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Abstract

We introduce the panel smooth transition regression model. This new
model is intended for characterizing heterogeneous panels, allowing the regres-
sion coefficients to vary both across individuals and over time. Specifically,
heterogeneity is allowed for by assuming that these coefficients are bounded
continuous functions of an observable variable and fluctuate between a limited
number of “extreme regimes”. The model can be viewed as a generalization of
the threshold panel model of Hansen (1999). We extend the modelling strat-
egy originally designed for univariate smooth transition regression models to
the panel context. The strategy consists of model specification based on ho-
mogeneity tests, parameter estimation, and model evaluation, including tests
of parameter constancy and no remaining heterogeneity. The model is applied
to describing firms’ investment decisions in the presence of capital market im-
perfections.
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1 Introduction

In regression models for panel data it is typically assumed that the heterogeneity in

the data can be captured completely by means of (fixed or random) individual effects

and time effects, such that the coefficients of the observed explanatory variables are

identical for all observations. In many empirical applications, however, this poola-

bility assumption may be violated or at least may be viewed as questionable. For

example, there is a sizable literature documenting that, due to capital market imper-

fections such as information asymmetry between borrowers and lenders, investment

decisions of individual firms depend on financial variables such as cash flow. The sen-

sitivity of investment to cash flow often is found to vary across firms according to the

severity of the information asymmetry problem or their investment opportunities.

In particular, external finance may be limited mainly for firms facing high agency

costs due to information asymmetry or for firms with limited profitable investment

opportunities. For firms constrained in this manner, investment will depend on the

availability of internal finance to a much larger extent than for unconstrained firms.

A heterogeneous panel data model is required for modelling investment behaviour

of firms in such a situation.

Various panel data models that allow regression coefficients to vary over time

and across cross-sectional units (or “individuals”) have been developed, see Hsiao

(2003, Chapter 6) and Pesaran (2015, Chapter 28) for overviews. These include

random coefficients models as surveyed by Hsiao and Pesaran (2008) and models
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with coefficients that are functions of other exogenous variables. A specific exam-

ple of the latter type of parameter heterogeneity is the panel threshold regression

(PTR) model developed by Hansen (1999). In this model, regression coefficients can

take on a small number of different values, depending on the value of another ob-

servable variable. Interpreted differently, the observations in the panel are divided

into a small number of homogeneous sets or “regimes”, with different coefficients

in different regimes. A feature that makes the PTR model quite appealing is that

individuals are not restricted to remain in the same set for all time periods if the so-

called threshold variable that is used for grouping the observations is time-varying.

In the aforementioned empirical example of firms’ investment decisions it is likely

that information asymmetry and investment opportunities change over time, causing

firms to switch between constrained and unconstrained regimes.

In this paper we consider a nonlinear panel model we call the panel smooth

transition regression (PSTR) model. It generalizes the PTR model by allowing the

regression coefficients to change smoothly when moving from one “extreme” regime

or state to another. The PTR model separates the observations clearly into several

sets or groups based on the value of the threshold variable with sharp “borders”

or thresholds. In practice, this may not always be feasible. For example, it seems

difficult to argue that there is an exact level of financial constraints defining two

groups of firms, each with different sensitivity of investment to cash flow, simulta-

neously assuming that all firms within these groups are homogeneous. Rather, it

seems more realistic to assume that the sensitivity of cash flow changes gradually as

a function of the level of financial constraints. The PSTR model is designed to take

this possibility into account.

Since the appearance of the working paper version (González, Teräsvirta and van

Dijk, 2005) of this article, our PSTR model has been applied to quite a wide variety

of economic modelling problems. These include the relationship between pollution

and economic growth (Aslanidis and Xepapadeas 2006, 2008), the inflation-growth

nexus (Espinoza, Leon, and Prasad 2012, Seleteng, Bittencourt, and van Eyden 2013,
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Omay, van Eyden, and Gupta 2017), the effects of oil prices on the current account

of oil-exporting countries (Allegret, Couharde, Coulibaly, and Mignon 2014), bor-

rowing costs of European countries during the recent financial crisis (Delatte, Gex,

and López-Villavicencio 2012, Delatte, Fouquau, and Portes 2017), the behaviour

of exchange rates (Béreau, López Villavicencio and Mignon 2010, 2012; Chuluun,

Eun, and Kiliç 2011; Cho, 2015), the Feldstein-Horioka puzzle of domestic savings

and investment rates (Fouquau, Hurlin, and Rabaud 2008), earnings persistence of

firms (Cheng and Wu 2013), the relationship between temperature and electricity

consumption (Besseca and Fouquau 2008), and the relationship between patents and

market value in the pharmaceutical industry (Chen, Shi and Chang 2014), just to

name a few. These studies demonstrate the fact that the PSTR model offers an

attractive possibility of capturing heterogeneity in panel data.

In this work we develop and describe a complete model building procedure for

PSTR models with empirical applications in mind. The modelling cycle includes

different stages of model specification, parameter estimation and model evaluation,

and is an extension of the procedure that is available for smooth transition regres-

sion models for a single cross-section or time series, see Teräsvirta (1998), van Dijk,

Teräsvirta, and Franses (2002), and Teräsvirta, Tjøstheim and Granger (2010, Chap-

ter 16), among others. As part of the specification stage we suggest a novel Lagrange

Multiplier (LM) test of parameter homogeneity. Although the test is designed specif-

ically against the PSTR alternative, it has wider applicability as a general test of

poolability of panel data, see also Baltagi (2013, Section 4.1). Similarly, as part of

the evaluation stage we develop a test of parameter constancy in PSTR models, but

also this test can be applied to other panel models. We conduct an extensive set

of Monte Carlo simulation experiments to evaluate the performance of the various

specification and evaluation tests. There we uncover that the wild cluster bootstrap

of Cameron, Gelbach, and Miller (2008) is an extremely useful procedure to obtain

satisfactory size and power properties in finite samples.

In our empirical application we take up the problem of individual firms’ invest-
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ment decisions in the presence of credit market imperfections. Using a balanced

panel of 565 US firms observed for the years 1973-1987, we find that a two-regime

PSTR model with Tobin’s Q as transition variable adequately captures the hetero-

geneity in regression coefficients across firms. The model identifies firms with limited

growth opportunities (low Q values) as a separate group that is distinct from firms

with moderate or good growth opportunities. The transition from the lower regime

associated with small values of Tobin’s Q to the upper regime with large values of

Q is smooth. On average about 12% of firms switch regimes in a given year, clearly

illustrating the relevance of not constraining firms to remain in the same group over

time. We find significant negative effects of debt on investment only for low Q firms,

showing that leverage matters for investment only for firms with poor growth oppor-

tunities or firms with growth opportunities that are not recognized by the market.

Similarly, the coefficient estimate of lagged cash flow is positive and significant only

for low Q firms, which corroborates previous findings that internal finance is relevant

for investment mainly for financially constrained firms.

The paper is organized as follows. Section 2 introduces the panel smooth transi-

tion regression model, focusing on interpretation of the model structure and on its

relation to the PTR model of Hansen (1999). Section 3 describes the model building

procedure for PSTR models. Section 4 considers the small sample properties of the

different test statistics involved in the modelling cycle by means of Monte Carlo sim-

ulation. Special attention is given to the issue of cross-sectional heteroskedasticity

and the consequences thereof for the performance of the tests. Section 5 contains

the empirical application, and Section 6 concludes.

2 Panel smooth transition regression model

The Panel Smooth Transition Regression (PSTR) model can be interpreted in two

different ways. First, it may be thought of as a linear heterogeneous panel model

with coefficients that vary across individuals and over time. Heterogeneity in the

regression coefficients is allowed for by assuming that these coefficients are bounded
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continuous functions of an observable variable, called the transition variable. This

makes them fluctuate between a limited number (often two) of “extreme regimes”

. As the transition variable possibly is individual-specific and time-varying, the

regression coefficients are allowed to be different for each of the individuals in the

panel and to change over time. Second, the PSTR model can simply be considered as

a nonlinear homogeneous panel model. The latter interpretation is in fact common

in the context of single-equation smooth transition regression (STR) or univariate

smooth transition autoregressive (STAR) models, see Teräsvirta (1994, 1998). Given

the current context, we prefer the first interpretation.

The basic PSTR model with two extreme regimes is defined as

yit = µi + λt + β′0xit + β′1xitg(qit; γ, c) + uit (1)

for i = 1, . . . , N , and t = 1, . . . , T , where N and T denote the cross-sectional and

time dimensions of the panel, respectively. The dependent variable yit is a scalar, xit

is a k-dimensional vector of time-varying exogenous variables, µi and λt represent

fixed individual effects and time effects, respectively, and uit are the errors. Further-

more, the regressors xit are assumed exogenous. Possible extensions of the model to

relax this restriction are discussed in Section 6.

