ}
n

(8)

4 Results

4.1 Rejections from the Accept-Reject method

We generate a total of 20.000 monthly return series from which we construct 20.000 asset

price paths. From these asset price paths we calculate non-overlapping returns for each

of the eight investment horizons. This procedure is then repeated for each one of the five

portfolios.

The accept-rejection algorithm rejects between 1.8 per cent and 4.1 per cent of the

proposed blocks. These are tolerable numbers as the are quite low. Hence the algorithm

is efficient. The bond portfolio has the highest number of accepted blocks and the stock

portfolio the highest number of rejected blocks. The rejections are presented in table 2.

[Table 2]

4.2 The empirical distributions of the real return

For each of the investment horizons we compute the empirical probability density func-

tions, PDF, and the empirical cumulative probability density functions, CDF. The em-

pirical PDF’s for stocks and bonds are presented in figure 2 and figure 3.
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[Figure 2]

[Figure 3]

The mean return along with the 2.5 upper and lower percentiles of the real return for

the portfolios and the investment horizon is presented in table 2. This presents us with

some interesting results. Depending on the investment horizon stocks yield the highest

average real return, between 7.46 per cent and 8.27 per cent, and bonds the lowest,

between 2.50 per cent and 3.06 per cent.

[Table 3]

Stocks have the highest probability of rendering a high return for all investment hori-

zons in comparison to the other investigated portfolios. Stocks also stand the highest

probability of capital erosion at investment horizons up to 10 years. However at the long

investment horizons 15, 20 and 25 years, bonds is the riskiest asset in this aspect. The

latter is a somewhat surprising result. Moreover from table 3 to table 7 the diversification

effect between stocks and bonds is evident as the mixed 40-60 stock/bond portfolio dom-

inates the bond portfolio even at short horizons. As the investment horizon increases all

stock/bond portfolios dominate the bond portfolio and at long-run investment horizons

also the stock portfolio dominates the bond portfolio. It is interesting to note that at a 25

year investment horizon the bond portfolio just stand a 91.4 per cent chance of yielding

any annual value growth whereas stocks has a 97.5 per cent probability of growth.8

Overall we find that a mixed bond/stock portfolio stand least risk of reducing the real

value of the investment. Further these portfolios also have a higher chance of capital gain

in comparison to the bond portfolio. However the results from this type of analysis are

time specific. In comparison to the US stock market

[Table 4]

[Table 5]

[Table 6]

[Table 7]

[Table 8]

Our results indicates that a passive investor should clearly avoid bonds in the long run

and ought to avoid them even at moderate investments horizons. The overall conclusion

is that when investing in a long-run passive portfolio a mix of bonds and stocks minimizes

the risk of capital destruction.

8Some explanation to this result might be the deflationary period in Sweden in the early 1930s during
which bonds had a negative real return.
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5 Conclusion

This paper is examines the empirical distributions of the real return from a number

of portfolios of Swedish stocks and bonds. The contribution of this paper is twofold.

First, we are able to answer the question of what real return an investor can expect

to receive if investing in Swedish stocks and bonds. Further we are able to find the

probability of actually receiving a specific return, which make our approach applicable

in risk management. Second we propose an improvement to the moving block bootstrap

methodology by introducing a new Markov chain Monte Carlo method based on the

empirical properties of the data for generating samples.

We find that the most likely real return from stocks to vary between 7.5 per cent to

8.3 per cent depending on the investment horizon and the real bond returns vary between

2.4 per cent and 3.1 per cent. However the results from this type of analysis are time

specific.

It is interesting to note that at a 25-year investment horizon the bond portfolio stand

a 91.4 per cent chance of yielding any annual value growth whereas stocks has a 97.5

per cent probability. The effect of diversification is evident as our 60-40, 50-50 and 40-60

stock/bond portfolios have a higher probability of yielding a positive value growth and

at less risk of receiving a negative annual mean real return than a bond portfolio. The

overall conclusion is that when investing in a long-run passive portfolio a mix of bonds

and stocks is important if ones goal is to minimize the risk of capital destruction.
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Appendix

A1 Generation via random numbers

Another approach to generate samples from a Markov Chain is to first construct the

transition matrix P. Given the state Si the move to state Sj is determined by comparing

a random draw against the cumulative probability distribution of the ith row in the

transition matrix such that:

u ∼ U (0, 1)

Sj := min

(
j :

jX
i=1

pij ≥ u
)

(A1)

Note that this approach has the advantage that all generations are accepted. Hence

this is a less computer intensive approach.

