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1 Introduction

Unconditional return distributions are characterized by the ’stylized facts’ of
excess kurtosis, high peakedness and are often skewed, see Mills (1999, ch
5). But the conditional distribution is also characterized by excess kurtosis
and skewness when the ARCH model of Engle (1982) or its generalization
to GARCH by Bollerslev (1986) are fitted to return series, see e.g. French,
Schwert and Staumbaugh (1987), Engle and Gonzales-Rivera (1991).

GARCH models are typically estimated by the method of maximum likeli-
hood applied to the normal density, regardless of whether the conditional dis-
tribution is assumed normal or not. This may of course result in a large loss of
efficiency relative to the true but unknown maximum likelihood estimator. In
response Engle and Gonzales-Rivera (1991) introduced the semi-parametric
maximum likelihood estimator of GARCH models. The semi-parametric es-
timator is a two-step estimator. In the first step consistent estimates of the
parameters are obtained and are used to estimate a non-parametric condi-
tional density. The second step consists of using this non-parametric density
to adapt the initial estimator. The method has not been applied much in
the literature though. This may be because the estimator is not so sim-
ple to compute, furthermore a choice of density estimator is required and
specification testing is not straightforward.

This paper is concerned with efficient GMM estimation of GARCH mod-
els. In particular we show that efficient GMM is a feasible alternative to
the quasi-maximum likelihood and semi-parametric estimators. Compared
to the semi-parametric estimator efficient GMM has the advantage of being
simple to compute and specification testing is straightforward. As a com-
petitor to the common quasi-maximum likelihood estimator efficient GMM
is asymptotically efficient with the coefficient of skewness and excess kurtosis
of the conditional density being important in explaining the differences.

The organization of the paper is as follows. In section 2 we define the
estimator in case of a GARCH(1,1) conditional variance model and give
sufficient conditions for the estimator to be consistent and asymptotically
normal. That is, to have the CAN property. Asymptotic relative efficiency
comparison to the quasi-maximum likelihood estimator shows that efficient
GMM is asymptotically more efficient under asymmetry of the conditional
density and a small Monte-Carlo experiment confirms that the finite-sample
gain can be substantial. Section 3 is concerned with efficient GMM estimation
of the GARCH(1,1)-M regression model of Engle, Lilien and Robins (1987).



It is shown that the introduction of a conditional mean makes the coefficient
of excess kurtosis as well as of skewness important for explaining the relative
efficiency gains of efficient GMM. In this section we also consider efficient
GMM based specification tests. These tests are locally more powerful than
the corresponding Bollerslev and Wooldridge (1992) robust classical tests
whenever the efficient GMM estimator is asymptotically more efficient than
quasi-maximum likelihood. Section 4 illustrates efficient GMM estimation
and hypothesis testing with an application to the daily returns to the SP500
index, (1928-1991) and section 5 concludes. Proofs can be found in the
appendix.

2 A GARCH(1,1) conditional variance process

2.1 The efficient GMM estimator

Consider the data generating process

& = Zth()t, zt N~ ZZd(O, 1) (1)

2 2 2
hoy = oo+ a1y + Bhy_y

where the [:th conditional moment of the &, process is E[el|F 1] = vhl,,
F 1 is the information generated up tot —1 and v; = F (z,f) In practice we
observe a finite segment of the process (1) and the objective is to estimate
the parameters 6y € © where 6y = (ap, a1, )" and © is a compact parameter
space. To this end, define the (raw) vector

r, = [e, (e — 7)) (2)

and the generalized vector,
g = Firy

where F; is an instrumental variable function.
The GMM estimator of a parameter vector 6 is the solution to (cf. Hansen
(1982))
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with W, = T S°7 | W, an appropriate weighting matrix.




Efficient GMM corresponds to choosing F; = ;' (Z¢) and W, = (%—?)E; !
6I‘t

x (24) where 2, = var(ry|F *!) and (25) is the Jacobian matrix, see Newey
and McFadden (1994). The objective function for an operational efficient

GMM estimator is then given by

P E) B e

where A; = gg; is a parameter dependent weighting matrix. The elements
of the generalized moment and the weighting matrix are given by

RN CATINe: 2
= K(aei)ht Kh_t> vg_((h_? !

1 (O, L[ (& g2 )Y
A = E(“z)ht Kh_t>v3_<(h_? AR 06;

with A = (vg — 1) — v3l.

By construction the objective function (3) is exactly identified and it is
well-known from the literature that the choice of weighting matrix above is
sufficient but not necessary for asymptotic efficiency. In fact asymptotic the-
ory does not discriminate between a parameter dependent weighting matrix
and a weighting matrix based on an initial consistent estimator of 8, or for
that matter the identity matrix. Simplicity suggests that the identity ma-
trix might be a good choice in applications. However finite-sample evidence
indicates that allowing the weighting matrix to be parameter dependent is
preferred and since the weighting matrix in (3) is typically constructed for
inference little additional effort is needed for this choice.