The transition function g(qit; γ, c) in (1) is a continuous function of the observable

variable qit and is normalized to be bounded between zero and one. These two

extreme values are associated with regression coefficients β0 and β0 + β1. More

generally, the value of the transition variable qit determines the value of g(qit; γ, c)

and thus the effective regression coefficients β0 +β1g(qit; γ, c) for individual i at time

t. We follow Teräsvirta (1994, 1998) and Jansen and Teräsvirta (1996), see also

Teräsvirta et al. (2010, Chapter 3), by using the logistic specification

g(qit; γ, c) =

(
1 + exp

(
−γ

m∏
j=1

(qit − cj)

))−1
with γ > 0 and c1 < c2 < . . . < cm

(2)

where c = (c1, . . . , cm)′ is an m-dimensional vector of location parameters and the

slope parameter γ determines the smoothness of the transitions. The restrictions
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γ > 0 and c1 < . . . < cm are imposed for identification purposes. In practice it is

usually sufficient to consider m = 1 or m = 2, as these values allow for commonly

encountered types of variation in the parameters. For m = 1, the model implies

that the two extreme regimes are associated with low and high values of qit with a

monotonic transition of the coefficients from β0 to β0 + β1 as qit increases, where

the change is centred around c1. When γ → ∞, g(qit; γ, c) becomes an indicator

function I[qit > c1], defined as I[A] = 1 when the event A occurs and zero otherwise.

In that case the PSTR model in (1) reduces to the two-regime panel threshold model

of Hansen (1999). For m = 2, the transition function has its minimum at (c1 + c2)/2

and attains the maximum value one both at low and high values of qit. When

γ →∞, the model becomes a three-regime threshold model whose outer regimes are

identical and different from the mid-regime. In general, when m > 1 and γ → ∞,

the number of distinct regimes remains two, with the transition function switching

back and forth between zero and one at c1, . . . , cm. Finally, for any positive integer

value m the transition function (2) becomes constant when γ → 0, in which case

the model collapses into a homogeneous or linear panel regression model with fixed

effects.

A generalization of the PSTR model to allow for more than two different regimes

is the additive model

yit = µi + λt + β′0xit +
r∑
j=1

β′jxitgj(q
(j)
it ; γj, cj) + uit (3)

where the transition functions gj(q
(j)
it ; γj, cj), j = 1, . . . , r, are defined by (2) with

polynomial degrees mj. If mj = 1, q
(j)
it = qit, and γj → ∞ for all j = 1, . . . , r,

the model in (3) becomes a PTR model with r + 1 regimes. Consequently, the

additive PSTR model can be viewed as a generalization of the multiple regime panel

threshold model in Hansen (1999). Additionally, when the largest model that one is

willing to consider is a two-regime PSTR model (1) with r = 1 and m = 1 or m = 2,

model (3) plays a role in the evaluation of the estimated model. More specifically,

the multiregime model (3) constitutes a natural alternative hypothesis in diagnostic
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tests of no remaining heterogeneity, as discussed in Section 3.3.2.

3 Building panel smooth transition regression mod-

els

Application of nonlinear models such as the PSTR model requires a careful and

systematic modelling strategy. The modelling cycle that is available for smooth

transition regression (STR) models for a single time series yt, t = 1, . . . , T , or poten-

tially also for a single cross-section yi, i, . . . , N , can be readily extended to panel STR

models. The STR model building procedure consists of specification, estimation and

evaluation stages. In the panel case, specification includes testing homogeneity, se-

lecting the transition variable qit and, if homogeneity is rejected, determining the

appropriate form of the transition function, that is, choosing the proper value of m

in (2). Nonlinear least squares is used for parameter estimation. At the evaluation

stage the estimated model is subjected to misspecification tests to check whether it

provides an adequate description of the data. The null hypotheses to be tested at

this stage include parameter constancy, no remaining heterogeneity and no autocor-

relation in the errors. Finally, one also has to choose the number of transitions in

the panel, which means selecting r in model (3).

In the following subsections we discuss the different elements of the model build-

ing procedure in more detail, see also Teräsvirta (1998), van Dijk, Teräsvirta, and

Franses (2002) and Teräsvirta et al. (2010, Chapter 16), among others. For ease of

exposition, throughout this section we focus on the PSTR model with fixed individ-

ual effects only, that is, we set λt = 0 for all t in (1).

An R package containing procedures for all aspects of the PSTR model building

procedure is available at https://cran.r-project.org/package=PSTR.

3.1 Model specification: testing homogeneity

The initial specification stage of the modelling cycle essentially consists of testing

homogeneity against the PSTR alternative. This is important for two reasons. First,
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there is a major statistical issue, namely, the PSTR model is not identified if the

data-generating process is homogeneous, and to avoid the estimation of unidentified

models homogeneity has to be tested first. Second, a homogeneity test may be

useful for testing propositions from economic theory, such as identical sensitivity of

investment to cash flow or other variables for all firms in a population.

The PSTR model (1) with (2) can be reduced to a homogeneous model by impos-

ing either H0 : γ = 0 or H′0 : β1 = 0. The associated tests are nonstandard because

under either null hypothesis the PSTR model contains unidentified nuisance param-

eters. In particular, the location parameters cj are not identified under either null

hypothesis, and this is also the case for β1 under H0 and for γ under H′0. The prob-

lem of hypothesis testing in the presence of unidentified nuisance parameters was

first studied by Davies (1977, 1987). Luukkonen, Saikkonen, and Teräsvirta (1988),

Andrews and Ploberger (1994) and Hansen (1996) proposed alternative solutions in

the time series context. We follow Luukkonen, Saikkonen, and Teräsvirta (1988) and

test homogeneity using the null hypothesis H0 : γ = 0. To circumvent the identifica-

tion problem we replace g(qit; γ, c) in (1) by its first-order Taylor expansion around

γ = 0. After reparameterisation, this leads to the auxiliary regression

yit = µi + β′∗0 xit + β′∗1 xitqit + . . .+ β′∗mxitq
m
it + u∗it (4)

where the parameter vectors β∗1 ,. . . ,β∗m are multiples of γ, and u∗it = uit + Rmβ
′
1xit,

where Rm is the remainder of the Taylor expansion. Consequently, testing H0 : γ = 0

in (1) is equivalent to testing the null hypothesis H∗0 : β∗1 = . . . = β∗m = 0 in (4). Note

that under the null hypothesis {u∗it} = {uit}, so the Taylor series approximation does

not affect the asymptotic distribution theory when the null hypothesis is tested by

an LM test.

In order to define the LM-type statistic, we write (4) in matrix notation as

follows:

y = Dµµ+Xβ +Wβ∗ + u∗ (5)

where y = (y′1, . . . , y
′
N)′ with yi = (yi1, . . . , yiT )′, i = 1, . . . , N , Dµ = (IN ⊗ ιT ) where

IN is the (N×N) identity matrix, ιT a (T ×1) vector of ones, and µ = (µ1, . . . , µN)′.
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Moreover, X = (X ′1, . . . , X
′
N)′ where Xi = (xi1, . . . , xiT )′, W = (W ′

1, . . . ,W
′
N)′ with

Wi = (wi1, . . . , wiT )′ and wit = (x′itqit, . . . , x
′
itq

m
it )′, β = β∗0 and β∗ = (β∗′1 , . . . , β

∗′
m)′.

Finally, u∗ = (u′∗1 , . . . , u
′∗
N)′ is a (TN × 1) vector with u∗i = (u∗i1, . . . , u

∗
iT )′ . The LM

test statistic has the form

LMχ = û0′W̃ Σ̂−1W̃ ′û0 (6)

where û0 = (û0′1 , . . . , û
0′
N)′ is the vector of residuals obtained by estimating the model

under the null hypothesis and W̃ = MµW , where Mµ = INT − Dµ(D′µDµ)−1D′µ,

is the standard within-transformation matrix. Furthermore, Σ̂ is a consistent es-

timator of the covariance matrix Σ = E(β̂∗ − β∗)(β̂∗ − β∗)′. When the errors are

homoskedastic and identically distributed across time and individuals, the standard

covariance matrix estimator

Σ̂ST = σ̂2(W̃ ′W̃ − W̃ ′X̃(X̃ ′X̃)−1X̃ ′W̃ ) (7)

where X̃ = MµX, and σ̂2 is the error variance estimated under the null hypothesis,

is available. When the errors are heteroskedastic or autocorrelated, an appropriate

estimator of Σ is given by

Σ̂HAC = [−W̃ ′X̃(X̃ ′X̃)−1 : Ikm]4̂[−W̃ ′X̃(X̃ ′X̃)−1 : Ikm]′ (8)

where Ikm is a (km× km) identity matrix, and

4̂ =
N∑
i=1

Z̃ ′iû
0
i û

0′
i Z̃i

with Z̃i = (IT − ιT (ι′T ιT )−1ι′T )Zi, where Zi = [Xi,Wi], i = 1, . . . , N . The estimator

(8) is consistent for fixed T as N →∞, see Arellano (1987) for details and Hansen

(2007) for an analysis of the remaining cases in which N and T approach infinity

jointly or T → ∞ with N fixed. Under the null hypothesis, LMχ is asymptoti-

cally distributed as χ2(mk), whereas the F-version LMF = LMχ(TN − N − k −

mk)/(TNmk) has an approximate F(mk, TN −N − k −mk) distribution.