A2 Block length

The idea behind block bootstrap is to keep the (time) serial properties of the original

sample in the generated series. A long block length assures that a large fraction of the

serial properties is kept within the generated series. However, long block lengths keep

the serial properties at a cost of less possible outcomes of the generated series. One can

think of the extreme case application of a block length equal to the original sample. It

case easily be seen that this would render the same sample. Thus, the total number of

possible outcomes, O, from a moving block bootstrap is a function of the total number of

observations, T , and the block length, b.

O = (T − bl) Tbl (A2)

In the approach of this paper the bootstrapped monthly return series is utilized to

construct price paths. And compute the non-overlapping annual return series from these

trajectories. In this setting the approach of long block lengths actually contributes to

parameter uncertainty, see figure 4.

[Figure 4]
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This discretization occurs for investment horizons shorter that the block length. The

number of possible non-overlapping q month returns, o, for block lengths, b, longer or

equal to the investment horizon, q, can be expressed by:

O =
T

I
(T − bl) for bl ≥ 1 (A3)

The solution to avoid this discretization of the generated series is to utilize shorter

block lengths than the investment horizon as this increases the number of possible out-

comes, o:

O = (T − bl) Ibl for bl ≤ 1 (A4)

Let us compare the possible outcomes for a long block, b = 60, versus short block,

b = 6.

Example 1: If we have 600 observations and a block length of 60 months the number of

possible trajectories are O = 54010 = 2.10 · 1027. The number of possible 60-month
returns are 540 and the number of possible 12 month return are 5 · 540 = 2700.

Example 2: If we have 600 observation and a shorter block length of 6 months the number

of possible trajectories are O = 594100 = 2.39 · 10277. The number of possible 60-
month returns increases to o = 59410 = 5.46 · 1027 and 12-months returns increases
to o = 5942 = 352836.

14



Table 1: Descriptive statistics of monthly real return from Swedish stocks and bonds

1920-1999
Note: p-values in brackets.

Asset Mean Median
Standard-
deviation

Skewness Kurtosis
Doornik-
Hansen test

Sign. level of
DH-test

Bonds 0.28 0.12 2.20 0.45 13.40 875.82 0.00
Stocks 0.72 0.73 4.71 0.02 6.89 283.77 0.00

Table 2: Rejected blocks in number and per cent
Note: In our case the number of accepted blocks is always 3.200.000.

Asset mix Stocks 60-40 50-50 40-60 Bonds
# of rejections 175078 127100 118281 111353 109254
Rejections in % 5.40 3.92 3.65 3.44 3.42

Table 3: Rejected blocks in number and per cent
Note: 2.5 and 97.5 percentiles within brackets

Stocks 60/40 Stocks/Bonds 50/50 Stocks/Bonds 40/60 Stocks/Bonds Bonds
1-Year 8.17

[−27.07, 51.75]
6.25

[−19.35, 36.79]
5.68

[−17.80, 33.95]
5.04

[−16.66, 31.73]
2.48

[−17.15, 31.17]
2-Year 7.79

[−17.61, 37.44]
6.14

[−12.21, 26.68]
5.66

[−11.36, 24.53]
5.16

[−10.90, 22.84]
2.86

[−12.53, 20.92]
3-Year 7.62

[−13.29, 31.29]
6.09

[−9.00, 22.52]
5.66

[−8.36, 20.67]
5.17

[−8.03, 19.24]
2.96

[−9.73, 17.19]
5-Year 7.51

[−8.89, 25.59]
6.04

[−5.70, 18.57]
5.61

[−5.30, 17.11]
5.16

[−5.12, 15.90]
3.03

[−6.79, 13.65]
10-Year 7.44

[−4.28, 20.03]
6.00

[−2.34, 14.76]
5.59

[−2.17, 13.59]
5.15

[−2.12, 12.62]
3.04

[−3.94, 10.41]
15-Year 7.42

[−2.20, 17.70]
5.99

[−0.83, 13.06]
5.59

[−0.77,12.03]
5.14

[−0.78, 11.21]
3.04

[−2.64, 8.99]
20-Year 7.39

[−0.93, 16.23]
5.98

[0.02, 12.13]
5.58

[0.07, 11.19]
5.12

[−0.06, 10.38]
3.04

[−1.88, 8.14]
25-Year 7.40

[−0.12, 15.27]
5.98

[0.68, 11.51]
5.58

[0.68, 10.57]
5.12

[0.50, 9.82]
3.04

[−1.35, 7.55]
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Return in % 1-Year 2-Year 3-Year 5-Year 10-Year 15-Year 20-Year 25-Year
≥ 100 0.001 0 0 0 0 0 0 0