To put quasi-maximum likelihood in the GMM framework choose W; =
sis;, where s; = % with [; the normal quasi-loglikelihood for observation t
and Fir; = s;. By noting that g, = ﬁst for v3 = 0 the GMM objective
function can be written

Qr=T"

T /
Til Z St] A;l

t=1

T! XT: st]

t=1

where Ap =T} Zle s;s; and the asymptotic equivalence of efficient GMM
based on (2) and quasi-maximum likelihood follows in case of symmetric z.

!By definition X is positive definite which implies (v4 — 1) — v3 > 0.
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Note however that in general efficient GMM requires an initial guess on the
kurtosis and skewness of the rescaled variable. A guess on kurtosis can be

based on the mean of #g), similarly the guess on skewness can be based
£ T

3 ~
on the mean of hSZ—é)’ where 01 is some initial estimator.
t T

2.2 Asymptotic properties

All the asymptotic results below are derived with a parameter dependent
weighting matrix. Compared to basing the weighting matrix on an initial
consistent estimator of # or simply the identity matrix no additional re-
strictions are needed. The latter estimators are of course special cases of
the results given below. Furthermore allowing for a parameter dependent
weighting matrix is unimportant for the asymptotic distribution.

The following assumptions are sufficient for the results

In contrast to Lee and Hansen (1994) and Lumsdaine (1996) we do not
allow for IGARCH. Besides giving a simpler asymptotic theory this means
that we do not have to consider further restrictions on the parameter space
as is necessary in the case of IGARCH. In particular the present frame-
work can be used to establish consistency and asymptotic normality of the
quasi-maximum likelihood estimator of the GARCH(1,1) process without re-
strictions on the parameter space.

Define 01 as the sequence of minimizers of the objective function (3)
and suppose some initial estimators 03, v, are available and that these initial
estimators only requires assumptions (a)-(e). We then have



Theorem 1 Suppose assumptions (a)-(e) hold and that T3 = v, 0, 5> vi.
Then 61 2 6y on © regardless of v; = v3 or vy = vy as long as both vi, vy
are finite

That is, §T is consistent for finite arbitrary guess on v3,v,. In practice we
are of course interested in obtaining asymptotically valid inference about 61
and for this purpose we need consistent initial estimators of v3 and v4. But
this result has a useful consequence in terms of the asymptotic distribution of
7. In particular we will be able to conclude that the asymptotic distribution

of Or is the same regardless of wether v3 and v, are known or estimated.

Let Ag = EA; (0y) and Gy = EGy () where Gy (0) = %

Theorem 2 Suppose assumptions (a)-(e) holds and that vs 2> vs, Ty = vy or
v3,v4 are known. Then Tl/Q(@\T—HO) 4N (O, (GoAalGo)fl) >N (0, Aal)

where ” =7 denotes equality in distribution

The above result allows us to compare asymptotic variances of efficient
GMM and quasi-maximum likelihood. Taking expectations of Ay, (BtA; 1Bt)

evaluated at 0y, where B, = %sof and A, = s;s; we obtain

_ onZ, ohg,\ 1~
VGJ\HW = [EAt (90)] ! = [(7)4 - 1) — 7)%] [E ( a@Ot 609t>:| h’ét

and
-1

Vours = [(EBy(60) [EA(0)] " EBy(6))]
(va—1)—

oh2, oh2\1~"
= (-0 B (GR 5|
% and is

The relative efficiency ratio is seen to depend only on D
strictly decreasing in v3. That is, efficient GMM is strictly more efficient than
the quasi-maximum likelihood estimator when the conditional innovations
have a skewed distribution.

2.3 Finite-sample properties

A small Monte-Carlo experiment is conducted to evaluate the finite-sample
properties of the estimators’. We generate data from the GARCH(1,1)

2Both estimators use the Newton algorithm. The efficient GMM estimator use Con-
strained Optimization (CO) module in GAUSS and quasi-maximum likelihood use the
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process (1) with two sets of parameter combinations close to what one com-
monly encounters in applying GARCH(1,1) to real data, fy; = (0.1,0.2,0.7)’
and g, = (0.05,0.05,0.9)" where 6y = (ag,a1,)". The sample sizes con-
sidered are T = 1000 and 5000. Initial values were chosen arbitrarily as
(0.1,0.25,0.67)" and (0.05,0.07,0.87)" for each set of parameters.

All the efficient GMM estimations are performed with the parameter de-
pendent weighting matrix. Efficient GMM estimators with the weighting
matrix provided by the initial consistent estimator, 0 (where 01 is the
quasi-maximum likelihood estimate) and the identity matrix respectively
performed less well. The performance was especially poor with the iden-
tity matrix where we experienced serious convergence problems.