Two remarks concerning the homogeneity test are in order. First, the test can

be used for selecting the appropriate transition variable qit in the PSTR model. In
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this case, the test by means of the Taylor expansion is carried out for a set of “can-

didate” transition variables and the variable that gives rise to the strongest rejection

of linearity (if any) is chosen as the transition variable. Second, the homogeneity test

can also be used for determining the appropriate order m of the logistic transition

function in (2). Granger and Teräsvirta (1993) and Teräsvirta (1994, 1998), see also

Teräsvirta et al. (2010, Chapter 16), proposed a sequence of tests for choosing be-

tween m = 1 and m = 2. Applied to the present situation this testing sequence reads

as follows: Using the auxiliary regression (4) with m = 3, test the null hypothesis

H∗0 : β∗3 = β∗2 = β∗1 = 0. If it is rejected, test H∗03 : β∗3 = 0, H∗02 : β∗2 = 0|β∗3 = 0 and

H∗01 : β∗1 = 0|β∗3 = β∗2 = 0. Select m = 2 if the rejection of H∗02 is the strongest one,

otherwise select m = 1. For the reasoning behind this simple rule, see Teräsvirta

(1994).

3.2 Parameter estimation

Estimating the parameters θ = (β′0, β
′
1, γ, c

′)′ in the PSTR model (1) is a relatively

straightforward application of the fixed effects estimator and nonlinear least squares

(NLS). We first eliminate the individual effects µi by removing individual-specific

means and then apply NLS to the transformed data.

While eliminating fixed effects using the within transformation is standard in lin-

ear panel data models, the PSTR model calls for a more careful treatment. Rewrite

model (1) as follows:

yit = µi + β′xit(γ, c) + uit (9)

where xit(γ, c) = (x′it, x
′
itg(qit; γ, c))

′ and β = (β′0, β
′
1)
′. Subtracting individual means

from (9) yields

ỹit = β′x̃it(γ, c) + ũit (10)

where ỹit = yit − ȳi, x̃it(γ, c) = (x′it − x̄′i, x
′
itg(qit; γ, c) − w̄′i(γ, c))

′, ũit = uit − ūi,

and ȳi, x̄i, w̄i and ūi are individual means, with w̄i(γ, c) ≡ T−1
∑T

t=1 xitg(qit; γ, c).

Consequently, the transformed vector x̃it(γ, c) in (10) depends on γ and c through

both the levels and the individual means. For this reason, x̃it(γ, c) needs to be
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recomputed at each iteration in the NLS optimization.

From (10) it is seen that the PSTR model is linear in β conditional on γ and c.

Thus, we apply NLS to determine the values of these parameters that minimize the

concentrated sum of squared errors

Qc(γ, c) =
N∑
i=1

T∑
t=1

(
ỹit − β̂(γ, c)′x̃it (γ, c)

)2
(11)

where β̂(γ, c) is obtained from (10) by ordinary least squares at each iteration in

the nonlinear optimization. In case the errors uit in (9) are normally distributed,

this estimation procedure is equivalent to maximum likelihood (ML), where the

likelihood function is first concentrated with respect to the fixed effects µi.

A practical issue that deserves special attention in the estimation of PSTR models

is the selection of starting values for the NLS optimization. We follow the common

practice for STR models to obtain starting values by means of a grid search across

the parameters in the transition function g(qit; γ, c). This approach is based on the

aforementioned fact that (10) is linear in β when γ and c are fixed. Hence, the

concentrated sum of squared residuals (11) can be computed easily for an array

(“grid” ) of values for γ and c such that γ > 0, and cj,min > mini,t {qit} and cj,max <

maxi,t {qit}, j = 1, . . . ,m, and the values minimizing Qc(γ, c) can be used as starting

values of the nonlinear optimization algorithm. An alternative approach to obtain

starting values is simulated annealing, as recently considered by Schleer (2015) for

STR and vector STR models.

Finally, it should be noted that numerical complications may occur when the

slope parameter γ is large. They are due to the fact that in that situation γ is

of completely different magnitude from the other parameters, which slows down

convergence of any standard derivative-based optimization algorithm. Furthermore,

the log-likelihood is typically rather flat in the direction of γ when this parameter

is large, which may aggravate the problem. A way of alleviating this difficulty is to

apply the transformation γ = exp{η} (or η = ln γ) in (2) and estimate η instead of

γ. Note that this transformation makes the identifying condition γ > 0 redundant.
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It has been suggested by Goodwin, Holt, and Prestemon (2011), see also Hurn,

Silvennoinen, and Teräsvirta (2016).

3.3 Model evaluation

Evaluation of an estimated PSTR model is an essential part of the model building

procedure. In this section we consider two misspecification tests for this purpose.

Specifically, we adapt the tests of parameter constancy over time and of no remain-

ing nonlinearity developed by Eitrheim and Teräsvirta (1996) for univariate STAR

models to fit the present panel framework, where we interpret the latter as a test

of no remaining heterogeneity. We also discuss an alternative use of the test of

no remaining heterogeneity as a specification test for determining the number of

regimes in the PSTR model. We do not consider a panel version of the Eitrheim

and Teräsvirta (1996) test of no error autocorrelation, because Baltagi and Li (1995)

already derived such a test for panel models.

3.3.1 Testing parameter constancy

Testing parameter constancy in panel data models has not received as much attention

as it has in the time series literature. A plausible explanation is that traditionally

in many applications the time dimension T was relatively small, which made the

assumption of parameter constancy a rather uninteresting hypothesis to test. How-

ever, as the number of empirical panel data sets with relatively large T is increasing,

testing parameter constancy is becoming more important. Even though we here de-

velop a test specifically for PSTR models, it can after minor modifications be applied

to other fixed effects panel data models as well.

Our alternative to parameter constancy is that the parameters in (1) change

smoothly over time. The model under the alternative may be called the Time

Varying Panel Smooth Transition Regression (TV-PSTR) model, and it is defined
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as follows:

yit = µi + (β′10xit + β′11xitg(qit; γ1, c1))

+f(t/T ; γ2, c2)(β
′
20xit + β′21xitg(qit; γ1, c1)) + uit (12)

where g(qit; γ1, c1) is defined in (2) and f(t/T ; γ2, c2) is another transition function.

Model (12) has the same structure as the time-varying smooth transition autoregres-

sive (TV-STAR) model discussed in Lundbergh, Teräsvirta, and van Dijk (2003). We

may also write (12) as

yit = µi + (β10 + β20f(t/T ; γ2, c2))
′xit

+(β11 + β21f(t/Tγ2, c2))
′xitg(qit; γ1, c1) + uit (13)

to explicitly show the deterministic character of time-variation in the parameters of

the model. It should be noted that the TV-PSTR model Geng (2011) introduced is

a special case of ours, as she assumed β11 = β21 = 0 in (12).

The TV-PSTR model accommodates various alternatives to parameter constancy

depending on the definition of f(t/T ; γ2, c2). This function is assumed to have the

form

f(t/T ; γ2, c2) =

(
1 + exp

(
−γ2

h∏
j=1

(t/T − c2j)

))−1
(14)

where c2 = (c21, . . . , c2h)
′ is an h-dimensional vector of location parameters with

c21 < c22 < . . . < c2h, and γ2 > 0 is the slope parameter. This is identical to

g(qit; γ, c) as defined in (2) with qit = t/T . Thus, when setting h = 1 the TV-PSTR

model allows for a single monotonic change, while the change is symmetric around

(c21 + c22)/2 in case h = 2. The smoothness of the change is controlled by γ2. When

γ2 → ∞, f(t/T ; γ2, c2) becomes an indicator function I[t/T > c21] in case h = 1

and 1− I[c21 < t/T ≤ c22] in case h = 2. This means that (14) also accommodates

instantaneous structural breaks.

When γ2 = 0 in (14), f(t/T ; 0, c2) ≡ 1/2, so the model defined in (12) has

constant parameters and H0 : γ2 = 0 can be chosen to be the null hypothesis of

parameter constancy. When it holds, the parameters β20, β21 and c2 in (12) are not
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identified. Our solution to this identification problem is the same as the one used

in Section 3.1, namely to replace f(t/T ; γ2, c2) by its first-order Taylor expansion

around γ2 = 0. After rearranging terms this yields the auxiliary regression

yit = µi + β∗′10xit + β∗′1 xit(t/T ) + β∗′2 xit(t/T )2 + . . .+ β∗′h xit(t/T )h

+
(
β∗′11xit + β∗′h+1xit(t/T ) + . . .+ β∗′2hxit(t/T )h

)
g (qit; γ1, c1) + u∗it (15)

where u∗it = uit +Rh (t/T, γ2, c2) and Rh (t/T, γ2, c2) is the remainder term. In (15),

the parameter vectors β∗j for j = 1, 2, . . . , h, h + 1, . . . , 2h are multiples of γ2, such

that the null hypothesis H0 : γ2 = 0 in (12) can be reformulated as H∗0 : β∗j = 0 for

j = 1, 2, . . . , h, h + 1, . . . , 2h in the auxiliary regression. Under H∗0 {u∗it} = {uit}, so

the Taylor series approximation does not affect the asymptotic distribution theory.