≥ 95 0.002 0 0 0 0 0 0 0
≥ 90 0.002 0 0 0 0 0 0 0
≥ 85 0.003 0 0 0 0 0 0 0
≥ 80 0.004 0 0 0 0 0 0 0
≥ 75 0.006 0 0 0 0 0 0 0
≥ 70 0.008 0 0 0 0 0 0 0
≥ 65 0.010 0.001 0 0 0 0 0 0
≥ 60 0.014 0.002 0 0 0 0 0 0
≥ 55 0.020 0.003 0 0 0 0 0 0
≥ 50 0.028 0.005 0.001 0 0 0 0 0
≥ 45 0.041 0.010 0.002 0 0 0 0 0
≥ 40 0.059 0.018 0.006 0.001 0 0 0 0
≥ 35 0.086 0.033 0.014 0.003 0 0 0 0
≥ 30 0.124 0.060 0.032 0.009 0.001 0 0 0
≥ 25 0.180 0.108 0.068 0.029 0.004 0.001 0 0
≥ 20 0.254 0.183 0.137 0.082 0.025 0.008 0.003 0.001
≥ 19 0.271 0.202 0.156 0.099 0.035 0.014 0.006 0.002
≥ 18 0.290 0.223 0.177 0.119 0.048 0.021 0.010 0.004
≥ 17 0.309 0.244 0.200 0.142 0.066 0.032 0.016 0.009
≥ 16 0.328 0.268 0.225 0.167 0.087 0.048 0.028 0.017
≥ 15 0.349 0.293 0.252 0.196 0.114 0.070 0.045 0.029
≥ 14 0.370 0.319 0.281 0.229 0.147 0.099 0.068 0.049
≥ 13 0.391 0.346 0.312 0.264 0.186 0.137 0.103 0.079
≥ 12 0.413 0.374 0.345 0.302 0.231 0.183 0.149 0.120
≥ 11 0.436 0.403 0.379 0.343 0.282 0.240 0.208 0.179
≥ 10 0.458 0.432 0.414 0.386 0.339 0.306 0.279 0.253

≥ 9 0.481 0.463 0.450 0.431 0.400 0.378 0.358 0.341
≥ 8 0.504 0.493 0.486 0.478 0.464 0.455 0.444 0.439
≥ 7 0.527 0.524 0.523 0.524 0.529 0.533 0.536 0.542
≥ 6 0.550 0.555 0.559 0.570 0.594 0.611 0.626 0.641
≥ 5 0.573 0.585 0.596 0.616 0.656 0.685 0.709 0.732
≥ 4 0.596 0.615 0.631 0.660 0.715 0.752 0.784 0.808
≥ 3 0.618 0.644 0.666 0.703 0.768 0.812 0.845 0.870
≥ 2 0.640 0.672 0.699 0.742 0.816 0.861 0.894 0.918
≥ 1 0.661 0.699 0.730 0.779 0.857 0.901 0.931 0.950
≥≥≥≥ 0 0.682 0.726 0.760 0.813 0.891 0.933 0.957 0.972

 ≥ -1 0.702 0.751 0.788 0.843 0.919 0.955 0.975 0.986
 ≥ -2 0.722 0.775 0.814 0.870 0.941 0.971 0.986 0.993
 ≥ -3 0.741 0.797 0.838 0.894 0.958 0.983 0.993 0.997
≥ -4 0.759 0.818 0.860 0.914 0.971 0.990 0.996 0.999
≥ -5 0.776 0.837 0.880 0.931 0.980 0.994 0.998 0.999
≥ -6 0.793 0.855 0.898 0.946 0.987 0.997 0.999 1
≥ -7 0.809 0.872 0.914 0.958 0.992 0.998 1 1
≥ -8 0.824 0.887 0.928 0.968 0.995 0.999 1 1
≥ -9 0.838 0.901 0.940 0.975 0.997 1 1 1