2.3.1 Symmetric densities

For many financial return series a t-distribution with a few degrees of freedom
fits the empirical density of z; quite well. The question is if we can improve
on quasi-maximum likelihood with the efficient GMM estimator when the
rescaled variable, z; has a fat-tailed density. The rescaled variable is assumed
to follow a t-distribution with 5 degrees of freedom which gives true kurtosis
of 9. The t(5) distributed random variable is generated as the ratio of a
standard normal and y/x2/5 variate. To obtain a (0, 1) variable we divide
by the standard deviation. Results are given in Table 1.

For the parameter combinations considered efficient GMM typically has
a variance that is smaller than or equal to that of quasi-maximum likelihood,
the gain is substantial for the case of 6y and T = 1000. Furthermore the
efficient GMM estimator has less bias than the quasi-maximum likelihood
estimator in this case. The bias of the quasi-maximum likelihood estimator
is small for 6y; but increases for the parameter vector fgo. It appears that
this tendency is not so strong for the efficient GMM estimator. For T = 5000
efficient GMM and quasi-maximum likelihood are equivalent for both 6y; and
902.

Constrained Maximum Likelihood (CML) module. In both cases analytical derivatives
are used and constraints are imposed as 10710 < ag,a; and 0 < b < 1. All the results are
based on 5000 replications and 100 initial values of the conditional variance process were
discarded to avoid initialization effects. Quasi-maximum likelihood estimates are used to
initialize a guess on vs and vy for the efficient GMM estimator.




Table 1 Finite sample comparison of efficient GMM (GMM) and quasi-

maximum likelihood (QMLE), z; ~ ¢(5)

T = 1000
001

ag

a

b

002

Qg

b

GMM
bias std(1)

0.010
0.005
—0.018

0.045
0.066
0.083

0.011  0.051
0 0.030
—0.013  0.073

0.002
0.001
—0.005

0.020
0.030
0.037

0.003
0.001
—0.005

0.022
0.013
0.030

QMLE
bias std(2)

0.011
0.005
—0.018

0.046
0.068
0.085

0.027
0.005
—0.034

0.081
0.032
0.104

0.002
0.001
—0.005

0.020
0.030
0.037

0.004
0.001
—0.006

0.021
0.013
0.029

ratio (1)/(2)
0.978
0.970
0.976
0.629

0.938
0.702

1.04

1.03




Table 2 Finite sample comparison of efficient GMM (GMM) and quasi-
maximum likelihood (QMLE), z; ~ Gamma(2)

GMM QMLE

T = 1000 bias std(1) bias std(2) ratio (1)/(2)
Oo1

ag 0.008  0.050 0.012  0.045 1.11

ay 0.002  0.049 0.004 0.061 0.803

b —0.013 0.074 —0.02  0.085 0.870
002

ag 0.011 0.046 0.029  0.090 0.511

ai 0.002 0.021 0.004  0.029 0.723

b —0.015 0.059 —0.035 0.111 0.531
T = 5000
Oo1

ag 0.001 0.013 0.002 0.018 0.722

ai 0 0.020 0 0.026 0.789

b —0.003 0.026 —0.005 0.035 0.743
002

ag 0.002 0.013 0.004 0.018 0.722

ai 0 0.008 0.001 0.011 0.727

b —0.004 0.019 —0.005 0.026 0.730

2.3.2 Asymmetric densities

Unconditional return distributions are characterized by the ’stylized facts’
of excess kurtosis, high peakedness and are often skewed. But the distri-
bution of the rescaled variable as well is characterized by excess kurtosis
and skewness when GARCH models are fitted to data see e.g. Engle and
Gonzales-Rivera (1991). To consider asymmetric densities we generate z;
as Gamma-distributed with mean and variance parameter equal to 2. The
Gamma(2) distributed random variable is obtained from rndgam in GAUSS
and standardized by subtracting 2 from it and dividing by 2/2. Tt has true
kurtosis and skewness given by 6 and 2/ /2 respectively. Results are given
in Table 2.

As for the case of symmetric z; with 7" = 1000 the bias of the efficient



GMM estimator seems to be smaller and the gain is larger for 6yp,. For
T = 5000 the efficient GMM estimator has smaller variance than quasi-
maximum likelihood for both #y; and 6y, which is what we expect since it is
asymptotically more efficient. In fact the estimated standard deviation ratios
are quite close to the theoretical ratio of approximately 0.775.

3 Extension to models with a conditional mean

3.1 The GARCH(1,1)-M regression model

The GARCH(1,1) conditional variance process considered in section 2 may be
somewhat restrictive in practice. Here we consider some practical details of
estimating more general models with the efficient GMM estimator introduced
in section 2.1. The model of interest is the GARCH(1,1)-M regression model
introduced by Engle et al. (1987)

v = Xiu+6f(h)+e (4)
gt = Ztht
hf = ap+ alaffl + bhi1

where f(h?) is a function of the conditional variance and in addition to
section 2.1 we assume that z; is independent of X;. Sufficient conditions
for consistency and asymptotic normality are, to the authors knowledge, not
known even for the quasi-maximum likelihood estimator. In what follows
we simply assume that such conditions are satisfied. More specifically, we
assume that the CAN property holds for both quasi-maximum likelihood and
efficient GMM.