The χ2- and F-versions of the LM-type test can be computed as in (6) defining

w′it = (x′it, x
′
itg(qit, γ̂1, ĉ1)) ⊗ s′t with st = ((t/T ), . . . , (t/T )h)′ and replacing X̃ in

(7) and (8) by Ṽ = MµV , where V = (V ′1 , . . . , V
′
N)′ with Vi = (v′i1, . . . , v

′
iT )′ and

vit = (x′it, x
′
itg(qit, γ̂1, ĉ1), (∂ĝ/∂γ1)x

′
itβ̂2, (∂ĝ/∂c

′
1)x
′
itβ̂2)

′. Under the null hypothesis,

LMχ is asymptotically distributed as χ2(2hk) and LMF = LMχ/2hk is approximately

distributed as F (2hk, TN − N − 2k(h + 1) − (m + 1)). When the null model is a

homogeneous fixed effects model (β11 ≡ β20 ≡ β21 ≡ 0 in (12)), a simplified version

of (15) (without the terms (β∗′11xit + β∗′h+1xit(t/T ) + . . . + β∗′2hxit(t/T )h)g(qit; γ1, c1))

renders a parameter constancy test for this model.

Eitrheim and Teräsvirta (1996) pointed out potential numerical problems in the

computation of the test of parameter constancy (as well as the test of no remaining

heterogeneity to be discussed below). In particular, when the estimate of γ1 in the

model under the null hypothesis is relatively large, such that the transition between

regimes is rapid, the partial derivatives of g(qit; γ1, c1) with respect to γ1 and c1

evaluated at the estimates under the null are equal to zero for almost all observations.

As a result, the moment matrix of Ṽ becomes near-singular such that the value of

the LM statistic cannot be reliably computed. However, the contribution of the

terms involving these partial derivatives to the test statistic is negligible at large
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values for γ1. They can simply be omitted from the auxiliary regression without

influencing the empirical size (or power) of the test statistic. If this is done, the

degrees of freedom in the F-tests have to be modified accordingly.

3.3.2 Testing the hypothesis of no remaining heterogeneity

The assumption that a two-regime PSTR model (1) with (2) adequately captures

the heterogeneity in a panel data set can be tested in various ways. In the PSTR

framework it is a natural idea to consider an additive PSTR model (3) with two

transitions (r = 2) as an alternative. Thus,

yit = µi + β′0xit + β′1xitg1(q
(1)
it ; γ1, c1) + β′2xitg2(q

(2)
it ; γ2, c2) + uit (16)

where the transition variables q
(1)
it and q

(2)
it can be but need not be the same. The null

hypothesis of no remaining heterogeneity in an estimated two-regime PSTR model

can be formulated as H0 : γ2 = 0 in (16). This testing problem is again complicated

by the presence of unidentified nuisance parameters under the null hypothesis. As

before, the identification problem is circumvented by replacing g2(q
(2)
it ; γ2, c2) by a

Taylor expansion around γ2 = 0. This leads to the auxiliary regression

yit = µi + β∗′0 xit + β′1xitg1(q
(1)
it ; γ̂1, ĉ1) + β∗′21xitq

(2)
it + . . .+ β∗′2mxitq

(2)m
it + u∗it (17)

where γ̂1 and ĉ1 are estimates under the null hypothesis. Since β∗21, . . . , β
∗
2m are

multiples of γ, the hypothesis of no remaining heterogeneity can be restated as

H∗0 : β∗21 = . . . = β∗2m = 0. If β1 ≡ 0 in (17), the resulting test collapses into the

homogeneity test discussed in Section 3.1.

In order to compute the LM test statistic defined in (6) and its F-version we

set wit = (x′itq
(2)
it , . . . , x

′
itq

(2)m
it )′ and again replace X̃ in (7) and (8) by Ṽ , where in

this case vit = (x′it, x
′
itg(q

(1)
it , γ̂, ĉ1), (∂ĝ/∂γ)x′itβ̂1, (∂ĝ/∂c

′
1)x
′
itβ̂1)

′. When H∗0 holds,

the LMχ statistic has an asymptotic χ2(mk) distribution, whereas LMF has an ap-

proximate F (mk, TN −N − 2− k(m+ 2)) distribution.
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3.3.3 Determining the number of regimes

The tests of parameter constancy and of no remaining heterogeneity can be gener-

alized to serve as misspecification tests in an additive PSTR model of the form (3)

with r > 0. The purpose of the test of no remaining heterogeneity thus is in fact

twofold. It is indeed a misspecification test but also a useful tool for determining

the number of transitions in the model. The following sequential procedure may be

used for this purpose:

1. Estimate a linear (homogeneous) model and test homogeneity at a predeter-

mined significance level α.

2. If homogeneity is rejected, estimate a two-regime PSTR model.

3. Test the hypothesis of no remaining heterogeneity for this model. If it is

rejected at significance level τα, with 0 < τ < 1, estimate an additive PSTR

model with r = 2. The purpose of reducing the significance level by a factor τ

is to avoid excessively large models.

4. Continue until the null hypothesis of no remaining heterogeneity can no longer

be rejected (using significance level τ r−1α when the additive PSTR model

under the null includes r transition functions).

4 Size and power simulations

4.1 Design of experiment

We study the small sample properties of the different LM tests developed in Section

3 by means of Monte Carlo experiments. In the simulations we do not only con-

sider different cross-sectional and time dimensions of the panel (N and T ), but also

investigate the effect of cross-sectional heteroskedasticity on the size and power of

the tests. All experiments reported in this section are replicable using the R code

available at https://github.com/yukai-yang/PSTR Experiments.
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The design of the Monte Carlo experiments is as follows. The number of repli-

cations equals 10,000 throughout. Each experiment is carried out for all possible

combinations of N = 20, 40, 80, 160 and T = 5, 10, 20. In the various data generat-

ing processes (DGPs) we fix the number of regressors k in xit at 2. The (2 + r)× 1

vector of exogenous regressors and transition variables
(
x′it, q

(1)
it , . . . , q

(r)
it ,
)′

is gener-

ated independently for each individual from the following VAR(1) model:
xit
q
(1)
it
...

q
(r)
it

 = κ+ Θ


xi,t−1
q
(1)
i,t−1
...

q
(r)
i,t−1

+ εit (18)

where κ = (0.2, 0.2, 2.45, . . . , 2.45)′ and Θ = diag(0.5, 0.4, 0.3, . . . , 0.3). The vector

of shocks εit is drawn from a N(0,Σε) distribution where Σε = DRD, D =
√

0.3I2+r

and R = [rij] with rii = 1 and rij = 1/3, i 6= j, i, j = 1, . . . , 2+r. This generates both

serial and contemporaneous correlation between the regressors and the transition

variables. Values of the endogenous variable yit are generated from the additive

PSTR model

yit = µi + β′i0xit +
r∑
j=1

β′jxitg(q
(j)
it ; γj, cj) + uit (19)

where µi = σµei with σµ = 10, and both ei and uit are i.i.d. standard normal. The

values of r, m, and (γj, c
′
j)
′ vary from one experiment to another. We consider two

definitions of βi0. In the first one, referred to as homoskedasticity, βi0 = β0 = (1, 1)′

for all individuals i. The second one consists of defining βi0 = β0 + νi, where

νi ∼ N(0, I2). This results in heteroskedastic errors in the auxiliary regressions such

that the degree of heteroskedasticity is positively related to the regressors xit.

The simulations are carried out using both the tests based on the asymptotically

relevant χ2-distribution and the approximative F-test. As the small sample proper-

ties of the latter are superior to those of the former, the results reported here are

mainly based on the F-test. The next subsection constitutes the only exception.

Results are available for significance levels 0.01, 0.05 and 0.10. For space reasons,

only results for the significance level 0.05 are reported here.
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4.2 Testing homogeneity

4.2.1 Size

In order to investigate the empirical size of the homogeneity test developed in Section

3.1 we generate samples from a homogeneous panel model with fixed effects (r = 0

in (19)). Results can be found in Table 1. The table contains rejection frequencies of

the null hypothesis for both the standard χ2-test and its F-approximation (indicated

by F ), and their robust versions (indicated by HAC). We compute the test statistics

for ma = 1, 2, 3, where ma is the order of the auxiliary regression (4).

