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Abstract

For strategic games, the Nash equilibrium concept is axiomatized using three properties:

(i) if the difference between two games is ‘strategically irrelevant’, then their solutions are the

same; (ii) if a player has a strategy with a constant payoff, this player need not settle for less in

any solution of the game; (iii) if all players agree that a certain strategy profile is optimal, then

this strategy profile is a solution of the game.
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1 Introduction

The Nash equilibrium concept is applicable in a wide range of applications, no matter if strategy

spaces are large, small, embellished with additional topological or measure-theoretic structure. This

note’s main result (Theorem 3.2) therefore provides an easy axiomatization of the Nash equilibrium

concept for many classes of games.

Let me briefly discuss its three axioms. It is common — precise references to related literature

are in Section 2, where the axioms are discussed in detail — to treat the two games

L R

T 3,2 0,1

B 1,3 2,4

L R

T 3+a,2+ c 0+b,1+ c

B 1+a,3+d 2+b,4+d

with real parameters a, b, c, and d as strategically equivalent. For instance, since the same vector

(a,b) of payoffs is added to both rows of the row player’s payoff matrix, there is nothing she can do

about their difference: whatever distinguishes her preferences in the two games is outside the row

player’s control. A similar argument applies to the column player. So in passing from the left game

to the right, things like the players’ pure or mixed best-response correspondences, weak and strict

dominance relations, and rationalizable strategies are all unaffected. The first axiom, independence

of identical consequences , formalizes this standard notion of strategic invariance: their solutions

are the same.

Consider now the game

L R

T 2,2+ c −2,1+ c

B 0,3+d 0,4+d

obtained by setting a to −1 and b to −2. This gives the row player a risk-free option: playing the

second row always gives payoff zero, no matter what the column player does. The second axiom,

risk-free back-up , says that she need not accept less than this payoff in any solution of the game.

And if we set (a,b,c,d) = (2,0,3,−3), we obtain the game

L R

T 5,5 0,4

B 3,0 2,1

Since both players strive to maximize their utility, they unanimously agree that (T,L) is the best

strategy profile. The final axiom, unanimity , says that strategy profiles that are optimal for all

players simultaneously are indeed solutions of the game.

Using a strategic invariance assumption — independence of identical consequences— to relate

the solutions of different games departs from the existing literature on axiomatizations of the Nash

equilibrium concept where this role is played by a consistency axiom. The notion of consistency for

solution concepts of noncooperative games was introduced by Peleg and Tijs (1996) and Peleg et al.

(1996) and requires the following. Assume a strategy profile x is picked out by the solution concept

for a given game. Some players agree to play according to this strategy profile and leave the game.

Then the remaining players don’t have an incentive to deviate from their recommendations either:

the restriction of x to the remaining players is a solution of the ‘reduced game’ obtained by plugging
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the leaving agents’ assigned strategies into the utility functions. The reader is referred to Thomson

(2001, Sec. 12) for an extensive overview of the axiomatic literature in noncooperative games.

Definitions, axioms, and a discussion of these axioms are in Section 2. Section 3 contains the

main axiomatization, together with a more general discussion of relations between the different

axioms and their logical independence. Variants — of the domain and/or the axioms — and

concluding remarks are in Section 4.

2 Definitions and axioms

A (strategic or normal-form) game G = 〈N , (Xi )i∈N , (ui )i∈N 〉 has a nonempty, finite set N of players;

each player i ∈ N has a nonempty set Xi of strategies and a utility function ui : × j∈N X j → R

representing this player’s preferences over strategy profiles. Function expui /(1+ expui ), with

values between zero and one, is an order-preserving transformation of the utility function ui . Since

an order-preserving transformation represents the same preferences, we assume without loss of

generality that all utility functions are bounded.

Let Γ be a set of games. A solution concept on Γ is a function ‘sol’ that assigns to each game

G = 〈N , (Xi )i∈N , (ui )i∈N 〉 in Γ a subset sol(G) of its strategy space X =× j∈N X j . We characterize the

solution concept mapping each game G to its possibly empty set of Nash equilibria:

Nash(G) = {x ∈ X : for each i ∈ N and yi ∈ Xi , ui (x) ≥ ui (yi , x−i )}.