By using the (raw) vector (2) we can in analogy with section 2.1 define
the efficient GMM estimator of the model (4) as a solution to

Z gt] (5)

t=1

T /

th

t=1

argming g 1> AL

where the parameter vector 6 is given by 6 = (v,,7,)",~v; = (a0, a1,b)" and
~5 = (6, 1')'. The generalized moment, g; is given by

@by
SN + (a—?)afeztl [tfl—tt(m i 1) —h:)g (Z—% — 1)} ©)



with A = [(v4 — 1) — 03] and derivatives in (6) are computed recursively as

Of (hi_1)\ Ohi
onz, ) 00

Oh?
a—gt =Ci1+ (b — 20a184-1

where ¢, = (1,7, h?, —2a16,f(h?), —2a,,X}), and

90~ " %o o0

with 7, = (0,0,0, —f(h?), —X}).
The equality of EA; (6y) and EGy (0y) is straightforward to verify from

(6) using the iid property of z and hence the variance matrix of 7"/207 can
be consistently estimated by

T —1
A (T—lz&>

Oz, . 68f(ht2)0_h%

t=1
or .
N -
AN g
Gl=|[T71) =
t=1
where jAXt =A; ET) and %—% = %. Inference based on jAXT only involves

first derivatives of the conditional mean and the conditional variance func-
tion. This is useful since estimation of GARCH models frequently rely on
numerical approximations to the analytical derivatives.

3.2 Asymptotic efficiency comparison

For the purpose of comparing the asymptotic variance matrices of efficient
GMM and quasi-maximum likelihood we let

_ | p—10me 1;-20R%
S hor 56" 2hor a9
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where h3, = h?(6y) and mg = my(6y) is the regression function and define
the matrices

1 0
k= o)
o 1 U3
L = [ vy (vg—1) ]
1 (va—1) —2u5
M = Z[ —2u3 4

with L, K and M the 'weight matrices’ for the A;, B; and A; matrices re-
spectively. Define next
I, = £ (SDS’)
for arbitrary positive semi-definite matrix D.
We can then write the difference between the inverses of the asymptotic
variance matrices as

Ve — VE)Jl\f[LE =TI, — T TI, Tk (7)

which is positive semi-definite for a general conditional density and the model
()"

Note that v3 = 0, v4 = 3 implies K = L = M and hence Ve = Vaum
if the conditional density is normal. In the case of excess kurtosis and/or
skewness of the conditional density, K # L # M. However a formal proof
that this is sufficient for efficiency gains is too difficult and we consider some
simple cases where positive results can be obtained.

Consider first the GARCH(1,1) regression model (6 = 0 in (4)). Imposing
symmetry of the conditional density is not sufficient for Vouyre = Vaum
but for the conditional variance parameters, v, we have V(v,)omre =
V(v1)amu- Some tedious but straightforward algebra shows that

4
V() e — V_I(N)QJMLE = P+ ——Pp— [Pi1+2Py]  (8)

(vg — 1)
X [P1+ (v — 1) ]-:)12]71 [P11 + 2Py,]
(va—3)° [, 1 17
— |Pj + ———=P
(1)4 — 1)2 u (7)4 — 1) 12

3The matrix difference on the right-hand side of (7) appears as part of the difference
between the inverse asymptotic variance matrices of the semi-parametric and maximum
likelihood estimators in Gonzalez-Rivera and Drost (1999). They prove that this difference
is positive semi-definite for the model (4).
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! ! : —19m
where PH = Ea117ta117t, P12 = Ea127ta127t with all’t = hOt 8:t and a12¢ =

1het 6;5% Note that (8) is positive definite for v4 > 3 and increasing in v,
implying there is efficiency gains for the conditional mean parameters in case
of excess kurtosis.

A corresponding result for g and 4, under asymmetry of the conditional
density is more difficult since the block-diagonal structure of Vg p and
Ve islost. We can however allow for vg # 0 if we set u = 0. This gives the

asymptotic relative efficiency result for the GARCH(1,1) conditional variance

model, that is, (M;l;_);v% obtained in section 2.2. In the GARCH(1,1)-M
model (4) the block-diagonal structure of Vg er and Vg is lost even
under symmetry of the conditional density. Thus in this case the algebra is
too tedious to derive results such as (8) regardless of v3 = 0 or not. However
we conjecture that due to the absence of block-diagonal structure there is
efficiency gains for both conditional mean and variance parameters under
excess kurtosis. Similar considerations apply for an asymmetric conditional

density.

