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Abstract

The rational choice paradigm in game theory and other fields of economics has agents

best-responding to beliefs about factors that are outside their control. And making certain

options a best response is a common problem in mechanism design and information elicitation.

But not every correspondence can be made into a best-response correspondence. So what

characterizes a feasible best-response correspondence? And once we know that, can we find

some or even all utility functions that give rise to this best-response correspondence? We answer

these three questions for an expected-utility maximizing agent with finitely many actions and

probabilistic beliefs over finitely many states or opponents’ strategies. We apply our results to

information elicitation problems where contracts (scoring rules) are designed to financially

reward an expected-payoff maximizing agent to truthfully reveal a property of her belief by

sending a report from some finite set of messages. This leads to a number of new insights:

firstly, we characterize exactly which properties can be elicited using scoring rules; secondly,

we show that in this class of problems quadratic scoring rules are both necessary and sufficient

methods of doing so.
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1 Introduction

It is little wonder that economists are interested in best-response correspondences:

• Homo economicus, poster child of the rationality paradigm, is often defined as someone

choosing/responding optimally given beliefs about factors outside its control.

• A variety of game-theoretic concepts (including Nash equilibria, rationalizable strategies,

and adjustment processes like fictitious play) in mixed extensions of finite strategic games

depend only on the game’s best-response correspondences.

• Making certain options a best response is a common reverse-engineering problem in areas

like mechanism design and information elicitation.

But not every correspondence can be made into a best-response correspondence of a well-defined

game. So, (Q1) can we characterize whether a putative best-response correspondence is feasible?

And once we know that, can we find (Q2) some utility function or (Q3) all utility functions with this

best-response correspondence?

We answer these three questions in the finite setting, i.e., for an expected-utility maximizing

agent with finitely many actions and probabilistic beliefs over finitely many states or opponents’

strategies. Although this covers a variety of settings (see Remark 2.2 below), for the sake of concrete-

ness we will mostly talk about the best-response correspondence of the row player in a bimatrix

game. As another application, our theorems provide novel insights into information elicitation

problems where contracts (scoring rules) are designed to financially reward an expected-payoff

maximizing agent to truthfully reveal a property of her belief by sending a report from some finite

set of messages. Let us briefly discuss our contributions.

Characterizing best-response correspondences. We provide two characterization results. An

alleged best-response correspondence can be summarized by writing down, for each of the (say)

m pure strategies of the row player, against which strategies of the column player they need to

be a best response. This cuts the column player’s mixed strategy space into m best-response sets

P1, . . . ,Pm .

Our first characterization provides a link to the relative-proximity literature on spatial competi-

tion in the spirit of Hotelling, where — all else being equal — businesses can sometimes compete by

strategically locating themselves at a site that attracts customers simply because that site happens

to be nearest: Theorem 3.1 says that feasible best-response sets coincide with nearest-neighbor

regions for suitably chosen sites.

This is illustrated for a simple 3×3 game in Figure 1. The column player’s mixed strategy space

is the unit simplex with the standard basis vectors e1, e2, and e3, where some column is chosen

with probability one, as its vertices. Pick three sites v1, v2, and v3 in R3. For simplicity, in the figure

we take the three vertices: vi = ei for i = 1,2,3. Using the usual Euclidean distance, let Pi (with

i = 1,2,3) be the subset of the simplex for which vi is the nearest of those sites. Theorem 3.1 assures

that there is a payoff matrix (like matrix A in the figure) for the row player where these sets Pi are the

beliefs against which row i is a best response; and conversely, every best-response correspondence

of a 3×3 payoff matrix can be found in this way.
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e1 e2

e3

P1 P2

P3

A =


1 0 0

0 1 0

0 0 1



Figure 1: Best responses and nearest neighbors in a simple 3×3 payoff matrix.

The second characterization, Theorem 4.1, identifies feasible best-response sets as solutions to

a system of finitely many linear (in)equalities and provides a linear programming problem with

optimal value zero if there is no solution to that system and optimal value one if there is.

These two characterizations are instrumental in answering our follow-up questions.

Finding some game with given best responses: quadratic scoring rules. The proof of the

nearest-neighbor characterization (Theorem 3.1) not only tells us that feasible best-response sets

are nearest-neighbor regions for some suitable sites; it also tells us how to transform those sites

into a payoff matrix with the desired best responses. This transformation is of a special functional

form (see (6)), known in the literature on information elicitation as a quadratic scoring rule. So,

given feasible best-response sets, there is a corresponding payoff matrix that is a quadratic scoring

rule (Corollary 3.2). Moreover, each payoff matrix with these best responses can be written as a

quadratic scoring rule (Theorem 3.3).