- insert Table 1 about here -

Table 1 has two panels. Panel (a) contains results of simulations in which the

errors are homoskedastic, whereas the results in Panel (b) are based on designs with

heteroskedastic errors. The results in Panel (a) demonstrate the well-known fact

that the LM test based on the asymptotic null distribution is oversized. This is the

case for all values of N, although the empirical size does improve somewhat with

increasing T . The size distortion becomes worse with increasing ma. The F-version

corrects the size, but in fact the test is now undersized especially for small N and

T . For the heteroskedasticity-robust (HAC) version of the test, the F-distribution

based test is heavily undersized for all combinations of N and T . The χ2-test is

less undersized but has acceptable empirical size only for T ≥ 10, N = 160, and

ma = 1. Panel (b) shows that the standard χ2- and F-based test statistics are both

substantially oversized, with the size distortion becoming larger when the cross-

sectional dimension N of the panel increases. Furthermore, for the F-based version

of the test, the empirical size also increases with the time dimension T of the panel,

while it remains fairly constant for the χ2-test.

In light of the size problems noted above, we examine whether bootstrapping

the LM statistic can be used to correct these, see also Becker and Osborn (2010).

For this purpose we first use the residual-based wild bootstrap (WB) based on the

Rademacher distribution. It is seen from Table 1 that this does a decent job when
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the errors are homoskedastic but not when they are heteroskedastic. In the latter

case the WB-LM test remains oversized, although it performs markedly better than

the standard and HAC versions of the test. The remaining size distortion is caused

by the fact that the coefficients βi0 are random and positively correlated with xit in

(19).

To remedy the situation the wild bootstrap is replaced by the wild cluster boot-

strap (WCB) proposed by Cameron, Gelbach, and Miller (2008), which is designed

to account for within-group dependence in panel data by resampling entire clusters

of observations. In our setting the observations of the same individual over time form

a cluster (such that the number of clusters in our simulations is equal to the number

of individuals N). In Table 1 we observe that the empirical size of the WCB-LM

test is very close to the nominal one for all combinations of N and T , both when

the errors are homoskedastic and when they are heteroskedastic. Hence, we recom-

mend the WCB approach when testing homogeneity, and in fact for this reason we

concentrate on the WCB-LM test in the remainder of the simulation experiments.

It should be mentioned here that in bootstrapping the LM statistic we have made

use of the warp-speed method proposed by Giacomini, Politis, and White (2013).

This has been done to save computation time that otherwise, given the extent of

the simulations, would have been rather excessive. All power experiments in the

following sections also rely on the warp-speed approach.

4.2.2 Power

In this power experiment, we generate samples from the PSTR model (19) with

r = 1 and with either a monotonically increasing (m = 1) or symmetric (m = 2)

transition function (2). In both cases, we set β1 = (0.7, 0.7)′. The parameters in the

transition function are set equal to c1 = 3.5 when m = 1 and c1 = (3.0, 4.0) when

m = 2. The slope parameter γ1 = 4 in both cases. The results for the WCB-LM test

can be found in Table 2. When m = 1, the first-order auxiliary regression (ma = 1)

is sufficient. Increasing the order (ma = 2, 3) weakens the power, although this effect
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diminishes for larger dimensions N and T of the panel. Heteroskedasticity has an

adverse effect on the power. Not surprisingly, when m = 2 (so that the transition

is symmetric around (c1 + c2)/2 = 3.5) the test based on the first-order auxiliary

regression has very low power. Using an auxiliary regression with ma = 2 results in

a strong increase in power. Hence, (at least) a second-order auxiliary regression is

required to capture a nonmonotonic transition. Choosing ma = 3 lowers the power

slightly but not by much. This effect is best seen in simulations with heteroskedastic

errors.

- insert Table 2 about here -

4.3 Model evaluation

In this section we consider the case in which a PSTR model with a single transition

function has been fitted to the data, and we want to evaluate the model by misspec-

ification tests. We consider the test of no remaining heterogeneity (where the null

model has one transition and it is tested against a model with two transitions) and

the test of parameter constancy (using the same null model).

4.3.1 Size

We investigate the size properties of the misspecification tests using samples gener-

ated from the PSTR model (19) with r = 1, β1 = (1, 1)′, m = 1, γ1 = 3 and c1 = 3.5.

Table 3 contains the results, for samples with homoskedastic and heteroskedastic er-

rors in panels (a) and (b) as before. For the test of no remaining heterogeneity

results are reported for the case where the second transition function is assumed to

be governed by the same transition variable q
(1)
it as the transition function included

in the null model. (Results for this test with a different variable governing the

second transition are similar.) Overall, both misspecification tests perform satisfac-

torily, in the sense that the empirical size is quite close to the nominal significance

level of 0.05. Apparently the wild-cluster bootstrap procedure is slightly affected by

heteroskedastic errors, in the sense that this increases the empirical size but only
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slightly. The largest size distortion occurs for the smallest panels, with N = 20 and

T = 5, and when the tests are based on a high-order auxiliary regression (15) or

(17), with ma = 3. In that case, the tests become quite substantially undersized.

This effect quickly disappears when either of the panel dimensions increases and also

when a lower-order auxiliary regression is used.

- insert Table 3 about here -

4.3.2 Power

Table 4 reports the empirical power of the WCB-LM test of parameter constancy.

We generate artificial panel data sets using the TV-PSTR model (12) either with

monotonic change centred in the middle (h = 1 and c = 0.5T in (14)), or with

nonmonotonic change (h = 2 and c1 = 0.3T and c2 = 0.7T in (14)), except that

β10 is replaced by βi0 as defined in (19) in order to consider both homoskedasticity

and heteroskedasticity. We follow the parameter settings in section 4.3.1 for the

corresponding parameters in (12). For the parameters in the time-varying component

in (12), we set γ2 = 4, β20 = 0.7β10, β21 = 0.7β11. Since the heteroskedastic errors

have been produced by a random β10, we do not consider the random β20.

Results for the two cases (h = 1 and h = 2) are shown in the left and right

panels of the table. The left panel of Table 4 displays the same pattern as Table 3:

when the parameter change is monotonic, the power is weaker in case a higher-order

auxiliary regression (15) with ha = 2 or 3 is used. This is to be expected as a first-

order auxiliary regression is enough to detect monotonic change. When the change

is nonmonotonic, the test based on ha = 1 does have some power but, as before, the

WCB-LM test based on the second-order auxiliary regression performs considerably

better. We also observe that the presence of heteroskedastic errors substantially

lowers the power of the test for panels with small or moderate dimensions N and T .

- insert Table 4 about here -

We examine the power properties of the test of no remaining heterogeneity by

generating panels from (19) with r = 2, q
(1)
it = q

(2)
it , m1 = m2 = 1, γ1 = γ2 = 8,
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c1 = 3, and c2 = 4. We consider two scenarios. In both cases, we use β0 = (1, 1)′,

and β1 = (0.7, 0.7). In the first scenario, we set β2 = β1, such that in this DGP het-

erogeneity is monotonic in q
(1)
it . In other words, the ‘effective’ regression coefficients

are monotonically increasing functions of the transition variable, changing from β0

to β0 + β1 to β0 + 2β1 with increasing q
(1)
it . In the second scenario, we set β2 = −β1,

implying that that the coefficients in the lower (q
(1)
it � c1) and the upper regimes

(q
(1)
it � c2) are identical. In both cases, we estimate a PSTR model with r = 1

and m = 1 and then apply the test of no remaining heterogeneity using the correct

transition variable. Note that the second DGP resembles a PSTR model with r = 1

and m = 2. Nevertheless, even in this case we estimate a PSTR model with r = 1

and m = 1 in order to find out whether the test of no remaining heterogeneity is

able to detect misspecification of the form of the heterogeneity (that is, of the order

of the logistic function).

- insert Table 5 about here -

Table 5 contains results for both scenarios. When the combined transition is

monotonic in q
(1)
it (left panel), we find that the test of no remaining heterogeneity

has only moderate empirical power, especially in the presence of heteroskedastic

errors. In the case of non-monotonic heterogeneity (right panel), empirical power is

substantially higher, especially when a first-order auxiliary regression (ma = 1) is

used. These results are not completely unexpected, in the sense that a model with

a single transition function (with m = 1) might already capture the first type of

heterogeneity quite accurately, but should have much more difficulty describing the

second type.

5 Investment and capital market imperfections

In the presence of capital market imperfections, firms’ investment decisions are not

independent of financial factors such as cash flow and leverage. First, asymmet-

ric information between borrowers and lenders concerning the quality of available
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investment opportunities generates agency costs that result in outside investors de-

manding a premium on newly issued debt or equity. This creates a “pecking order”

or “financing hierarchy” with internal funds having a cost advantage relative to

external capital. Hence, investment will be positively related to the availability of

internal sources of finance, measured for example by cash flow. Second, high leverage

reduces firms’ ability to finance growth, such that firms with valuable investment

opportunities should aim for lower leverage. One may therefore expect a negative

relationship between future investment and leverage or “debt overhang”.

The impact of these capital market imperfections and severity of the resulting

problems varies across firms and over time, depending on the degree of informational

asymmetry and growth opportunities, among others. For firms with low information

costs or ample growth opportunities, internal and external finance are almost per-

fect substitutes and investment decisions are nearly independent of their financial

structure. In contrast, firms with high information costs and limited growth oppor-

tunities face much higher costs of external finance or may even be rationed in their

access to external funds. This in turn results in greater sensitivity of investment to

cash flow. Similarly, capital structure theory suggests a disciplinary role for debt in

the sense that leverage restricts managers of firms with poor growth opportunities

from investing when they should not. Thus, leverage should mainly affect such firms

and have much less effect on investment for firms with valuable growth opportunities

recognized by the market.