Here, as usual, x−i ∈ X−i =× j∈N \{i }X j is the profile of strategies of i ’s fellow players and (yi , x−i ) is

the strategy profile obtained from x after i unilaterally deviates to yi ∈ Xi .

We now introduce and briefly discuss our main axioms.

Independence of identical consequences: If two games G = 〈N , (Xi )i∈N , (ui )i∈N 〉 and

H = 〈N , (Xi )i∈N , (vi )i∈N 〉 in Γ differ only in their utility functions, but consequences of

each player’s behavior on her utility are the same, i.e.,

for all i ∈ N , all xi , yi ∈ Xi , and all x−i ∈ X−i :

ui (xi , x−i )−ui (yi , x−i ) = vi (xi , x−i )− vi (yi , x−i ), (1)

then their solutions are the same: sol(G) = sol(H).

This is a standard invariance assumption (see below) to express that the difference between two

games is ‘strategically irrelevant’: for each player i , whatever distinguishes her utility functions

in the two games is outside her control and objects — whenever well-defined — like her (pure or

mixed) best-response correspondence, (weak and strict) dominance relations, and rationalizable

strategies are the same in the two games. In a noncooperative game, player i can’t affect the strategy

profile x−i of the remaining players. And given that strategy profile, (1) says that i cannot affect the

difference between ui and vi , because it is independent of what strategy she chooses:

for all strategies xi and yi of player i : ui (xi , x−i )− vi (xi , x−i ) = ui (yi , x−i )− vi (yi , x−i ). (2)

That is, the difference ui (·, x−i )−vi (·, x−i ) is constant, no matter what i does! We follow the conven-

tion from Facchini et al. (1997, p. 195) and Voorneveld et al. (1999, Sec. 2) and say that games G and

H differ by a dummy game, a game where the utility of each player is unaffected by her own choice.

3



The strategic equivalence of games satisfying (1) is fundamental to at least four strands of

literature. Firstly, in the context of equilibrium selection and refinement, Wu and Jiang (1962, p.

1310) call such games ‘isomorphic’. Harsanyi and Selten (1988, pp. 77-80) discuss the strategic

equivalence of such games in the chapter ‘Consequences of Desirable Properties’. Peleg et al. (1996,

p. 90) refer to such games as ‘equivalent’. Secondly, in the literature on learning and evolution,

this strategic invariance condition is used to describe games with similar behavior under dynamic

processes; see for instance Blume (1993, Def. 6.2) and Weibull (1995, p. 19). Thirdly, it is used to

characterize games that are strategically indistinguishable from games where all players have the

same interests in the literature on potential games; see Monderer and Shapley (1996, Sec. 2), Morris

and Ui (2004, Def. 3), or Voorneveld (2010, p. 405). Fourthly, the decision-theoretic irrelevance of

such transformations of the utility functions was already observed in the early axiomatic literature

on decision theory under uncertainty; see Milnor (1954, axiom 7).

The next axiom says that if a player has a strategy with a constant utility of — say — c, then she

doesn’t need to settle for less, because she can assure getting c all on her own:

Risk-free back-up: If, in a game G = 〈N , (Xi )i∈N , (ui )i∈N 〉 in Γ, a player i has a strategy

yi with a constant utility, i.e.,

there is a c ∈R with ui (yi , x−i ) = c for all x−i ∈ X−i ,

then each solution of the game gives i at least this payoff: ui (x) ≥ c for all x ∈ sol(G).

This constant is a lower bound on the player’s minimax/individually rational payoff:

c ≤ inf
x−i∈X−i

sup
xi∈Xi

ui (xi , x−i ). (3)

Indeed, for each x−i ∈ X−i ,

c = ui (yi , x−i ) ≤ sup
xi∈Xi

ui (xi , x−i ),

making c a lower bound on the function x−i 7→ supxi
ui (xi , x−i ). So its greatest lower bound, the

infimum over the strategies of i ’s fellow players, satisfies (3). Therefore, risk-free back-up is implied

by the more demanding individual rationality assumption familiar from, for instance, zero-sum

games and various folk theorems for repeated games where the minimax value provides lower

bounds on achievable outcomes:

Individual rationality: Players receive at least their minimax value of the game:

for all G = 〈N , (Xi )i∈N , (ui )i∈N 〉, i ∈ N , x ∈ sol(G) : ui (x) ≥ inf
y−i∈X−i

sup
yi∈Xi

ui (yi , y−i ).