Application to finite elicitation problems. In Section 2.2 and Remark 3.4 we discuss in detail

an application of our results to finite elicitation problems where an expected-payoff maximizing

agent needs to be incentivized to accurately reveal a property of her beliefs about the state of nature

by sending one of finitely many messages. Scoring rules are contracts that pay the agent depending

on the realized state and the message that she sent. Our three results in Section 3 lead to a number

of new insights: firstly, by characterizing exactly which properties can be elicited using scoring

rules; secondly, by showing that quadratic scoring rules are both necessary and sufficient methods

of doing so. Especially the latter is unusual: quadratic scoring rules are known to perform well in a

variety of settings, but often along with many other scoring rules — i.e., in those settings they are

sufficient, but not necessary.

Finding all games with given best responses. The second characterization result, Theorem 4.1,

says that finding all games with given best responses boils down to solving a system of homogeneous

linear equalities and strict inequalities. These strict inequalities complicate the analysis: the set

of solutions is a convex cone, but typically not closed and therefore not finitely generated. The

appendix contains a technical Lemma A.1 that describes the set of solutions to such (in)equalities.

In game-theoretic terms (Theorem 4.2), this assures that the set of all payoff matrices with the same

best responses as some given matrix A can be written in terms of a dummy game (where the row

player is indifferent between all her actions) and other games with a simpler (coarser) best-response

structure than A.

A discussion of and precise references to related literature will be given in the main text; all
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proofs are in the appendix.

2 Problem statement and applications

2.1 Problem statement

In Rn , vectors a and b have their usual inner product 〈a,b〉 = ∑n
i=1 ai bi and Euclidean distance

‖a −b‖ =
√

〈a −b, a −b〉. Denote the unit simplex in Rn by

∆n = {y ∈Rn : y1, . . . , yn ≥ 0, y1 +·· ·+ yn = 1}.

Consider an m ×n matrix A, interpreted as the row player’s von Neumann-Morgenstern utility

function or, briefly, payoff function in a bimatrix game. Denote its rows by a1, . . . , am in Rn . For

each row i = 1, . . . ,m, let best-response set

Pi = {y ∈∆n : 〈ai , y〉 ≥ 〈ak , y〉 for all k = 1, . . . ,m} (1)

be the set of mixed strategies of player 2 against which pure strategy i is a best response. The next

proposition summarizes some properties of best-response sets.

Proposition 2.1. The best-response sets have the following properties:

(a) Each best-response set is a polytope.

(b) Their union is ∆n .

(c) The intersection of two or more best-response sets is either empty or a face of each of those sets.

We are concerned with the opposite direction: given putative best responses, do they really

come from a well-defined game? Formally, the questions we set out to answer are: given a collection

of sets P1, . . . ,Pm whose union is ∆n ,

(Q1) are these feasible best-response sets, i.e., does there exist a payoff matrix A that has these

sets as best-response sets?

And if so, can we construct

(Q2) some payoff matrix or

(Q3) all payoff matrices with the desired best-response sets?

Remark 2.2. We stress that our setting of characterizing best-response correspondences in bimatrix

games is more general than may at first appear. For instance, it includes mixed extensions of finite

strategic games with more than two players if correlated beliefs are allowed. It also encompasses

settings of decision-making under uncertainty, where the second player is replaced by nature. An

important other application arises in information elicitation problems, which we discuss next. /
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2.2 Application: information elicitation using scoring rules

Consider a set J = {1, . . . ,n} of n ∈N, n ≥ 2, exhaustive and mutually exclusive states. An agent’s

subjective beliefs about the probability of each state are modeled as usual by probability vectors in

the unit simplex ∆n . The agent can send a principal information about her belief by choosing a

message from a set I . Some map, often called a property, assigns to each belief y ∈∆n a nonempty

set PROP(y) ⊆ I of messages considered the correct one(s) given those beliefs. Typical properties in

the statistics literature on elicitation include the belief itself, moments of the probability distribution,

or its mode. More prosaic, economic examples that come to mind are answers to questions like

‘Given your assessment of tomorrow’s weather, how many ice-cream cones should we buy?’: pretty

much any question related to forecasting or prediction.

A scoring rule is a contract mapping the agent’s message and the realized state to a payoff, i.e.,

a function S : I × J →R: after the agent reports some information i ∈ I , both the principal and the

agent observe the true state j ∈ J and the agent receives payoff S(i , j ) ∈R.

The principal aims to find a scoring rule that makes it optimal for a payoff-maximizing agent to

reveal the correct information. To facilitate comparison with our earlier notation, define for each

message i ∈ I the vector ai ∈Rn with coordinates ai , j = S(i , j ) for each state j ∈ J = {1, . . . ,n}. Given

any belief y ∈∆n , the agent’s expected payoff from sending information i ∈ I to the principal is then

n∑
j=1

y j S(i , j ) = 〈ai , y〉.