3.3 specification tests

As in the familiar maximum likelihood setting the classical LM (score), Wald
and LR-tests are available and derived with expansions involving the first and
second derivatives of the objective function (cf. Newey and West (1987)).
Under the null hypothesis, say Hy : a(fy) = 0, the LM (score) statistic is
given by

~ L~ ~ o~ L~ -1 -
§oar = VIErAF ' Gr |GrAF'Gr | GrA7VTE: 9)

where ”” denotes evaluated under the null hypothesis. Under our assump-
tions on the rescaled variable, z;, we obtain the asymptotically equivalent

form

S = ngg (Z gt@;) th (10)
t=1 t=1 t=1

which is simply TR? from the linear regression of 1 on g}. As an example
of the TR? form of the LM test consider the efficient GMM counterpart
of the Engle (1982) ARCH(m) classical LM test with no parameters in the
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conditional mean, we have

1 _
€LM = KWI1W2 (W2W12) ' WI2W1

2
/! ! . £ &
where Wl = (U}H, ...,wlT) s V"Q = (wgl, ...,U)QT) with Wit = ’U3}~L—f5 — (71_; — 1)
t

T 90R2 &
and wy, = h, 28—9’5. Since

d 5 £
i -1 E L (e T
plim, 7T [1)3~ (%% )

t=1 hy

2

=(vg—1)—v3

we can construct the asymptotically equivalent T'R? form

W, W, (W, W},) ' W, W,
W/ W,

Eone =T =TR?

where R? is the unadjusted squared multiple correlation coefficient from a
regression of Wi on Wy. Under the null hypothesis of no ARCH(m) h? =
o and Wy = (1,7 1,7 ,,...,e7,,) so that the LM test of the null of no

ARCH(m) is computed by TR? from the regression of [ﬁgj—t — (2—%2 — 1)}

on Wy, where v3 is the skewness of ;. That is, in contrast to the usual
TR? form of the ARCH(m) LM test (which is computed by TR from the

2
regression of (% — 1) on W) we have not imposed the auxiliary assumption

of normality.
Similarly the Wald and quasi-LR statistics are available. The Wald sta-
tistic has its usual form and the quasi-LR test is given by

équn =T |Qr(0r) = Qr(0r)] (1)
In the exactly identified case QT(ET) = 0 and hence

fQLR =T [QT@T)} (12)

which is computed holding the parameters in the null hypothesis fixed at
their respective null hypothesis during the iterations. Note that {5,p = £/,
in this context.
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As shown by Newey and West (1987) the LM, Wald and quasi-LR tests
are asymptotically equivalent under the null and local alternatives. Un-
der the alternative hypothesis H, : a(fy) = T~'/2X these tests have the
X2 (Caprn) distribution, where gy = X [A (60) Vi A (90)]_1 A is the
non-centrality parameter and A (6,) is the Jacobian matrix of the ¢ x 1
vector function a(f) of the p x 1 vector 6 with ¢ < p. Tt is useful to com-
pare this non-centrality parameter to the non-centrality parameter of the
Bollerslev and Wooldridge (1992) robust classical tests which is given by
Comrs = N [A (QO)VE)JlWLEA (90)]_1 A. From the results of the previous
section it is clear that the GMM based tests are more powerful in terms of
local asymptotic power. In particular, whenever efficient GMM is asymptot-
ically more efficient than quasi-maximum likelihood.

4 Empirical Illustration

In this section we apply the efficient GMM estimator to model the returns
to the daily SP500 index, (1928-1991) as a GARCH-M model. Inclusion of
a measure of volatility in the conditional mean of returns is an attempt to
introduce a measure of risk. It is an implication of the 'mean-variance hy-
pothesis’ of the returns and under this hypothesis large returns are expected
to be associated with high volatility.

The GARCH-M model has been applied by several researchers to model
the relation between risk and return e.g. French et al. (1987) applied the
GARCH-M model to subsets of the excess returns to the SP500 index and
concluded that the data was consistent with a positive relation between con-
ditional expected excess return and conditional variance. However Glosten,
Jagannathan and Runkle (1993) obtained a significant negative relation be-
tween the conditional mean and the conditional variance of excess returns
on stocks when the model was modified to allow positive and negative antic-
ipated returns to have different impact on the conditional variance.

The distributional properties of the returns to the daily SP500 index has
been analyzed in Mills (1999, ch 5) and Granger and Ding (1995) investigated
the properties of absolute returns. Table 3 gives the estimates of the first four
unconditional moments of the distribution of returns to the SP500 index.

The modelling strategy is to first specify the conditional mean and once
satisfactory, tests for the conditional variance specification are performed.
Only autocorrelation in the conditional mean is tested for and any possible

15



Table 3 Unconditional moments of returns to the SP500 index

Mean 0.01821
Variance 1.32377
Skewness —0.48725
Kurtosis 25.4164

non-linearity of the conditional mean is disregarded. In tems of the condi-
tional variance specification we restrict ourselves to the GARCH(1,1) case.