≥ -10 0.851 0.914 0.950 0.981 0.998 1 1 1
≥ -11 0.863 0.925 0.959 0.986 0.999 1 1 1
≥ -12 0.875 0.936 0.967 0.990 0.999 1 1 1
≥ -13 0.886 0.945 0.973 0.993 1 1 1 1
≥ -14 0.896 0.953 0.978 0.995 1 1 1 1
≥ -15 0.905 0.960 0.983 0.996 1 1 1 1
≥ -16 0.914 0.967 0.987 0.998 1 1 1 1
≥ -17 0.922 0.972 0.990 0.998 1 1 1 1
≥ -18 0.929 0.977 0.992 0.999 1 1 1 1
≥ -19 0.936 0.981 0.994 0.999 1 1 1 1
≥ -20 0.942 0.984 0.995 1 1 1 1 1
≥ -25 0.967 0.995 0.999 1 1 1 1 1
≥ -30 0.983 0.999 1 1 1 1 1 1
≥ -35 0.993 1 1 1 1 1 1 1
≥ -40 0.997 1 1 1 1 1 1 1
≥ -45 0.999 1 1 1 1 1 1 1
≥ -50 1 1 1 1 1 1 1 1

Table 4: Probability of achieving at least Specified Stock Market Return.
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Return in % 1-Year 2-Year 3-Year 5-Year 10-Year 15-Year 20-Year 25-Year
≥ 100 0 0 0 0 0 0 0 0

≥ 95 0 0 0 0 0 0 0 0
≥ 90 0 0 0 0 0 0 0 0
≥ 85 0 0 0 0 0 0 0 0
≥ 80 0 0 0 0 0 0 0 0
≥ 75 0 0 0 0 0 0 0 0
≥ 70 0 0 0 0 0 0 0 0
≥ 65 0 0 0 0 0 0 0 0
≥ 60 0.001 0 0 0 0 0 0 0
≥ 55 0.001 0 0 0 0 0 0 0
≥ 50 0.002 0 0 0 0 0 0 0
≥ 45 0.005 0 0 0 0 0 0 0
≥ 40 0.009 0 0 0 0 0 0 0
≥ 35 0.016 0.001 0 0 0 0 0 0
≥ 30 0.028 0.004 0.001 0 0 0 0 0
≥ 25 0.044 0.011 0.003 0 0 0 0 0
≥ 20 0.073 0.030 0.012 0.002 0 0 0 0
≥ 19 0.082 0.036 0.015 0.003 0 0 0 0
≥ 18 0.091 0.044 0.020 0.005 0 0 0 0
≥ 17 0.101 0.053 0.026 0.007 0 0 0 0
≥ 16 0.112 0.063 0.034 0.010 0 0 0 0
≥ 15 0.126 0.075 0.043 0.015 0.001 0 0 0
≥ 14 0.142 0.089 0.055 0.021 0.002 0 0 0
≥ 13 0.159 0.106 0.070 0.031 0.005 0.001 0 0
≥ 12 0.179 0.126 0.088 0.045 0.009 0.002 0 0
≥ 11 0.201 0.149 0.111 0.063 0.017 0.005 0.002 0.001
≥ 10 0.226 0.176 0.139 0.088 0.031 0.011 0.004 0.002

≥ 9 0.254 0.207 0.172 0.119 0.053 0.024 0.011 0.006
≥ 8 0.284 0.242 0.211 0.160 0.085 0.048 0.027 0.016
≥ 7 0.317 0.283 0.256 0.209 0.134 0.089 0.060 0.042
≥ 6 0.352 0.329 0.308 0.270 0.202 0.155 0.122 0.096
≥ 5 0.391 0.379 0.366 0.340 0.288 0.248 0.220 0.192
≥ 4 0.432 0.434 0.430 0.419 0.392 0.369 0.351 0.334
≥ 3 0.475 0.492 0.497 0.502 0.505 0.505 0.506 0.506
≥ 2 0.523 0.552 0.566 0.588 0.619 0.641 0.663 0.680
≥ 1 0.571 0.612 0.636 0.670 0.724 0.765 0.795 0.819
≥≥≥≥ 0 0.621 0.670 0.701 0.743 0.811 0.859 0.889 0.912