A scoring rule S elicits the property PROP if the agent maximizes her expected payoff, given any

belief y , if and only if she sends correct information, i.e., a message i in PROP(y):

for each i ∈ I : {y ∈∆n : i ∈ PROP(y)} = {y ∈∆n : 〈ai , y〉 ≥ 〈ak , y〉 for all k ∈ I }. (2)

Call the elicitation problem finite if both J (as presumed before) and I are finite; in that case we

may enumerate I ’s elements by I = {1, . . . ,m} for some m ∈N and (2) becomes

for each i ∈ I : {y ∈∆n : i ∈ PROP(y)} = {y ∈∆n : 〈ai , y〉 ≥ 〈ak , y〉 for all k = 1, . . . ,m}.

On the right side we recognize the best-response sets (1) of a payoff matrix A with rows a1, . . . , am .

So for finite elicitation problems the question

‘Is there a scoring rule that elicits our property?’

is equivalent with the question

‘Are the sets {y ∈∆n : i ∈ PROP(y)}, with i = 1, . . . ,m, feasible best-response sets?’

This makes finite elicitation problems a special case of one of the general questions we set out to

answer.

The literature on scoring rules is too large to do serious justice to here; overview articles on

different aspects include Savage (1971), Gneiting and Raftery (2007), Schotter and Trevino (2014),

Schlag et al. (2015), and Carvalho (2016). A scoring rule that performs well in the elicitation of
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probabilities of specific events or of the whole probability distribution is the quadratic scoring rule.

It dates back to a note on incentivizing meteorologists for accurate forecasts by Brier (1950), usually

credited to be the starting point of this literature. This scoring rule plays an important role in our

results too, so let us define it here.

Scoring rule S : I × J →R is a quadratic scoring rule if there are scalars α and β, with α> 0, and

a vector vi ∈ Rn for each information report i ∈ I such that the vector of scores associated with

report i and the n distinct states is of the form

ai = (S(i ,1), . . . ,S(i ,n)) =α(
2vi −‖vi‖21

)+β1, (3)

with 1 = (1, . . . ,1) ∈Rn the vector of ones.

After meteorology, the design and use of scoring rules caught on in statistics and many branches

of the social sciences, including economics (accounting, management, finance), but also education,

psychology, medicine, political and computer science; see the overviews cited earlier or Offerman

et al. (2009, p. 1462). Applications in economics encompass, among others, incentive schemes

in organizations (Thomson, 1979; Osband, 1985), information aggregation in markets (Ostrovsky,

2012), and strategic distinguishability (Bergemann et al., 2017).

3 Nearest neighbors and quadratic scoring rules

A crucial insight in the classical paper of Hotelling (1929) is that, all else being equal, businesses

can sometimes compete by strategically locating themselves at a site that attracts customers simply

because that site happens to be nearest. A similar point applies to politicians profiling themselves

in an ideological space if voters choose candidates closest to their own ideals. Grofman (2004)

reviews the literature on this proximity theory of voting. Our first characterization provides a link

with this relative-proximity literature: feasible best-response sets are exactly the ones that cut the

unit simplex into pieces corresponding to elements having suitably chosen sites as their nearest

neighbor. Formally, consider m vectors or ‘sites’ v1, . . . , vm in Rn . Divide the unit simplex ∆n into

pieces, depending on which site happens to be nearest. The nearest-neighbor region of site vi ,

denoted Near(vi ), consists of those elements of the unit simplex that have vi as nearest site:

Near(vi ) = {y ∈∆n : ‖y − vi‖ ≤ ‖y − vk‖ for all k = 1, . . . ,m}.

In computational geometry, nearest-neighbor regions are sometimes called Voronoi regions. Au-

renhammer et al. (2013, Ch. 4) and Borgwardt and Frongillo (2019) discuss algorithms to detect

them.

Theorem 3.1 (Nearest-neighbor characterization). Polytopes P1, . . . ,Pm with union ∆n are feasible

best-response sets if and only if they are nearest-neighbor regions:

there are v1, . . . , vm ∈Rn with Pi = Near(vi ) for all i = 1, . . . ,m.
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What drives the result is the following: given vectors y , vk , and v` in Rn , we have

‖y − vk‖ ≤ ‖y − v`‖ ⇐⇒ 〈y − vk , y − vk〉 ≤ 〈y − v`, y − v`〉
⇐⇒ ‖y‖2 −2〈vk , y〉+‖vk‖2 ≤ ‖y‖2 −2〈v`, y〉+‖v`‖2

⇐⇒ 2〈vk , y〉−‖vk‖2 ≥ 2〈v`, y〉−‖v`‖2. (4)

Recall that 1 is the vector of ones. If r is a real number and y lies in the unit simplex, then r = 〈r 1, y〉,
since the coordinates of y sum to one. With ‖vk‖2 and ‖v`‖2 instead of r , we can then rewrite (4):

‖y − vk‖ ≤ ‖y − v`‖ ⇐⇒ 〈
2vk −‖vk‖21, y

〉≥ 〈
2v`−‖v`‖21, y

〉
. (5)

Hence, if we define ak = 2vk −‖vk‖21 and a` = 2v`−‖v`‖21, we see that y lies closer to vk than to

v` if and only if the expected payoff 〈ak , y〉 exceeds the expected payoff 〈a`, y〉. This tells us how to

translate sites into payoffs; conversely, given a feasible payoff matrix with rows a1, . . . , am , one can

transform them into sites of the form 1
2 a1 + t11, . . . , 1

2 am + tm1 for suitable scalars t1, . . . , tm .