A substantial number of empirical studies examine the effects of capital market

imperfections on investment, see Fazzari, Hubbard, and Petersen (1988), Whited

(1992), Bond and Meghir (1994), Carpenter, Fazzari, and Petersen (1994), Gilchrist

and Himmelberg (1995), Lang, Ofek, and Stulz (1996), Hsiao and Tahmiscioglu

(1997), Hu and Schiantarelli (1998), Moyen (2004), Hovakimian and Titman (2006),

Almeida and Campello (2007), Hennessy, Levy, and Whited (2007), Fee, Hadlock,

and Pierce (2009), and Hovakimian (2009), among others. Most studies are con-

ducted in the context of the Q theory of investment, adding measures of cash flow or
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leverage to empirical models that relate investment to Tobin’s Q. In perfect capital

and output markets, Tobin’s Q, defined as the market valuation of capital relative

to its replacement value, is a sufficient statistic for investment. A significant positive

coefficient on cash flow, for example, can then be interpreted as evidence in favour

of the relevance of financing constraints.

In order to examine the question whether or not the effects of financing con-

straints or other capital market imperfections depend on financial factors, firms are

typically divided into groups of “constrained” and “unconstrained” firms. This divi-

sion is often based on a variable that measures the degree of information asymmetry

such as the dividend pay-out ratio, size, age, the presence of a bond rating, and the

debt ratio, or on a variable that measures growth opportunities such as Tobin’s Q.

This approach contains several potential limitations. First, the distinction between

“constrained” and “unconstrained” firms is often based on an arbitrary threshold

level of the variable that is used to split the sample. Second, in most studies, the

composition of these two sets is fixed for the complete sample period in the sense

that firms are not allowed to change sets over time. The PSTR model is designed

to alleviate these shortcomings.

Following Hansen (1999), we use a balanced panel of 565 US firms observed for

the years 1973–1987, extracted from the data set used by Hall and Hall (1993). For

each firm i and year t, we obtain the ratios of investment to assets (Iit), Tobin’s Q

or total market value to assets (Qit), long-term debt to assets (Dit), cash flow to

assets (CFit) and sales to assets (Sit). We delete five firms from the original sample

because they have aberrant values for some of these variables. Summary statistics

are provided in Table 6.

- insert Table 6 about here -

We begin by estimating a homogeneous panel data model for investmentIit with

lagged Tobin’s Q, sales, debt and cash flow as regressors. The lagged sales to assets

ratio can be interpreted as a proxy for future demand for a firm’s output and,
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following Hsiao and Tahmiscioglu (1997) and Hu and Schiantarelli (1998), is included

as an additional control for future profit opportunities of the firm. In addition

to fixed individual effects, we include fixed time effects to capture macroeconomic

effects on investment.

We then apply the LM test of homogeneity developed in Section 3.1, using each of

the regressor variables (lagged Q, debt, cash flow and sales) as “candidate” transition

variables, again following Hu and Schiantarelli (1998). We only test homogeneity of

the coefficients of these firm-specific variables, which implies assuming that macro-

economic effects on investment do not differ across firms. Restricting coefficients of

some variables to be constant in the PSTR model has no effect on the distribution

theory.

Table 7 shows that homogeneity is strongly rejected for all four candidate transi-

tion variables for ma=1, 2, and 3. Neither the LM-type tests based on the asymptotic

χ2 distributions, their F-versions, nor the wild bootstrap tests are able to identify

a specific transition variable as almost all p-values are practically equal to zero.

However, the results from the HAC version are quite informative. The p-values of

the tests with Tobin’s Q as the transition variable are considerably smaller than the

others, suggesting that Q is the most appropriate choice of a transition variable.

Next we apply the sequence of tests discussed at the end of Section 3.1 to de-

termine the order m of the logistic transition function. In Table 8, we report the

results of the specification test sequence for all four candidate transition variables.

It can be seen that m = 1 is the best choice for Q according to the HAC test, while

the wild bootstrap tests are not informative as their p-values are all equal to zero.

Interestingly, significance of the values of the WB and WCB test statistics for debt,

cash flow and sales in Table 8 diminishes with increasing m. This lends further sup-

port to the choice of Q as the transition variable. Thus we proceed with estimating
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the following PSTR model:

Iit = µi + λt + β01Qi,t−1 + β02Si,t−1 + β03Di,t−1 + β04CFi,t−1

+ (β11Qi,t−1 + β12Si,t−1 + β13Di,t−1 + β14CFi,t−1) g(Qi,t−1; γ, c) + uit (20)

where λt denotes the fixed time effects, and

g(Qi,t−1; γ, c) = (1 + exp (−γ(Qi,t−1 − c)))−1 , with γ > 0. (21)

- insert Tables 7 and 8 about here -

Before discussing the estimation results in detail, we examine the adequacy of

the two-regime PSTR model by applying the misspecification tests of parameter

constancy and of no remaining heterogeneity. The results are reported in Table 9.

Results from the WB and WCB tests that take both heteroskedasticity and possible

within-cluster dependence into account suggest that the estimated model with one

transition is adequate.

- insert Table 9 about here -

Parameter estimates appear in Table 11, together with cluster-robust and het-

eroskedasticity consistent standard errors, see Cameron, Gelbach, and Miller (2011).

To facilitate interpretation, we report estimates of β0j and β0j +β1j, for j = 1, . . . , 4,

corresponding to regression coefficients in the regimes associated with g(Qi,t−1; γ, c) =

0 and 1, respectively. The estimate of γ is such that the transition from the lower

regime associated with small values of Tobin’s Q to the upper regime with large

values of Q is smooth. This is seen from Figure 1, in which the transition function

is plotted against Tobin’s Q with each circle representing an observation. Also note

that the point estimate ĉ = 0.49 is in between the 25th and 50th percentiles of the

empirical distribution of Qi,t−1, see Table 6. Hence, the model identifies firms with

limited growth opportunities, signalled by their rather low Q values, as a separate

group that is distinct from firms with moderate or good growth opportunities.
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- insert Table 11 and Figure 1 about here -

One of the key characteristics of the PSTR model is that it allows for time-varying

heterogeneity, in the sense that regression coefficients for a particular individual in

the panel are not fixed over time. The importance of this feature is illustrated in Ta-

ble 10, providing various summary statistics of the transition function g(Qi,t−1; γ, c),

which directly determines the “effective” regression coefficients β0j+β1jg(Qi,t−1; γ, c)

for firm i at time t. First, we observe that for all years except 1975 more than half

of the firms are classified into the upper regime, in the sense that the value of the

transition function exceeds 0.5. It is interesting to note that during the last four

years of the sample period, the upper regime contains a substantially higher percent-

age of firms than during the first decade, at 77.5 percent on average for the years

1984-1987 compared to 58 percent during the years 1974-1983. Similarly, the mean

and median values of g(Qi,t−1; γ, c) are larger than one half, again except in 1975,

and also these take substantially larger values during the years 1984-1987. The 25th

and 75th percentiles of the yearly transition function values show that this level shift

is mostly due to a change in the lower part of the cross-sectional distribution, in the

sense that the 25th percentile jumped from around 0.35 in 1983 to 0.50 in 1984-5

and even 0.60 in 1986-1987, whereas the 75th remained fairly constant. Finally, the

rightmost column of Table 10 shows that the year-on-year changes of the transition

function are quite substantial for individual firms as well, averaging 0.10 in absolute

value. The importance of time-varying regression coefficients for individual firms is

even better illustrated by the difference between the maximum and minimum values

of g(Qi,t−1; γ, c) during the sample period. On average this equals 0.51; and for 109

out of the 560 firms in the panel it even exceeds 0.75. This clearly demonstrates

that a fixed clustering of firms into constrained and unconstrained groups would be

inappropriate.

- insert Table 10 about here -

Turning to the estimated regression coefficients, it is seen that the estimate of
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the coefficient on lagged debt is negative and significant for low Q firms, while it

is insignificantly different from zero for high Q firms. This is consistent with the

findings of Lang, Ofek, and Stulz (1996) that leverage matters for investment only

for firms with poor growth opportunities or firms with growth opportunities that

are not recognized by the market. The coefficient on lagged cash flow is positive

and significant for both groups of firms, although it is considerably larger for low

Q firms. This corroborates previous findings that internal finance is relevant for

investment mainly for financially constrained firms. We also find that the coefficient

on Tobin’s Q is negative but insignificant for low Q firms and positive and highly

significant for high Q firms. Hence, only firms with good growth prospects respond

to changes in their investment opportunities, which is in line with the results of Hu

and Schiantarelli (1998). Finally, for sales we find the same pattern as for Tobin’s

Q.