But individual rationality is more demanding: it says something about each game in Γ, whereas

risk-free back-up imposes restrictions only on games where a strategy gives a player a constant

utility.

The final axiom simply says that if all players agree that a strategy profile is optimal, then it is a

solution of the game:

Unanimity: For each game G = 〈N , (Xi )i∈N , (ui )i∈N 〉 in Γ, if there is a strategy profile

x ∈ X with ui (x) = maxy∈X ui (y) for all players i , then x ∈ sol(G).
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3 Axiomatization and relations between the axioms

A set of games Γ is closed under strategic equivalence if for each game G in Γ and each game H that

differs from G by a dummy game, as in (1) or (2), the game H also lies in Γ. Some examples:

Example 3.1. Under the traditional convention that the set of players and their strategies all belong

to some well-defined set of potential players/strategies, the following domains are closed under

strategic equivalence: the set of all games, the set of all finite games (each Xi is finite: only pure, no

mixed strategies), and the set of all games with at least one Nash equilibrium. But also — in contrast

with axiomatizations based on consistency— the subdomains of the previous three obtained

by keeping the player set and the set of strategies of each player fixed, varying only their utility

functions. Moreover, since the potential games of Monderer and Shapley (1996) and supermodular

games (see, e.g. Zhou, 1994, Sec. 3) are defined in terms of restrictions on the payoff differences

ui (xi , x−i )−ui (yi , x−i )

and these are the same, by (1), for games that differ by a dummy game, also these two common

classes of games give rise to domains that are closed under strategic equivalence. /

Section 4 treats some other domains. The axiomatization of the Nash equilibrium concept is:

Theorem 3.2. Let Γ be a set of games that is closed under strategic equivalence. The Nash equilibrium

concept is the unique solution concept on Γ that satisfies independence of identical consequences,

risk-free back-up, and unanimity.

The Nash equilibrium concept satisfies the three axioms. For independence of identical conse-

quences , games satisfying (1) have the same best-response correspondences and consequently the

same Nash equilibria. And Nash equilibria give each player at least her minimax value:

sol(G) ⊆ Nash(G) for all G ∈ Γ =⇒ sol satisfies individual rationality .

When discussing the axioms, we already argued

sol satisfies individual rationality =⇒ sol satisfies risk-free back-up .

Also, strategy profiles maximizing each player’s utility function are Nash equilibria, so

sol(G) ⊇ Nash(G) for all G ∈ Γ =⇒ sol satisfies unanimity .

So it remains to show that the Nash equilibrium concept is the only solution concept satisfying

independence of identical consequences , risk-free back-up , and unanimity . That follows from:

Lemma 3.3. Let Γ be a set of games that is closed under strategic equivalence. If a solution concept

sol on Γ satisfies:

(a) independence of identical consequences and risk-free back-up, then it assigns to each game

a subset of its Nash equilibria: sol(G) ⊆ Nash(G) for all G ∈ Γ.

(b) independence of identical consequences and unanimity, then it assigns to each game a set

containing all Nash equilibria: Nash(G) ⊆ sol(G) for all G ∈ Γ.
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Proof. (a) Let solution concept sol satisfy independence of identical consequences and risk-free

back-up . Let G = 〈N , (Xi )i∈N , (ui )i∈N 〉 ∈ Γ be a game and let y ∈ sol(G). To show: y ∈ Nash(G).

So let j ∈ N be a player and z j ∈ X j a potential deviation; why is u j (y) ≥ u j (z j , y− j )? Define

game H = 〈N , (Xi )i∈N , (vi )i∈N 〉 with vi = ui if i 6= j and v j (x) = u j (x)−u j (z j , x− j ) for all x ∈ X . The

functions (vi )i∈N are bounded and G and H differ by a dummy game; since Γ is closed under

strategic equivalence, game H is a well-defined game in Γ. By independence of identical conse-

quences , sol(G) = sol(H). So y ∈ sol(H). In game H , player j ’s strategy z j gives her constant utility

0, so by risk-free back-up , v j (y) = u j (y)−u j (z j , y− j ) ≥ 0.