Fitting an AR(5) model to the returns and computing the LM (10) (quasi-
LR (12)) test of the null hypothesis of no ARCH(4) gives a test-statistic of
55.67 with a corresponding p-value of 7.2 x 10~ and hence we reject the null
at any reasonable significance level. This leads us to estimate the following
GARCH(1,1)-M model for the returns

Yr = o+ pYi—1 t Poli—2 + HaYi—3 + HaYi—a + HsYi—s + Ohy + &
h? = agp+ alet{l + bh?f1

where the choice of the conditional standard deviation specification of the
GARCH(1,1)-M term is of course arbitrary.

Table 4 gives the estimation results together with Box-Pierce statistics of
the levels and squares, Q(-) and Q?(-) respectively (Box and Pierce (1970))
and Table 5 gives the first four moments of the rescaled residuals. Quasi-
maximum likelihood estimates are given for comparison*.

Inpsection of Table 4 shows that there is evidence for strong persistence
in the conditional variance. The sum a; + b is only slightly below unity for
both efficient GMM and quasi-maximum likelihood. The estimates of the
risk-premia term, ¢ are positive for both efficient GMM and quasi-maximum
likelihood. Note however that the efficient GMM estimate is less than half the
estimate of quasi-maximum likelihood and in contrast it is not significant at
usual levels. Box-Pierce statistics of the levels and squares suggests that there
might be some dynamics left in the data. If we follow the recommendation of

4Both estimators use the Newton algorithm with analytic first derivatives of the con-
ditional mean and variance functions. The efficient GMM estimator use Constrained Op-
timization (CO) module in GAUSS and quasi-maximum likelihood use the Constrained
Maximum Likelihood (CML) module. In both cases constraints are imposed which re-
stricts ag,ay from zero and 0 < b < 1. Quasi-maximum likelihood estimates are used to
initialize a guess on vs and vy for the efficient GMM estimator.

16



Table 4 GARCH(1,1)-M estimates of daily returns to the SP500, standard
errors in parentheses based on weighting matrix for GMM and Bollerslev-
Wooldridge robust standard errors for QMLE

GMM QMLE

g 0.003194  —0.00172
(0.01586)  (0.01778)

py  0.140646  0.140532
(0.00807)  (0.01015)

g, —0.05300  —0.04540
(0.00851)  (0.00982)
s 0.01657 0.01715
(0.00846)  (0.01053)
1, 0.01200 0.00854
(0.00840)  (0.01012)
ps  0.01410 0.01850
(0.00808)  (0.01034)
§  0.02773 0.05700
(0.02196)  (0.02404)
ap  0.00754 0.00781
(0.00190)  (0.00103)
a;  0.08912 0.09082
(0.00546)  (0.00889)
b 0.90782 0.90652

(0.00627)  (0.00730)

Q(12) 18.53 16.91
Q(24) 35.15 33.87
Q*(12) 21.93 20.65
Q%(24) 32.10 30.88
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Table 5 Conditional moments of rescaled residuals

GMM QMLE
Mean —0.01129 —0.03466
Variance 1.00531 0.99850
Skewness —0.51937 —0.51623
Kurtosis 7.40892 7.41753

Box and Pierce and compare with the 2 and 3, distribution for the Q(12)
and Q(24) statistics, respectively, they are significant at 5% level. The Q?(12)
and Q*(24) statistics indicate that there might be some dynamics left in the
conditional variance as well.

To entertain the possibility that we need to differentiate between bad and
good news we consider a GJR-GARCH(1,1) specification for the conditional
variance (Glosten et al. (1993)). The GJR-GARCH(1,1) specification is

h? = ap + (a1 + CLQSt__l) 5?_1 + bh?—l (13)

where S;_; is an indicator function which takes the value 1 when ¢; < 0 and
value 0 when ¢; > 0.

An LM test of the null of no asymmetry against the alternative of the
GJR-GARCH(1,1) specification gives a test-statistic of 31.55 with a corre-
sponding p-value of 1.94 x 10~® suggesting that there is a need to differentiate
beween good and bad news.

Results from re-estimation with the GJR-GARCH(1,1) specification (13)
for the conditional variance yield only marginally different results from Table
4 and are not reproduced here. In summary the Box-Pierce statistics have
been reduced considerably and the GJR parameter is positive and strongly
significant but ¢ is now close to zero and insignificant at usual levels for
both efficient GMM and quasi-maximum likelihood. These results offer no
evidence for a GARCH(1,1)-M formulation of the returns to the SP500 index
but suggests that it is important to allow for asymmetric GARCH.

5 Final remarks

This paper has introduced a feasible alternative to the common quasi-maximum
likelihood estimator and the semi-parametric estimator of GARCH models.
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It has been shown that the efficient GMM estimator is simple to compute and
asymptotically efficient relative to quasi-maximum likelihood. Hence in prac-
tice there is little reason not to prefer it over the common quasi-maximum
likelihood estimator. Compared to the semi-parametric estimator efficient
GMM has the advantage of being simple to compute and specification test-
ing is also straightforward. One expects that the efficient GMM estimator
will find its use in applications.