- insert Figure 2 about here -

Figure 2 shows the estimates of the time effects in the PSTR model, together

with the lower and upper bounds of the 90% confidence interval based on cluster-

robust and heteroskedasticity-consistent standard errors. These estimates are to be

interpreted relative to the value of zero for 1974, the first year in the effective sample

period. It is seen that there remains some variation in investment over time beyond

what is explained by the included regressors. In particular, the estimates strongly

suggest the presence of macroeconomic effects, as they closely follow the business

cycle and growth cycle, being lower in 1975-1977, in 1982-1983, and in 1987 than

during the remaining years, just like the average level of investment itself.

Finally, we acknowledge that our analysis is subject to caveats, including the

possibility that cash flow and leverage contain useful information about growth op-

portunities not captured by Tobin’s Q and the possibility of measurement error in Q.

Both of these may lead to spurious effects of cash flow and leverage on investment,

as discussed at length in Gilchrist and Himmelberg (1995), Erickson and Whited
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(2000), Gomes (2001), and Hennessy (2004), among others. A thorough analysis of

these issues, however, is beyond the scope and purpose of this paper.

6 Conclusions

Our panel smooth transition regression model incorporates heterogeneity by allowing

regression coefficients to vary as a function of an exogenous variable and fluctuate

between a limited number (often two) of extreme regimes. As the transition variable

is individual-specific and time-varying, the regression coefficients for each of the in-

dividuals in the panel are changing over time. Our approach includes a modelling

cycle for the PSTR model, containing tests of homogeneity, parameter constancy

and no remaining heterogeneity. Monte Carlo experiments demonstrate that these

statistics behave satisfactorily even in panels with small N and T , although the stan-

dard tests should be applied with caution given that they are considerably affected

by cross-sectional heteroskedasticity. An application to firms’ investment behaviour

aptly demonstrates the usefulness of the model.

The PSTR model as considered in this paper has fixed effects and exogenous

regressors. In some applications, these assumptions might seem unnecessarily re-

strictive. We therefore point out that our main motivation for choosing this set-up

has been to highlight the incorporation of the smooth transition mechanism in a

panel data context. Building a PSTR model under weaker assumptions is possible,

and some generalizations are in fact fairly straightforward. First, assuming that the

individual effects µi in (1) are random and independent of the exogenous variables

xit, the parameters of interest can be estimated using a feasible GLS procedure as

proposed by Wooldridge (2002), which basically uses Arellano’s estimator for the

covariance matrix. This type of GLS estimator should be consistent and asymptot-

ically normal independent of how T and N tend to infinity, see Hansen (2006) for

details.

Second, the model can be extended to handle dynamic panel data by including

lagged values of the dependent variable as regressors. This, of course, brings with it
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the usual complications related to estimation of dynamic panel data models in case

T is fixed and finite, see Baltagi (2013, Chapter 8) and Pesaran (2015, Chapter 27).

Third, a model allowing for multiple variables entering the transition function

might be relevant in practice and hence worthwhile considering. In Hu and Schi-

antarelli (1998), for example, several factors including Q, firm size and leverage

jointly determine the classification of firms into regimes with different character-

istics of investment behaviour. Such an extension is straightforward if the ensuing

linear combination has fixed weights. Relaxing this restriction may lead to numerical

complexities in estimating the parameters of the model.

Fourth and finally, it is also possible to consider a PSTR model in which not only

the intercept but all the parameters are random across the cross-section units. In the

static case, assuming that the parameters vary randomly and are independent of the

regressors, several procedures are available for obtaining consistent estimates of the

coefficient means, see Hsiao and Pesaran (2008). In the dynamic case, it is possible

to use the group mean estimator, which involves estimating a PSTR model for each

individual separately and averaging the coefficients, see Pesaran and Smith (1995).

While this procedure gives consistent estimates, there is an important drawback

in that estimating an STR model for each cross-sectional unit can be numerically

complicated when T is small. One way to overcome this problem is to make the

strong assumption that the parameters of the transition function (γ,c) are common

across units and time. In this case, the pool mean group estimator by Pesaran, Shin,

and Smith (1999) can be used. Detailed investigation of these and other possible

extensions of the PSTR model is left for future research.
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Table 2: Empirical power of the wild cluster bootstrap (WCB) test
of homogeneity

m = 1 m = 2
N ma T = 5 10 20 5 10 20

Panel (a): Homoskedasticity

20 1 39.40 74.40 96.70 6.05 5.91 11.89
2 31.34 67.55 94.86 15.28 34.52 66.61
3 27.29 64.71 94.65 15.09 31.36 62.60

40 1 72.63 98.05 100.00 6.52 6.27 20.19
2 63.12 96.17 99.98 29.94 65.36 95.64
3 59.23 95.86 100.00 29.94 61.23 94.31

80 1 97.28 100.00 100.00 7.37 7.81 37.39
2 94.71 100.00 100.00 58.80 94.80 100.00
3 93.97 99.98 100.00 59.78 93.66 99.99

160 1 100.00 100.00 100.00 8.68 10.87 66.54
2 99.97 100.00 100.00 90.40 99.95 100.00
3 99.98 100.00 100.00 91.22 99.94 100.00

Panel (b): Heteroskedasticity

20 1 24.74 44.73 71.09 5.98 6.14 8.21
2 20.06 36.87 63.78 11.22 19.48 34.06
3 18.33 34.21 62.67 10.80 17.42 30.94

40 1 47.05 76.31 95.77 6.05 6.23 11.43
2 37.41 67.52 93.27 18.31 34.02 63.23
3 33.95 65.72 93.58 17.26 30.80 58.28

80 1 78.20 97.28 99.95 6.32 6.53 18.83
2 68.82 94.81 99.92 32.24 63.28 92.53
3 65.92 94.80 99.93 33.04 58.83 90.29

160 1 97.95 99.99 100.00 6.84 7.39 32.66
2 95.64 99.95 100.00 60.70 92.29 99.88
3 95.24 99.98 100.00 61.37 90.59 99.81

Note: The table presents presents the empirical power of the wild cluster
bootstrap (WCB) test of homogeneity, based on the auxiliary regression
(4) with order ma. Panels with cross-sectional dimension N and time
dimension T are generated from the PSTR model (19) with r = 1 and with
either a monotonically increasing (m = 1) or symmetric (m = 2) transition
function (2), and with homoskedastic (Panel (a)) or heteroskedastic (Panel
(b)) errors. The bootstrap makes use of the warp-speed method, and
rejection frequencies are reported for a significance level of 0.05, based on
10,000 replications.
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Table 3: Empirical size of the wild cluster bootstrap
(WCB) test of parameter constancy (PC) and no remain-
ing heterogeneity (NRH)

PC NRH
N ha/ma T = 5 10 20 5 10 20

Panel (a): Homoskedasticity

20 1 5.85 5.13 5.74 5.24 5.34 5.44
2 4.93 5.54 5.48 3.97 5.64 5.29
3 3.53 5.66 5.71 2.48 4.94 5.24

40 1 5.88 5.34 5.40 5.45 5.42 5.53
2 5.66 5.13 4.98 5.30 5.30 5.22
3 5.21 5.37 5.42 4.61 5.07 5.45

80 1 5.38 5.42 5.06 5.67 5.08 5.20
2 5.36 5.43 5.15 5.98 4.91 5.28
3 5.53 5.17 5.12 5.47 5.03 5.38

160 1 5.09 4.93 4.85 5.04 4.98 4.55
2 4.91 4.76 5.02 4.97 4.81 4.67
3 4.80 5.20 5.22 5.16 5.28 4.85

Panel (b): Heteroskedasticity

20 1 6.94 6.46 6.26 6.06 6.11 6.41
2 5.79 6.79 6.65 4.76 5.63 5.99
3 3.75 6.29 6.33 2.83 5.12 5.32

40 1 6.39 6.17 5.94 6.05 5.97 5.89
2 5.35 5.98 6.11 5.64 6.20 6.18
3 4.94 5.98 6.23 4.53 5.35 5.54

80 1 5.68 5.88 5.58 5.70 5.50 5.40
2 5.78 5.92 5.77 5.76 5.48 5.35
3 5.18 5.76 5.84 5.26 5.17 5.63

160 1 5.65 5.81 5.58 5.43 4.91 5.45
2 5.21 5.01 5.64 5.68 5.25 5.60
3 5.05 5.27 5.42 5.14 5.40 5.60

Note: The table presents the empirical size of the wild cluster
bootstrap (WCB) test of parameter constancy (PC), based on
the auxiliary regression (15) with order ha, and the test of no re-
maining heterogeneity (NRH) based on the auxiliary regression
(17) with order ma. Panels with cross-sectional dimension N and
time dimension T are generated from the PSTR model (19) with
r = 1 and a monotonically increasing (m = 1) transition func-
tion (2), and with homoskedastic (Panel (a)) or heteroskedastic
(Panel (b)) errors. The bootstrap makes use of the warp-speed
method, and rejection frequencies are reported for a significance
level of 0.05, based on 10,000 replications.
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Table 4: Empirical power of the wild cluster bootstrap (WCB) test
of parameter constancy

h = 1 at 0.5T h = 2 at 0.3T and 0.7T
N ha T = 5 10 20 5 10 20

Panel (a): Homoskedasticity

20 1 46.45 97.23 100.00 47.98 50.10 27.12
2 41.94 97.00 100.00 54.05 92.86 99.99
3 34.37 96.32 100.00 53.89 96.12 99.98