So our proof establishes that if P1, . . . ,Pm are feasible best-response sets, then there is a corre-

sponding payoff matrix — one that has the desired best-response sets — with rows of the form

ai = 2vi −‖vi‖21 (6)

for suitable vi . By (3), with α= 1 and β= 0, we see that these are quadratic scoring rules:

Corollary 3.2. Given feasible best-response sets, there is a corresponding payoff matrix that is a

quadratic scoring rule.

A fortiori, any payoff matrix is just a quadratic scoring rule in disguise:

Theorem 3.3. Each m ×n payoff matrix A can be written as a quadratic scoring rule: there exist a

constant α> 0 and vectors v1, . . . , vm ∈Rn such that for each row i = 1, . . . ,m:

ai =α
(
2vi −‖vi‖21

)
.

Remark 3.4. For our application (Sec. 2.2) to finite elicitation problems, the three results in this

section paint a detailed picture of what scoring rules can achieve, including several new insights.

By Theorem 3.1, a property PROP can be elicited if and only if the sets {y ∈∆n : i ∈ PROP(y)} with

i = 1, . . . ,m, specifying the beliefs for which the different messages are correct, are nearest-neighbor

regions. Partial results along these lines have been around since at least de Finetti (1965), notably

the link between small distances and large expected payoffs in (4) that establishes one implication

in its proof. Also Friedman (1983, p. 450) points this link out, as do Lambert and Shoham (2009) in

the computer science literature with additional restrictions on the properties being elicited. Our

characterization telling for all finite elicitation problems when a property can be elicited — to our

knowledge — is new. The other results tell much more, namely how to elicit them. Firstly (Cor.

3.2), the simple class of quadratic scoring rules is sufficient to elicit such properties. Secondly

(Thm. 3.3), and perhaps more surprisingly, they are also necessary, in the sense that every other

eliciting scoring rule can be rewritten as a quadratic one. This is in sharp contrast with elicitation of

probabilities of events or distributions, where not only quadratic scoring rules do the right job, but

so do scoring rules of different functional forms; recall, for instance, the discussion on quadratic,

logarithmic, and spherical scoring rules in Winkler and Murphy (1968). /
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4 Feasibility and best-response equivalence

The previous section addressed two of the three questions we set out to answer: whether there is a

payoff matrix with given best responses and, if so, how to find one. Our final question concerned

finding all of them, i.e., given a feasible best-response structure, characterizing all matrices with

the desired best responses. We answer this question here, by reformulating it to finding the set

of solutions to a system of finitely many linear (in)equalities (Thm. 4.1) and characterizing those

solutions in game-theoretic terms (Thm. 4.2).

Consider polytopes P1, . . . ,Pm whose union is ∆n : necessary conditions on best-response sets

according to Proposition 2.1. Let E = ∪m
i=1 ext(Pi ) denote the set of all extreme points of these

polytopes. If we want the polytopes to be best-response sets of some m ×n matrix A, then its rows

a1, . . . , am must satisfy

〈ai , y〉 = 〈a j , y〉 for all y ∈ E and all i , j with y ∈ Pi ∩P j , (7)

〈ai , y〉 > 〈a j , y〉 for all y ∈ E and all i , j with y ∈ Pi \ P j . (8)

The first condition simply says that if extreme point y lies in both Pi and P j , then the expected

payoffs from row i and row j should both be optimal and consequently the same. Likewise, the

second condition requires that if extreme point y lies in Pi , but not in P j , then row i should be a

best response, but row j not, so the expected payoff from row i exceeds that of row j .

These finitely many linear (in)equalities assure that payoff matrix A gives the correct best

responses in the extreme points of the polytopes; using a standard convexity argument, we will

show that this gives the correct best responses against any strategy of the second player. In other

words, conditions (7) and (8) are both necessary and sufficient for the existence of a payoff matrix

with the desired best-response sets. Moreover, checking whether these conditions have a solution

can be done via a linear-programming feasibility problem:

Theorem 4.1.

(a) Polytopes P1, . . . ,Pm with union ∆n are best-response sets of an m×n matrix A if and only if its

rows satisfy (7) and (8).

(b) The linear program (LP)

maximize t

with (t , a1, . . . , am) ∈R× (Rn)m

〈ai −a j , y〉 = 0 for all y ∈ E and all i , j with y ∈ Pi ∩P j

〈ai −a j , y〉 ≥ t for all y ∈ E and all i , j with y ∈ Pi \ P j

t ≤ 1

has optimal value zero if there is no such matrix and optimal value one if there is. In the latter

case, each optimum also gives a matrix with the desired properties.