 ≥ -1 0.669 0.725 0.759 0.807 0.879 0.922 0.947 0.964
 ≥ -2 0.716 0.775 0.811 0.858 0.927 0.960 0.977 0.988
 ≥ -3 0.758 0.818 0.853 0.898 0.957 0.981 0.991 0.996
≥ -4 0.796 0.854 0.887 0.928 0.977 0.992 0.997 0.999
≥ -5 0.829 0.884 0.914 0.950 0.988 0.997 0.999 1
≥ -6 0.857 0.907 0.934 0.966 0.994 0.999 1 1
≥ -7 0.881 0.926 0.949 0.977 0.997 1 1 1
≥ -8 0.901 0.940 0.960 0.984 0.999 1 1 1
≥ -9 0.917 0.951 0.969 0.990 0.999 1 1 1

≥ -10 0.930 0.960 0.976 0.994 1 1 1 1
≥ -11 0.941 0.967 0.982 0.996 1 1 1 1
≥ -12 0.950 0.972 0.987 0.998 1 1 1 1
≥ -13 0.957 0.977 0.990 0.999 1 1 1 1
≥ -14 0.962 0.980 0.993 0.999 1 1 1 1
≥ -15 0.967 0.984 0.995 0.999 1 1 1 1
≥ -16 0.971 0.987 0.997 1 1 1 1 1
≥ -17 0.975 0.990 0.998 1 1 1 1 1
≥ -18 0.977 0.992 0.998 1 1 1 1 1
≥ -19 0.979 0.994 0.999 1 1 1 1 1
≥ -20 0.981 0.996 0.999 1 1 1 1 1
≥ -25 0.988 0.999 1 1 1 1 1 1
≥ -30 0.993 1 1 1 1 1 1 1
≥ -35 0.998 1 1 1 1 1 1 1
≥ -40 1 1 1 1 1 1 1 1
≥ -45 1 1 1 1 1 1 1 1
≥ -50 1 1 1 1 1 1 1 1

Table 5: Probability of achieving at least specified five-year bond returns.
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Return in % 1-Year 2-Year 3-Year 5-Year 10-Year 15-Year 20-Year 25-Year
≥ 100 0 0 0 0 0 0 0 0

≥ 95 0 0 0 0 0 0 0 0
≥ 90 0 0 0 0 0 0 0 0
≥ 85 0 0 0 0 0 0 0 0
≥ 80 0 0 0 0 0 0 0 0
≥ 75 0 0 0 0 0 0 0 0
≥ 70 0.001 0 0 0 0 0 0 0
≥ 65 0.001 0 0 0 0 0 0 0
≥ 60 0.002 0 0 0 0 0 0 0
≥ 55 0.003 0 0 0 0 0 0 0
≥ 50 0.006 0 0 0 0 0 0 0
≥ 45 0.011 0.001 0 0 0 0 0 0
≥ 40 0.018 0.002 0 0 0 0 0 0
≥ 35 0.030 0.005 0.001 0 0 0 0 0
≥ 30 0.051 0.013 0.004 0 0 0 0 0
≥ 25 0.085 0.034 0.013 0.002 0 0 0 0
≥ 20 0.146 0.079 0.045 0.015 0.001 0 0 0
≥ 19 0.162 0.093 0.056 0.021 0.002 0 0 0
≥ 18 0.179 0.110 0.070 0.030 0.004 0.001 0 0
≥ 17 0.198 0.129 0.087 0.041 0.007 0.001 0 0
≥ 16 0.219 0.150 0.106 0.056 0.013 0.003 0.001 0
≥ 15 0.242 0.174 0.130 0.076 0.022 0.007 0.002 0.001
≥ 14 0.266 0.201 0.157 0.100 0.036 0.014 0.005 0.002
≥ 13 0.292 0.231 0.187 0.130 0.057 0.027 0.012 0.006
≥ 12 0.319 0.263 0.222 0.165 0.086 0.047 0.027 0.015
≥ 11 0.348 0.298 0.262 0.208 0.126 0.081 0.053 0.035
≥ 10 0.378 0.336 0.304 0.257 0.179 0.131 0.098 0.074

≥ 9 0.409 0.376 0.351 0.312 0.245 0.198 0.166 0.137
≥ 8 0.442 0.419 0.401 0.372 0.323 0.284 0.255 0.232
≥ 7 0.475 0.462 0.452 0.436 0.409 0.387 0.369 0.356
≥ 6 0.509 0.506 0.504 0.503 0.500 0.499 0.498 0.497
≥ 5 0.542 0.551 0.557 0.569 0.592 0.613 0.627 0.641
≥ 4 0.576 0.595 0.609 0.634 0.680 0.715 0.743 0.765
≥ 3 0.609 0.637 0.659 0.696 0.759 0.803 0.835 0.862
≥ 2 0.641 0.678 0.707 0.752 0.826 0.873 0.905 0.927
≥ 1 0.673 0.717 0.751 0.802 0.879 0.924 0.950 0.966
≥≥≥≥ 0 0.702 0.753 0.791 0.845 0.920 0.956 0.975 0.986