(b) Let solution concept sol satisfy independence of identical consequences and unanimity . Let

G = 〈N , (Xi )i∈N , (ui )i∈N 〉 ∈ Γ be a game and let y ∈ Nash(G). To show: y ∈ sol(G).

Let game H = 〈N , (Xi )i∈N , (vi )i∈N 〉 have utility functions defined for each i ∈ N and x ∈ X by

vi (x) = ui (x)− sup
zi∈Xi

ui (zi , x−i ).

Firstly, each vi is bounded, since each ui is bounded. And G and H differ by a dummy game. Since

Γ is closed under strategic equivalence, H is a well-defined game in Γ. Secondly, since y is a Nash

equilibrium of G we have vi (y) = 0 for all players i , whereas vi (x) ≤ 0 for all other strategy profiles

x. So y maximizes each player’s payoff in H . By unanimity , y ∈ sol(H). Thirdly, sol(G) = sol(H) by

independence of identical consequences and therefore y ∈ sol(G), as desired.

The logical independence of the axioms is addressed in the next two examples.

Example 3.4 (Logical independence). The solution concept that assigns to each finite game:

1. the empty set satisfies all axioms in Theorem 3.2 except unanimity ;

2. its entire set of strategy profiles satisfies all axioms except risk-free back-up ;

3. its strong Nash equilibria satisfies all axioms except independence of identical consequences .

Recall that a strategy profile is a strong Nash equilibrium (Aumann, 1959) if no subset of players can

deviate, keeping the strategies of the remaining players fixed, and make all its members better off.

For instance, according to independence of identical consequences , the two games

L R

T 1,1 3,0

B 0,0 2,2

L R

T 4,4 3,3

B 3,0 2,2

must have the same solution, since the right game is obtained from the left by adding dummy game

L R

T 3,3 0,3

B 3,0 0,0

But the right game has strong Nash equilibrium (T,L) and the left game has none: independence of

identical consequences is violated. /

The three solution concepts in the previous example establish logical independence of the

axioms on several other nontrivial domains as well. But if the domain Γ of games is trivial — for

instance if it contains only one-player games — the axioms are dependent:
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Example 3.5 (One-player games). If Γ is a set of one-player games, then only risk-free back-up

and unanimity are needed to axiomatize the Nash equilibrium concept. If G is a one-player game,

each strategy of its single player is trivially risk-free. So risk-free back-up implies that each element

of sol(G) maximizes the player’s utility function and is consequently a Nash equilibrium of G .

Conversely, each Nash equilibrium maximizes the single player’s utility function and must therefore

belong to sol(G) by unanimity . /

4 Variants and concluding remarks

Other domains; negative results. The axiomatization in Theorem 3.2 takes the domain to be closed

under strategic equivalence. If this assumption is removed, the result need no longer be true. I give

two examples. As a first extreme example, look at domain Γ1 containing only one game: the mixed

extension of

L R

T 0,1 3,0

B 1,2 2,3

Then independence of identical consequences has no bite since there are no distinct games in

our class; risk-free back-up imposes no restrictions since none of the players has a mixed strategy

with a constant utility; unanimity imposes no constraints since there is no strategy profile that

simultaneously maximizes both players’ utilities. In summary, in this singleton class of games, the

three axioms impose no constraints on what the solution of this game should be.

Next, take the domain Γ2 of mixed extensions of finite strategic games: the classical scenario

of Nash (1950). Lemma 3.3(a) (inclusion ‘sol ⊆ Nash’) goes through without change. But inde-

pendence of identical consequences and unanimity are of little help to establish the opposite

inclusion. In Lemma 3.3(b), these axioms are used to construct an auxiliary game H where a certain

Nash equilibrium is payoff-maximizing for all players simultaneously. In the small domain Γ2,

such a construction is impossible in games without pure-strategy Nash equilibria. Why? Well, if a

mixed-strategy profile gives each player her maximal utility, then all pure-strategy profiles in its

support (those played with positive probability) must do so as well: they are pure-strategy Nash

equilibria. In fact, there are solution concepts other than the Nash equilibrium concept on Γ2, like

sol(G) =
Nash(G) if G has pure-strategy Nash equilibria,

; otherwise,

that satisfy all three axioms in Theorem 3.2. So on the domain Γ2 we would need substantially

different axioms to characterize Nash equilibria, something outside the scope of the present paper.