If given best responses are feasible, finding all games with these best responses therefore boils

down to solving a system (7) and (8) of homogeneous linear equalities and strict inequalities. These
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strict inequalities make the analysis tricky: the set of solutions is a convex cone, but typically not

closed and consequently not finitely generated. In the appendix, we prove a technical Lemma

A.1 that describes the set of solutions to such (in)equalities. We formulate its conclusions in

game-theoretic terms here.

Let A be an m ×n payoff matrix to the row player. We call A a dummy matrix if its rows are

identical (ai = a j for all i , j = 1, . . . ,m) or, equivalently, if its columns are constant. In a dummy

matrix, each pure or mixed strategy gives the row player the same expected payoff, so each strategy

is a best reply. This ‘dummy’ terminology comes from the literature on potential games; see Facchini

et al. (1997, p. 195) and Voorneveld et al. (1999, Sec. 2). Dummy games play a crucial role in the

axiomatization of the Nash equilibrium concept by Voorneveld (2019), who also discusses the role

of such games for strategic invariance in the literature on equilibrium refinements and evolution.

If A and B are two m×n payoff matrices to the row player, we call them best-response equivalent

if the row player has the same best-response correspondence in both cases; we say that payoff

matrix B has a coarser best-response structure than A if best responses in A also are best responses

in B : for each y ∈∆n , argmaxi 〈ai , y〉 ⊆ argmaxi 〈bi , y〉.

Theorem 4.2 (Characterizing best-response equivalence). If there is a payoff matrix A with best-

response sets P1, . . . ,Pm , then there exist a positive integer k and matrices C1, . . . ,Ck with a coarser

best-response structure than A such that the set of best-response equivalent matrices is of the form

D+
{

k∑
`=1

α`C` :α1, . . . ,αk > 0

}
.

Here, D is the set of m ×n dummy matrices.

The closest result about best-response equivalence is in Morris and Ui (2004). Their Proposition

4 imposes an additional nondegeneracy assumption involving second-best replies and says the

following about best-response equivalent payoff matrices A and B : if there are beliefs against which

both the i -th and the j -th row are best responses, then the difference of these rows in A must be

proportional to the difference of these rows in B .

Our result characterizes the best-response equivalent matrices without any additional restric-

tions and also shows that their proposition cannot be extended to cases where their nondegeneracy

assumption is omitted. The following example illustrates this point, as well as the decomposition

into matrices with a coarser best-response structure.

Example 4.3. Consider two payoff matrices for the row player:

A =


1 −2 0

0 0 0

−2 1 0

 and B =


1 −2 0

0 0 0

−4 2 0


They are best-response equivalent: the best-response sets P1,P2,P3 of the three rows are drawn in

the unit simplex in the left panel of Figure 2. Its corners correspond with the standard basis vectors

e1, e2, and e3 where the column player picks some column with probability one; y1 = (2/3,1/3,0)

and y2 = (1/3,2/3,0).
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e1 e2

e3

y1 y2

P1 P2 P3

e1 e2

e3

P1 = P2 = P3

e1 e2

e3

y1

P1 P2 = P3

e1 e2

e3

y2

P1 = P2 P3

Figure 2: Best-response sets of A (and B) and the coarser ones from a dummy game, C1, and C2.

Both the first and the third row are best responses against belief y = e3, the third column. But

the difference of these rows in A is (1,−2,0)− (−2,1,0) = (3,−3,0), whereas in B it is (5,−4,0): these

vectors are not proportional.

Writing down and simplifying conditions (7) and (8), the payoff matrices with these best-

response sets can be written as
a b c

a b c

a b c


︸ ︷︷ ︸

dummy

+α1


1 −2 0

0 0 0

0 0 0


︸ ︷︷ ︸

C1

+α2


0 0 0

0 0 0

−2 1 0


︸ ︷︷ ︸

C2

with a,b,c ∈R and α1,α2 > 0.

Matrix A above corresponds with (a,b,c,α1,α2) = (0,0,0,1,1); for B , change α2 to 2. Here we

recognize the decomposition from Theorem 4.2: we start with a dummy game and matrices C1 and

C2 have a coarser best-response structure consisting of suitable unions of the ‘old’ P1,P2,P3 that

we started with. Also these are illustrated in Figure 2. /

In some games there are no nontrivial coarser best-response structures:

Example 4.4. Consider again the payoff matrix A from Figure 1. It is not possible to obtain a

coarser best-response structure by, for instance, taking the union of P1 and P2. That would make

the best-response structure look like

e1 e2

e3

P3

P1 = P2

But that is infeasible: the shaded region where rows 1 and 2 would be best responses is not a

polytope, in contradiction with Proposition 2.1. The payoff matrices where the row player has the

same best-response correspondence as in A are of the form
a b c

a b c

a b c


︸ ︷︷ ︸

dummy

+α1


0 0 0

−1 1 0

−1 0 1


︸ ︷︷ ︸

C1

with a,b,c ∈R and α1 > 0.
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The matrix A is obtained by taking (a,b,c,α1) = (1,0,0,1). /

A brief concluding remark: by changing the domain and codomain of potential best-response

correspondences, our central questions of characterizing what constitutes a feasible best-response

correspondence and of finding some or all utility functions giving rise to such a correspondence

can be varied endlessly. A similar observation can be made for our application to information

elicitation problems. We opted for a setting where we could provide full characterizations, leaving

other settings as possible directions for future research.
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A Proofs

A.1 Proof of Proposition 2.1

(a) The best-response set of pure strategy i ∈ {1, . . . ,m} can be rewritten as

Pi =
{

y ∈Rn : y1, . . . , yn ≥ 0,
∑n

k=1 yk = 1, and 〈ai , y〉 ≥ 〈a j , y〉 for all j = 1, . . . ,m
}

.

So Pi is a bounded set of solutions to linear (in)equalities: it is a polytope.

(b) Trivial: there is a best response against each mixed strategy of player 2.

(c) Suppose two best-response sets Pi and P j have a nonempty intersection. Each point y ∈ Pi ∩P j

satisfies 〈ai , y〉 = 〈a j , y〉, so 〈a j −ai , y〉 = 0. And each point y ∈ Pi \ P j satisfies 〈ai , y〉 > 〈a j , y〉, so

〈a j −ai , y〉 < 0. Hence, Pi ∩P j is the set of maximizers of the linear function y 7→ 〈a j −ai , y〉 over

Pi , making it a face of Pi . Likewise, it is a face of P j .

Next, suppose the intersection
⋂

j∈J P j over an index set J ⊆ {1, . . . ,m} of more than two elements

is nonempty. Let k ∈ J . Then
⋂

j∈J P j =⋂
j∈J , j 6=k (Pk ∩P j ) is, by our previous step, the intersection of

faces of Pk and consequently (Schrijver, 1986, Sec. 8.6) itself a face of Pk .

A.2 Proof of Theorem 3.1

First, assume that polytopes P1, . . . ,Pm are nearest-neighbor regions of m sites v1, . . . , vm in Rn :

Pi = Near(vi ) for all i = 1, . . . ,m. Define m ×n matrix A with rows

ai = 2vi −‖vi‖21, (i = 1, . . . ,m) (9)

Using (5) we have for each site vi :

Pi = {y ∈∆n : ‖y − vi‖ ≤ ‖y − vk‖ for all k = 1, . . . ,m}

= {y ∈∆n : 〈ai , y〉 ≥ 〈ak , y〉 for all k = 1, . . . ,m}.

By definition (1), these polytopes are the best-response sets of matrix A.

Conversely, assume that polytopes P1, . . . ,Pm are best-response sets of m ×n matrix A. Positive

affine transformations of its entries do not affect best responses: without loss of generality we may

take the entries to be nonnegative and so small that for each row i = 1, . . . ,m:

0 ≤ 〈ai ,1〉 ≤ 1 and ‖ai‖ ≤ 1/
p

n. (10)

Our previous step shows that if there are vectors v1, . . . , vm ∈Rn satisfying (9), then for each i , the

nearest-neighbor region Near(vi ) equals the corresponding best-response set Pi and we’re done.

We construct such vectors of the form

vi = 1

2
ai + ti 1, (i = 1, . . . ,m)

for suitable scalars t1, . . . , tm . Substituting those vi into (9), we must solve, for each row i = 1, . . . ,m:

ai = ai +2ti 1−
∥∥∥∥1

2
ai + ti 1

∥∥∥∥2

1 = ai +
(
2ti −

∥∥∥∥1

2
ai + ti 1

∥∥∥∥2)
1.
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So for each i , the term in parentheses must be zero. Expand this:

0 = 2ti −
∥∥∥∥1

2
ai + ti 1

∥∥∥∥2

= 2ti −
〈

1

2
ai + ti 1,

1

2
ai + ti 1

〉
= 2ti − 1

4
‖ai‖2 −〈ai ,1〉ti −‖1‖2t 2

i . (11)

The last expression is a quadratic function of ti . Using (10), its discriminant

(2−〈ai ,1〉)2︸ ︷︷ ︸
≥1

−‖1‖2︸︷︷︸
=n

‖ai‖2︸ ︷︷ ︸
≤1/n

is nonnegative, so for each i there is indeed a root ti solving (11).