 ≥ -1 0.731 0.787 0.826 0.882 0.950 0.977 0.989 0.996
 ≥ -2 0.758 0.817 0.858 0.911 0.970 0.989 0.996 0.998
 ≥ -3 0.782 0.844 0.886 0.935 0.982 0.995 0.999 1
≥ -4 0.806 0.868 0.908 0.954 0.990 0.998 1 1
≥ -5 0.828 0.890 0.928 0.967 0.995 0.999 1 1
≥ -6 0.847 0.908 0.944 0.977 0.998 1 1 1
≥ -7 0.864 0.924 0.957 0.985 0.999 1 1 1
≥ -8 0.880 0.938 0.967 0.990 0.999 1 1 1
≥ -9 0.894 0.949 0.975 0.994 1 1 1 1

≥ -10 0.907 0.959 0.982 0.996 1 1 1 1
≥ -11 0.919 0.967 0.987 0.998 1 1 1 1
≥ -12 0.929 0.974 0.990 0.999 1 1 1 1
≥ -13 0.938 0.979 0.993 0.999 1 1 1 1
≥ -14 0.945 0.984 0.995 0.999 1 1 1 1
≥ -15 0.952 0.987 0.997 1 1 1 1 1
≥ -16 0.959 0.990 0.998 1 1 1 1 1
≥ -17 0.964 0.993 0.998 1 1 1 1 1
≥ -18 0.969 0.994 0.999 1 1 1 1 1
≥ -19 0.974 0.996 0.999 1 1 1 1 1
≥ -20 0.977 0.997 1 1 1 1 1 1
≥ -25 0.990 0.999 1 1 1 1 1 1
≥ -30 0.996 1 1 1 1 1 1 1
≥ -35 0.999 1 1 1 1 1 1 1
≥ -40 1 1 1 1 1 1 1 1
≥ -45 1 1 1 1 1 1 1 1
≥ -50 1 1 1 1 1 1 1 1

Table 6: Probability of achieving at least specified portfolio return, 60-40 per cent.
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Return in % 1-Year 2-Year 3-Year 5-Year 10-Year 15-Year 20-Year 25-Year
≥ 100 0 0 0 0 0 0 0 0

≥ 95 0 0 0 0 0 0 0 0
≥ 90 0 0 0 0 0 0 0 0
≥ 85 0 0 0 0 0 0 0 0
≥ 80 0 0 0 0 0 0 0 0
≥ 75 0 0 0 0 0 0 0 0
≥ 70 0 0 0 0 0 0 0 0
≥ 65 0 0 0 0 0 0 0 0
≥ 60 0.001 0 0 0 0 0 0 0
≥ 55 0.002 0 0 0 0 0 0 0
≥ 50 0.003 0 0 0 0 0 0 0
≥ 45 0.006 0 0 0 0 0 0 0
≥ 40 0.012 0.001 0 0 0 0 0 0
≥ 35 0.022 0.003 0 0 0 0 0 0
≥ 30 0.039 0.008 0.002 0 0 0 0 0
≥ 25 0.069 0.023 0.008 0.001 0 0 0 0
≥ 20 0.123 0.060 0.031 0.008 0 0 0 0
≥ 19 0.138 0.072 0.040 0.012 0.001 0 0 0
≥ 18 0.154 0.086 0.050 0.018 0.002 0 0 0
≥ 17 0.172 0.103 0.064 0.026 0.003 0 0 0
≥ 16 0.192 0.123 0.081 0.037 0.006 0.001 0 0
≥ 15 0.213 0.145 0.101 0.053 0.012 0.003 0.001 0
≥ 14 0.237 0.170 0.126 0.073 0.021 0.006 0.002 0.001
≥ 13 0.262 0.198 0.155 0.098 0.035 0.014 0.005 0.002
≥ 12 0.289 0.230 0.188 0.130 0.057 0.027 0.013 0.006
≥ 11 0.319 0.265 0.226 0.169 0.090 0.051 0.030 0.017
≥ 10 0.350 0.304 0.270 0.217 0.136 0.090 0.061 0.042