19



A Proofs

We first give a series of lemmas that will be useful in the proofs of the
theorems. For a random variable X, let X denote T-' 3, X, || X¢l[, the
LP—norm of X; and by ||X¢|| the ordinary Euclidean norm.

Define the unobserved variance process, which is obtained by extending
the observed process into the infinite past history

hit = 1 - Zbkgt{lfk
k=0
Lumsdaine (1996) lemma 1 show that )‘%t hy 24|, %h—fh{ 2ul are naturally

HR2u C
L h 2ul which is more

bounded. The lemma below deals with the term )
difficult

Lemma A.1 FE ‘ahf h_Q“

< oo uniformly in 6 € © for all 1 < ¢ < oo

)

Proof. By Minkowskis inequality

q 2u
htfkfl

h—Qu
n2

on2
ob

q oo
< (Z o*
k=0

o)
E k1 2u —2u
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= bk+1 (1 — bFHL) + DR H1p2v,
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We then have, denoting v = % (b*’“ — b) and for ¢; a strictly positive con-

stant
q oo | a\ 1/q\ ¢
<Z h2 q ; hfuk 1+b
q
R e [\
< — F|—
- b;%( v+ h2,
1 e 1 1/q g
< _
< (X))

where the first inequality follows from above, the second since 0 < b < 1 and
g > 1 and the third by Jensens inequality. Taking the limit, as ¢ — oo, of the
last term raised to the power of é shows that it is not uniformly bounded.
But for ¢ < oo we have

(%i <01 (bkl—b) +1>1/q>q =

k=0

uniformly in § € © and hence all finite-order moments exist m

The following lemma bounds the expectation of the ratio };?;((990)) uni-
formly in 6
Lemma A.2 E h25 < oo uniformly in 0 € © for all 1 < g < oo

Proof. We have for b > 3
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By a similar argument to that in lemma A.1
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where co > 0 and the last term is convergent uniformly in § € © for all ¢ < oo
]

The lemma below concerns the convergence of the unobserved objective
function, Q% based on hZ* to the limiting objective function, Q

Lemma A.3 sup,g |Q% — Q| == 0

Proof. Applying the triangle and Cauchy-Schwarz inequalities to |Q% — Q)|
as in Newey and McFadden (1994) theorem 2.1 we need to show uniform con-
vergence of ||g¥% — g|| and ||A% — A|| to zero. The method chosen here is to
first establish a law of large numbers for all § € ©. Uniform convergence (and
continuity of the limiting function) will follow if we can establish stochastic
equicontinuity, see Andrews (1992, theorem 3 (a)). Under assumption (c)
Nelson (1990) show that h2, is strictly stationary (and covariance-stationary)
and ergodic, hence g% and A% are strictly stationary and ergodic since they
are measurable functions of hg;.
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Note that (ignoring some constants)
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From lemma A.1 we have for the first term
ahQu o
E ' 5 th h; | < oo

Applying lemma A.1 and A.2 to the second and third terms respectively,
using Holders inequality and the independence of z; we have E |g}| < oo.
Consider next the cross-product
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and again using lemma A.1, A.2, Holders inequality and the independence
of z; gives E |g4qg¥

u ul
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gitgjt} < oo. This establishes a pointwise law of large numbers.
To show convergence is uniform and continuity of the limiting function we
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and hence we need to find convenient expressions for the second derivative

g: }ff; h;**|. Differentiating h?* twice
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where we used that €7, , < ;-h{"; ;. For the most demanding derivative

with respect to b
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ative

tkl
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aht 2u 82ht 2u
s
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such that supy.g zt < oo for all 7,7 and k. Hence the sequences

llg} — gl|, ||A% — Al| are stochastically equicontinuous m
The next and final lemma is concerned with the convergence of the unob-
served objective function, ()% to the corresponding observed objective func-

tion, Qr
Lemma A.4 sup,.e |Q% — Qr| <=0

Proof. By the same argument as in lemma A.3 we need to show that
SUPpeo ||g% — gr|| 2> 0 and supyee ||A% — Ar|| & 0. First we observe some
properties of the conditional variance process

R = bt <alzbk53k+a02bk>
k=0 k=0
= hi+0

where hy = hq(6) is the initial condition. Next

Esup h?* < bEEsup e < 00
0co - b Z peo "

since E supgeg €7 < oo under assumption (c) and does not depend on ¢, which
in turn imply that supy.g €7 < co. We also have
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uniformly in € for » = 0,1 or 2. For (i) we have
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By lemma 3 of Lee and Hansen (1994)
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hence
Ohy b,

90| (1—b,

which shows (). Next for (ii) T3, , |h? — k| 2 0 uniformly in 6 by
lemma 6 (c) of Lumsdaine (1996), and

onf (e (&
a0, \hr \ n2

is bounded in probability uniformly in 6 which shows (i7). Hence supyce

1
T*l
=

)th} %0

|A% — Ap|| % 0 holds. Finally ||g% — gr|| 2> 0 uniformly in 6 follows from
(1) above m

We are now ready to give the proofs of the theorems in the text.