A.3 Proof of Theorem 3.3

Consider an m ×n matrix A with rows a1, . . . , am . We will find α> 0 and v1, . . . , vm ∈Rn solving

ai =α
(
2vi −‖vi‖21

)
, (i = 1, . . . ,m) (12)

with the vectors vi of the form

vi = 1

2α
ai + ti 1

for suitable scalars t1, . . . , tm . Substituting those vi into the right side of (12), we must solve for each

row i = 1, . . . ,m:

ai =α
(
2vi −‖vi‖21

)= ai +α
(
2ti −

∥∥∥∥ 1

2α
ai + ti 1

∥∥∥∥2)
1.

Since we will choose α> 0, the term in the big parentheses must be zero for each i . Expand this:

0 = 2ti −
∥∥∥∥ 1

2α
ai + ti 1

∥∥∥∥2

= 2ti −
〈

1

2α
ai + ti 1,

1

2α
ai + ti 1

〉
= 2ti − 1

4α2 ‖ai‖2 − 1

α
ti 〈ai ,1〉− t 2

i ‖1‖2

=−nt 2
i +

(
2− 1

α
〈ai ,1〉

)
ti − 1

4α2 ‖ai‖2.

The final expression is a quadratic function of ti with discriminant(
2− 1

α
〈ai ,1〉

)2

− n

α2 ‖ai‖2.

This discriminant tends to 4 as α → ∞, so we can pick α > 0 sufficiently large and make the

discriminant nonnegative for each row i . Nonnegativity of the discriminants then implies that the

quadratic functions in ti have a root: we found our desired solution!

A.4 Proof of Theorem 4.1

(a) We discussed necessity of (7) and (8) already before Theorem 4.1. As for sufficiency, suppose

m ×n matrix A with rows a1, . . . , am satisfies these conditions. Let i ∈ {1, . . . ,m}. We show that Pi is

the best-response set of row ai .
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First, let y ∈ Pi . Then it is a convex combination of the extreme points of Pi . By (7) and

(8), for each such extreme point ỹ and each j = 1, . . . ,m: 〈ai , ỹ〉 ≥ 〈a j , ỹ〉. Hence also the convex

combination y satisfies 〈ai , y〉 ≥ 〈a j , y〉. So if y ∈ Pi , then ai is a best response to y .

Next, let y ∈∆n \ Pi . Since ∪m
j=1P j =∆n , there is a k 6= i with y ∈ Pk . Write y as a convex com-

bination of the extreme points of Pk : y =∑
z∈ext(Pk )αz z for some nonnegative scalars (αz )z∈ext(Pk )

summing to one. Since y does not belong to Pi , there must be a z∗ ∈ ext(Pk ) with αz∗ > 0 such

that z∗ does not belong to Pi . By (7) and (8), we have 〈ak , z∗〉 > 〈ai , z∗〉 and for all other z ∈ ext(Pk ):

〈ak , z〉 ≥ 〈ai , z〉. So

〈ak −ai , y〉 = ∑
z∈ext(Pk ),z 6=z∗

αz〈ak −ai , z〉︸ ︷︷ ︸
≥0

+αz∗〈ak −ai , z∗〉︸ ︷︷ ︸
>0

> 0 :

row k gives a strictly higher payoff. So if y ∈∆n \ Pi , then ai is not a best response to y .

From these two observations, we see that y ∈ Pi if and only if row ai is a best response to y .

(b) If (7) and (8) have a solution A, define

t = min
{〈ai −a j , y〉 : y ∈ E , i , j with y ∈ Pi \ P j

}> 0.

Then (t , a1, . . . , am) satisfies all conditions of the LP, except possibly the final constraint t ≤ 1. But

rescaling by 1/t > 0 gives a feasible point (1,(1/t )a1, . . . , (1/t )am) with value 1 of the goal function.

Since all feasible points of the LP have t ≤ 1, this is clearly optimal and the matrix 1
t A has the desired

best-response sets.

If (7) and (8) have no solution, there is no feasible (t , a1, . . . , am) in the LP with t > 0. The zero

vector in R× (Rn)m is feasible in the LP. So in this case the maximal value of the goal function is zero.

A.5 Proof of Theorem 4.2

For real vectors a and b of the same dimension, write a ≥ b if ai ≥ bi for all coordinates i ; likewise,

a > b if ai > bi for all coordinates i . The proof relies on the following lemma:

Lemma A.1. Let A and B be real matrices with the same number n of columns. Assume there is a

solution x ∈Rn to the system of linear (in)equalities

Ax = 0,B x > 0. (13)

Then there are a positive integer k and vectors y1, . . . , yk in Rn such that its set of solutions is

{x ∈Rn : Ax = 0,B x > 0} = {x ∈Rn : Ax = 0,B x = 0}+
{

k∑
i=1

αi yi :α1, . . . ,αk > 0

}
.

Proof. For notational convenience, write

V = {x ∈Rn : Ax = 0} and W = {x ∈V : B x = 0}.