≥ 9 0.382 0.346 0.317 0.271 0.197 0.149 0.114 0.089
≥ 8 0.416 0.390 0.369 0.334 0.272 0.229 0.195 0.168
≥ 7 0.452 0.436 0.424 0.401 0.360 0.331 0.306 0.288
≥ 6 0.488 0.484 0.480 0.471 0.459 0.448 0.441 0.435
≥ 5 0.525 0.532 0.538 0.545 0.560 0.573 0.581 0.591
≥ 4 0.562 0.581 0.595 0.616 0.658 0.688 0.712 0.735
≥ 3 0.598 0.628 0.650 0.685 0.745 0.789 0.820 0.847
≥ 2 0.634 0.674 0.702 0.747 0.820 0.866 0.898 0.923
≥ 1 0.669 0.717 0.750 0.802 0.879 0.922 0.948 0.966
≥≥≥≥ 0 0.703 0.757 0.794 0.848 0.922 0.957 0.977 0.987

 ≥ -1 0.735 0.793 0.832 0.887 0.952 0.979 0.990 0.995
 ≥ -2 0.764 0.826 0.865 0.917 0.972 0.990 0.997 0.999
 ≥ -3 0.792 0.854 0.893 0.941 0.985 0.996 0.999 1
≥ -4 0.817 0.879 0.917 0.959 0.992 0.998 1 1
≥ -5 0.840 0.900 0.936 0.972 0.996 0.999 1 1
≥ -6 0.860 0.919 0.951 0.981 0.998 1 1 1
≥ -7 0.878 0.934 0.963 0.988 0.999 1 1 1
≥ -8 0.894 0.947 0.972 0.992 1 1 1 1
≥ -9 0.908 0.957 0.979 0.995 1 1 1 1

≥ -10 0.920 0.966 0.985 0.997 1 1 1 1
≥ -11 0.931 0.973 0.989 0.998 1 1 1 1
≥ -12 0.940 0.979 0.992 0.999 1 1 1 1
≥ -13 0.948 0.983 0.995 0.999 1 1 1 1
≥ -14 0.955 0.987 0.996 1 1 1 1 1
≥ -15 0.961 0.990 0.997 1 1 1 1 1
≥ -16 0.967 0.992 0.998 1 1 1 1 1
≥ -17 0.972 0.994 0.999 1 1 1 1 1
≥ -18 0.976 0.996 0.999 1 1 1 1 1
≥ -19 0.979 0.997 1 1 1 1 1 1
≥ -20 0.982 0.998 1 1 1 1 1 1
≥ -25 0.992 1 1 1 1 1 1 1
≥ -30 0.996 1 1 1 1 1 1 1
≥ -35 0.999 1 1 1 1 1 1 1
≥ -40 1 1 1 1 1 1 1 1
≥ -45 1 1 1 1 1 1 1 1
≥ -50 1 1 1 1 1 1 1 1

Table 7: Probability of achieving at least specified portfolio return, 50-50 per cent.
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Return in % 1-Year 2-Year 3-Year 5-Year 10-Year 15-Year 20-Year 25-Year
≥ 100 0 0 0 0 0 0 0 0

≥ 95 0 0 0 0 0 0 0 0
≥ 90 0 0 0 0 0 0 0 0
≥ 85 0 0 0 0 0 0 0 0
≥ 80 0 0 0 0 0 0 0 0
≥ 75 0 0 0 0 0 0 0 0
≥ 70 0 0 0 0 0 0 0 0
≥ 65 0 0 0 0 0 0 0 0
≥ 60 0 0 0 0 0 0 0 0
≥ 55 0.001 0 0 0 0 0 0 0
≥ 50 0.002 0 0 0 0 0 0 0
≥ 45 0.004 0 0 0 0 0 0 0
≥ 40 0.008 0 0 0 0 0 0 0
≥ 35 0.016 0.001 0 0 0 0 0 0
≥ 30 0.031 0.005 0.001 0 0 0 0 0
≥ 25 0.058 0.015 0.004 0 0 0 0 0
≥ 20 0.105 0.045 0.020 0.004 0 0 0 0
≥ 19 0.118 0.055 0.027 0.007 0 0 0 0
≥ 18 0.132 0.068 0.035 0.011 0.001 0 0 0
≥ 17 0.148 0.082 0.046 0.016 0.001 0 0 0
≥ 16 0.166 0.099 0.060 0.024 0.003 0 0 0
≥ 15 0.186 0.119 0.078 0.035 0.006 0.001 0 0
≥ 14 0.208 0.142 0.099 0.051 0.011 0.002 0.001 0
≥ 13 0.232 0.168 0.125 0.071 0.020 0.006 0.002 0.001
≥ 12 0.258 0.198 0.155 0.098 0.036 0.014 0.005 0.002
≥ 11 0.287 0.233 0.191 0.134 0.061 0.029 0.015 0.007
≥ 10 0.318 0.271 0.233 0.177 0.098 0.056 0.034 0.020