On the one hand, this is a potentially interesting topic for future research; on the other hand, Norde

et al. (1996) already provide such a characterization using consistency .

Other domains; positive results. There are other common domains where the axiomatization does

remain valid: instead of assuming that the domain is closed under strategic equivalence — if it

contains a game G , then it contains all games H that differ from G by a dummy game — the proof

of Lemma 3.3 goes through if for each game G in Γ the two specific auxiliary games H constructed

in that proof lie in Γ as well. This is the case for the class Γ∗ of games 〈N , (Xi )i∈N , (ui )i∈N 〉 where

each Xi is a nonempty, convex, compact subset of some Rn with its usual topology, and each ui is
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continuous and — given the strategy profile of i ’s opponents — quasiconcave in i ’s own strategy.

This is the class of games for which Kakutani’s fixed-point theorem easily assures the existence of

Nash equilibria.

Indeed, let G be a game in this class. Look at the auxiliary game H in Lemma 3.3(b) with utility

functions

vi (x) = ui (x)− sup
zi∈Xi

ui (zi , x−i ).

By Berge’s maximum theorem, the function x 7→ supzi∈Xi
ui (zi , x−i ) is continuous. Hence vi , the

difference between two continuous functions, is continuous as well. And given the strategy profile

x−i of i ’s fellow players, it simply subtracts a constant from ui , so vi remains quasiconcave in i ’s

own strategy. So H lies in Γ∗. A similar but easier argument holds for the auxiliary game in Lemma

3.3(a).

Debreu (1952) introduces abstract economies to facilitate existence proofs of competitive

equilibria. They differ from games because the feasible strategies of a player may depend on the

strategies chosen by other players: it is a game with feasibility correspondences, one for each

player. Peter Sudhölter (private communication) noted that with minor adjustments in the ax-

ioms and proofs to address the feasibility constraints, the axiomatization of the Nash equilibrium

concept carries over if we replace games in class Γ∗ with abstract economies with the same as-

sumptions on strategy spaces and utility functions, and with continuous, convex-valued feasibility

correspondences. An axiomatization using consistency can be found in Peleg and Sudhölter (1997).

Comparing independence of identical consequences and consistency. The key axiom that allows

comparison of solutions in different games is independence of identical consequences . In the

earlier axiomatic literature, this role is played by consistency . These two axioms are logically

independent. We saw in Example 3.4 that the strong Nash equilibrium concept does not satisfy

independence of identical consequences . It does satisfy consistency ; see Peleg and Tijs (1996, Thm.

3.2). A strategy xi ∈ Xi of player i in a game G = 〈N , (Xi )i∈N , (ui )i∈N 〉 is undominated if there is no

other strategy yi ∈ Xi with

ui (yi , x−i ) ≥ ui (xi , x−i )

for all x−i ∈ X−i , and with strict inequality for some x−i ∈ X−i . Games G = 〈N , (Xi )i∈N , (ui )i∈N 〉
and H = 〈N , (Xi )i∈N , (vi )i∈N 〉 satisfying (1) have the same undominated strategies. Therefore, the

solution concept that assigns to each finite game G its undominated strategy profiles,

sol(G) = {x ∈ X : for each i ∈ N , xi is undominated},

satisfies independence of identical consequences . But it is not consistent: in the game

L R

T 1,−1 −1,1

B −1,1 1,−1

the strategy profile (T,L) is undominated, yet in the one-player reduced game

L R

−1 1

that arises if the row player commits to T and leaves, L is dominated by R, so L is not a solution of

the reduced game, contradicting consistency .
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On minimax and maximin. We showed that individual rationality implies risk-free back-up . There-

fore, we can replace risk-free back-up in Theorem 3.2 by the more demanding individual rationality

axiom to obtain an alternative axiomatization of the Nash equilibrium concept. But in addition

to being less demanding, risk-free back-up has another practical advantage: strategies with a

constant payoff are easier to recognize than the minimax payoff, which typically requires tedious

computations. Analogously, each player i can singlehandedly improve upon utility levels below

sup
xi∈Xi

inf
x−i∈X−i

ui (xi , x−i )

and we can replace risk-free back-up with the stronger requirement that in each solution of the

game, players receive at least this maximin utility.
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