Both are null spaces of linear transformations, so V is a linear subspace of Rn and W is a linear sub-

space of V . Since V is finite-dimensional, it is the direct sum of W and its orthogonal complement

W ⊥ = {v ∈V : 〈v, w〉 = 0 for all w ∈W }. We prove:

{x ∈Rn : Ax = 0,B x > 0} =W + {z ∈W ⊥ : B z > 0}. (14)
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If x ∈Rn has Ax = 0 and B x > 0, then x ∈V , so we can write x = w +w⊥ with w ∈W and w⊥ ∈W ⊥.

Then

0 < B x = B w +B w⊥ = 0+B w⊥.

So x is indeed the sum of an element w ∈W and an element w⊥ ∈ {z ∈W ⊥ : B z > 0}.

Conversely, if w ∈W and w⊥ ∈ {z ∈W ⊥ : B z > 0}, then w +w⊥ ∈W +W ⊥ =V , so

A(w +w⊥) = 0 and B(w +w⊥) = 0+B w⊥ > 0.

So w +w⊥ solves the linear (in)equalities in (13). This proves (14).

We assumed that (13) has a solution. So {z ∈ W ⊥ : B z > 0} and hence {z ∈ W ⊥ : B z ≥ 0} are

nonempty. The latter is a polyhedral cone in a finite-dimensional space and consequently a finitely

generated cone: there are finitely many y1, . . . , yk ∈W ⊥ such that

{z ∈W ⊥ : B z ≥ 0} =
{

k∑
i=1

αi yi :α1, . . . ,αk ≥ 0

}
. (15)

For ease of notation, abbreviate ‘
∑k

i=1 · · · ’ by ‘
∑

i · · · ’. We next prove that

{z ∈W ⊥ : B z > 0} =
{∑

i
αi yi :α1, . . . ,αk > 0

}
. (16)

Let z ′ ∈ {z ∈W ⊥ : B z > 0}. Defined by strict linear inequalities, {z ∈W ⊥ : B z > 0} is an open subset

of W ⊥. So for ε> 0 sufficiently small, it also contains z ′−ε∑
i yi . In particular, B(z ′−ε∑

i yi ) ≥ 0.

By (15), there are nonnegative α′
1, . . . ,α′

k with z ′−ε∑
i yi =∑

i α
′
i yi . So z ′ =∑

i (α′
i +ε)yi , showing

that z ′ a strictly positive combination of vectors y1, . . . , yk .

Conversely, let z =∑
i αi yi for strictly positive α1, . . . ,αk . Since y1, . . . , yk ∈W ⊥, also z ∈W ⊥. By

assumption, there is a z∗ ∈ W ⊥ with B z∗ > 0. In particular, B z∗ ≥ 0, so by (15), z∗ = ∑
i α

∗
i yi for

nonnegative α∗
1 , . . . ,α∗

k . For each row b of B we have

0 < 〈b, z∗〉 =∑
i
α∗

i 〈b, yi 〉.

By (15), 〈b, yi 〉 ≥ 0 for all i . Therefore, at least one inequality is strict. Since all scalars α1, . . . ,αk are

strictly positive, this in turn implies that

〈b, z〉 =∑
i
αi 〈b, yi 〉 > 0.

This holds for each row of B , so z ∈W ⊥ solves B z > 0, finishing the proof of (16).

Finally, substituting (16) into (14) proves the lemma.

With this lemma in place, we are ready for the proof of Theorem 4.2: By Theorem 4.1, a payoff

matrix A ∈Rm×n has the desired best-response sets if and only if it satisfies

〈ai −a j , y〉 = 0 for all y ∈ E and all i , j with y ∈ Pi ∩P j ,

〈ai −a j , y〉 > 0 for all y ∈ E and all i , j with y ∈ Pi \ P j .
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This is a system of linear equations and strict inequalities over the m ·n real entries of A. By Lemma

A.1, its set of solutions is of the form

D+
{

k∑
i=1

αi Ci :α1, . . . ,αk > 0

}
, (17)

where

D = {A ∈Rm×n :〈ai −a j , y〉 = 0 for all y ∈ E and all i , j with y ∈ Pi ∩P j ,

〈ai −a j , y〉 = 0 for all y ∈ E and all i , j with y ∈ Pi \ P j }.

D is the set of dummy matrices: Clearly, each dummy matrix lies in D. Conversely, if A lies in the

set on the right, pick a standard basis vector e` with ` ∈ {1, . . . ,n}. This is an extreme point of ∆n

and hence of one of the polytopes, say Pi . Then we must have 〈ai −a j ,e`〉 = ai`−a j` = 0 for all

j = 1, . . . ,m: the `-th column of A is constant. This holds for each column, so A is a dummy matrix.

Finally, each Ci lies in the closure of the set (17) of games that are best-response equivalent with

A. So if a strategy is a best response to some belief in A, it is also a best response in Ci : payoff matrix

Ci has a coarser best-response structure.
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