≥ 9 0.351 0.312 0.280 0.230 0.151 0.102 0.072 0.050
≥ 8 0.386 0.357 0.332 0.291 0.221 0.174 0.139 0.111
≥ 7 0.423 0.406 0.389 0.360 0.308 0.270 0.239 0.211
≥ 6 0.462 0.456 0.448 0.434 0.408 0.387 0.369 0.355
≥ 5 0.502 0.509 0.511 0.513 0.516 0.519 0.518 0.521
≥ 4 0.542 0.561 0.573 0.590 0.622 0.647 0.666 0.683
≥ 3 0.583 0.613 0.635 0.666 0.720 0.761 0.791 0.817
≥ 2 0.623 0.664 0.692 0.734 0.803 0.850 0.883 0.907
≥ 1 0.663 0.711 0.746 0.795 0.869 0.913 0.942 0.959
≥≥≥≥ 0 0.700 0.755 0.793 0.846 0.917 0.954 0.973 0.984

 ≥ -1 0.735 0.795 0.834 0.886 0.951 0.978 0.989 0.995
 ≥ -2 0.768 0.830 0.870 0.919 0.972 0.990 0.996 0.998
 ≥ -3 0.799 0.861 0.898 0.943 0.985 0.996 0.999 1
≥ -4 0.826 0.886 0.922 0.961 0.992 0.998 1 1
≥ -5 0.850 0.908 0.940 0.974 0.996 0.999 1 1
≥ -6 0.872 0.926 0.955 0.983 0.998 1 1 1
≥ -7 0.890 0.940 0.966 0.989 0.999 1 1 1
≥ -8 0.906 0.952 0.975 0.993 1 1 1 1
≥ -9 0.919 0.962 0.982 0.996 1 1 1 1

≥ -10 0.931 0.970 0.987 0.997 1 1 1 1
≥ -11 0.941 0.976 0.990 0.999 1 1 1 1
≥ -12 0.950 0.981 0.993 0.999 1 1 1 1
≥ -13 0.957 0.985 0.995 1 1 1 1 1
≥ -14 0.963 0.988 0.997 1 1 1 1 1
≥ -15 0.968 0.991 0.998 1 1 1 1 1
≥ -16 0.972 0.993 0.999 1 1 1 1 1
≥ -17 0.976 0.995 0.999 1 1 1 1 1
≥ -18 0.979 0.996 0.999 1 1 1 1 1
≥ -19 0.982 0.997 1 1 1 1 1 1
≥ -20 0.985 0.998 1 1 1 1 1 1
≥ -25 0.992 1 1 1 1 1 1 1
≥ -30 0.996 1 1 1 1 1 1 1
≥ -35 0.999 1 1 1 1 1 1 1
≥ -40 1 1 1 1 1 1 1 1
≥ -45 1 1 1 1 1 1 1 1
≥ -50 1 1 1 1 1 1 1 1

Table 8: Probability of achieving at least specified portfolio return, 40-60 per cent.
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Figure1: Logarithm of resampled real stock price paths vs. Swedish stock market index.

Note: The time scale refers to the Swedish stock market index in real prices, thick line.
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(d) Distribution of 5-year real returns.
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(h) Distribution of 25-year returns.

Figure 2: Empirical distributions of real stock returns.

22



-50 0 50 100
0

0.05

0.1

0.15

0.2

(a) Distribution of 1-year real returns.

-50 0 50 100
0

0.05

0.1

0.15

0.2

(b) Distribution of 2-year real returns.
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(h) Distribution of 25-year returns.

Figure 3: Empirical distributions of real bond returns.
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Figure 4: A visualization of the discretization of the empirical distributions of real stock

returns for investment horizons shorter than the block length, 60 months.
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