Proof theorem 1. By theorem 2.1 (Consistency theorem for extremum
estimators) in Newey and McFadden (1994) we need to establish that (i)
SUPgeo |Qr — Q| 2 0, (ii) Q is continuous, (iii) © is compact (which holds
by assumption) and (iv) @ is uniquely minimized at #,. By the triangle
inequality

sup |Qr — Q| < sup |Q7 — Q| +sup [Qr — Q7|
0co 0co 0co

where supycg |Q% — Q] — 0 was established in lemma A.3 and supy.g |Q1 —
Q| — 0 was established in lemma A.4. This proves (i) and (ii) follows from
lemma A.3 and continuity of multiplication. To finally show (iv) we note that

Lumsdaine (1996) lemma 5 prove that F [ah?u Oh2v

06 00’
matrix for all # € ©. It follows that EA} is a positive definite matrix for
vy — v3 > 1, since

h; 4“} is a positive definite

1 OhZ" O
EA} = E—L—t
vy —1) =03 90 of

—4u
ht

Identification holds if 6y is unique solution to limy_ Eg¥% = 0. By ap-
plication of dominated convergence theorem limr_,., Eg} = Egj, where
go = g(0y) and since E (ha—;tl)g — (;T% — 1)) = 0 a consistent root exists
0t
at 0y. In addition this root exists for finite arbitrary initial guess on v3, v, ®
Proof theorem 2. First we note that the fact that a root exists at
0y for finite arbitrary guess on w3, v, ensures we can apply theorem 6.2 of
Newey and McFadden (1994) to obtain that the asymptotic distribution of
the estimator is independent of the guess on w3, vy.
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Consider the gradient of the efficient GMM objective function

0 og/ dvec A;']
%QT = BGT (A T+ A ) gr+ [(gT ® gr) T} (15)
rA— / / _ 4y OvecAr]
= 2GLAL'gr — [(gT ® gr) (ATl ® ATl) TT}
with Gp =T 131 9% and the second derivative
0Q7 () _ Ogr 1Al ogr
0000 90 (A" + A7) o0 (16)
’ -1 -1 9 Jgr
+ g7 (A7 + A7) ® L, a0 1Y\ o9 +0p(1)
= 2GLA'Gr

+[gr (A7 + A7) 2] TE 4 o,1)

where the 0,(1) term in (16)comes from the derivative of the second term
in the gradient. It assumes that % [avgi),AT}, = 0, (T) uniformly in 0 € ©
which can be shown. The proof is complete if we can show that the last terms
of (15, 16) are negligible asymptotically and the conditions of theorem 3.2
of Newey and McFadden (1994) holds (Asymptotic normality of minimum

distance estimators). Asymptotic normality holds (given consistency) if (i)

SUPgco HAT — Al % 0 and A is non-singular (which holds from above) (ii)

SUPpeo H A GH — 0 and G = Eage,T is non-singular (iii) 6, € int(O)
(which holds by assumption) and (iv) asymptotic normality of VTgr.
%~ G| % 0in the

proof of theorem 1. As in lemma A.3 uniform convergence and continuity

To prove (ii) note that we have already shown that ‘ ‘

of the limiting function follows if supy.q £ ‘a;%t < oo for all 4,5 and k.
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leferentlatmg % once more
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and in view of lemma A.1 and A.2 we need to consider the third derivative
of h?*. For the derivative with respect to b we have
3
O3h2v O?h2 >
h 2u bk t—k—1 h 2u < bk
ob® =3 Z b2 6 ;
and hence applying lemma A.1 and A.2 using Holders inequality and the inde-
pendence of z; we conclude that convergence is uniform and G is continuous
on ©. Then supyee ||Gr — G|| & 0 holds if sup,.g ||G% — G¢|| — 0 which
can be shown. It is straightforward to verify that EG;;:(00) = EA;j: (6o) for

all 7, 7 which shows the nonsingularity of G as well. Next (iv) follows since
g; is a stationary ergodic martingale difference sequence with finite variance

and hence T3gr % N (0,A). It remains to show that the last terms in (15,
16) are unimportant for the asymptotic distribution. We have from (15)

dvec Ap]’
o0y’

N—

2u
ht—k—l

2u
hi

8 / - / / — —
%QT = 2GrTATlgT — (g7 ®gr) (ATl ® ATI)

and scaling by T"/2, since T"/2gy is bounded in probability, supgee ||Ar — A|| £
0 and ZXCAT = O,(1) uniformly in § € © we have the result. A similar ar-
gument applied to the second term of (16) establishes the result here as well
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since anCQ,GT = O,(1) uniformly in # € ©. Applying a standard mean-value

expansion of the gradient vector as in Newey and McFadden (1994) theorem
3.2 then obtains the distributional result given in theorem 2 m
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