40 1 85.12 100.00 100.00 85.73 80.75 48.56
2 85.39 100.00 100.00 94.23 99.98 100.00
3 81.14 100.00 100.00 97.92 100.00 100.00

80 1 99.59 100.00 100.00 99.60 99.02 79.94
2 99.69 100.00 100.00 99.98 100.00 100.00
3 99.55 100.00 100.00 100.00 100.00 100.00

160 1 100.00 100.00 100.00 100.00 100.00 98.34
2 100.00 100.00 100.00 100.00 100.00 100.00
3 100.00 100.00 100.00 100.00 100.00 100.00

Panel (b): Heteroskedasticity

20 1 34.00 85.58 99.56 36.61 34.69 18.73
2 30.47 83.73 99.37 38.85 74.94 97.65
3 22.68 81.68 99.39 35.14 79.66 98.02

40 1 66.55 99.61 100.00 70.51 60.54 31.46
2 66.79 99.54 100.00 81.25 98.37 100.00
3 60.21 99.53 100.00 88.77 99.44 100.00

80 1 94.90 100.00 100.00 96.50 89.73 56.36
2 95.76 100.00 100.00 99.43 100.00 100.00
3 94.69 100.00 100.00 99.95 100.00 100.00

160 1 99.97 100.00 100.00 99.97 99.72 86.51
2 99.98 100.00 100.00 100.00 100.00 100.00
3 99.98 100.00 100.00 100.00 100.00 100.00

Note: The table presents presents the empirical power of the wild cluster
bootstrap (WCB) test of parameter constancy, based on the auxiliary re-
gression (15) with order ha. Panels with cross-sectional dimension N and
time dimension T are generated from the TV-PSTR model (12) either with
monotonic change centred in the middle (h = 1 and c = 0.5T in (14)) or with
nonmonotonic change (h = 2 and c1 = 0.3T and c2 = 0.7T in (14)), and with
homoskedastic (Panel (a)) or heteroskedastic (Panel (b)) errors. The boot-
strap makes use of the warp-speed method, and rejection frequencies are
reported for a significance level of 0.05, based on 10,000 replications.
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Table 5: Empirical power of the wild cluster bootstrap (WCB)
test of no remaining heterogeneity

β2 = β1 β2 = −β1
N ma T = 5 10 20 5 10 20

Panel (a): Homoskedasticity

20 1 7.08 13.97 17.91 14.37 46.18 84.50
2 3.66 11.31 20.02 0.58 22.42 77.70
3 3.54 10.10 18.26 0.85 9.24 74.80

40 1 11.54 16.46 23.04 36.92 84.71 99.25
2 9.07 17.26 31.52 18.83 76.55 99.10
3 7.54 16.07 29.97 9.55 73.20 99.24

80 1 15.49 20.93 37.57 73.90 99.33 100.00
2 14.46 28.13 53.98 61.20 99.17 99.99
3 13.32 27.94 56.81 55.92 99.31 100.00

160 1 17.75 32.98 62.29 97.39 100.00 100.00
2 21.60 48.56 83.86 95.54 100.00 100.00
3 21.24 52.23 89.54 96.08 100.00 100.00

Panel (b): Heteroskedasticity

20 1 5.31 9.74 14.77 10.14 25.12 53.11
2 2.85 7.45 12.08 0.85 11.63 40.50
3 3.02 6.07 11.11 1.11 4.31 35.06

40 1 8.70 13.60 17.43 22.15 54.01 85.66
2 6.92 11.49 16.97 9.28 41.80 80.56
3 5.94 9.46 15.71 3.62 36.17 80.75

80 1 12.94 16.48 22.40 46.04 87.30 99.20
2 9.18 14.82 27.86 33.40 80.75 98.94
3 8.78 13.09 25.70 28.26 79.75 99.16

160 1 15.02 20.84 31.13 80.63 99.47 100.00
2 12.92 25.18 45.32 71.58 99.02 99.99
3 10.76 24.59 47.00 68.85 99.28 100.00

Note: The table presents the empirical power of the wild cluster boot-
strap (WCB) test of no remaining heterogeneity (NRH) based on the
auxiliary regression (17) with order ma. Panels with cross-sectional di-
mension N and time dimension T are generated from the PSTR model
(19) with r = 2 and monotonic (β2 = β1) or nonmonotonic (β2 = −β1)
heterogeneity, and with homoskedastic (Panel (a)) or heteroskedastic
(Panel (b)) errors. The bootstrap makes use of the warp-speed method,
and rejection frequencies are reported for a significance level of 0.05,
based on 10,000 replications.
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Table 6: Summary statistics

Mean St.Dev. 10% 25% 50% 75% 90%
Iit 0.088 0.059 0.031 0.049 0.076 0.112 0.158
Qi,t−1 1.053 1.201 0.224 0.37 0.671 1.286 2.282
Si,t−1 1.843 0.949 0.899 1.271 1.696 2.225 2.835
CFi,t−1 0.241 0.197 0.056 0.124 0.215 0.319 0.447
Di,t−1 0.233 0.207 0.008 0.09 0.206 0.319 0.471

Note: The table presents the mean, standard deviation (St.Dev.) and selected
percentiles of the ratios of investment to assets (Iit), Tobin’s Q or total market
value to assets (Qit), sales to assets (Sit), cash flow to assets (CFit) and long-
term debt to assets (Dit), for a balanced panel of 560 US firms for the period
1973–1987.
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Table 7: Homogeneity tests

LMχ LMF HACχ HACF WB WCB
m test p-val test p-val test p-val test p-val p-val p-val

Transition variable Qi,t−1
1 125.25 0 28.99 0 30.03 4.8e−06 6.95 1.4e−05 0 0
2 217.43 0 25.15 0 55.01 4.4e−09 6.36 2.9e−08 0 0
3 290.84 0 22.42 0 76.52 1.9e−11 5.90 2.6e−10 0 0

Transition variable Di,t−1
1 37.81 1.2e−07 8.75 4.8e−07 13.72 0.0082 3.18 0.013 0.0028 0.012
2 86.87 2.0e−15 10.05 4.9e−14 21.87 0.0052 2.53 0.0095 0 0
3 89.71 5.6e−14 6.91 1.3e−12 24.22 0.019 1.87 0.033 0 8.0e−04

Transition variable CFi,t−1
1 128.87 0 29.83 0 20.41 0.00041 4.72 0.00083 0 0
2 142.32 0 16.46 0 35.77 1.9e−05 4.14 6.1e−05 0 0
3 205.97 0 15.88 0 47.18 4.3e−06 3.64 1.8e−05 0 0

Transition variable Si,t−1
1 94.83 0 21.95 0 15.10 0.0045 3.49 0.0074 0 0
2 116.46 0 13.47 0 29.91 0.00022 3.46 0.00055 0 0
3 136.27 0 10.50 0 31.59 0.0016 2.43 0.0037 0 6.0e−04

Note: The table presents LM-type tests of homogeneity and corresponding p-values in the panel
regression of investment on lagged Tobin’s Q (Qi,t−1), sales to assets (Si,t−1), cash flow to assets
(CFi,t−1) and long-term debt to assets (Di,t−1), for a balanced panel of 560 US firms for the period
1973–1987.
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Table 8: Sequence of homogeneity tests for selecting order m of transition function

LMχ LMF HACχ HACF WB WCB
m test p-val test p-val test p-val test p-val p-val p-val

Transition variable Qi,t−1
H∗03 75.50 1.6e−15 17.46 2.9e−14 24.62 6.0e−05 5.69 0.00014 0 0
H∗02 93.68 0 21.67 0 22.12 0.00019 5.12 0.00041 0 0
H∗01 125.25 0 28.99 0 30.03 4.8e−06 6.95 1.4e−05 0 0

Transition variable Di,t−1
H∗03 2.87 0.58 0.66 0.62 1.32 0.86 0.30 0.88 0.0028 0.012
H∗02 49.30 5.0e−10 11.41 3.1e−09 10.96 0.027 2.54 0.038 2.0e−04 0.0024
H∗01 37.81 1.2e−07 8.75 4.8e−07 13.72 0.0082 3.18 0.013 0.8762 0.8954

Transition variable CFi,t−1
H∗03 64.83 2.8e−13 14.99 3.3e−12 6.68 0.15 1.55 0.19 0 0
H∗02 13.67 0.0084 3.16 0.013 1.89 0.76 0.44 0.78 0.716 0.704
H∗01 128.87 0 29.83 0 20.41 0.00041 4.72 0.00083 0.0012 0.0124

Transition variable Si,t−1
H∗03 20.11 0.00047 4.65 0.00095 2.91 0.57 0.67 0.61 0 0
H∗02 21.89 0.00021 5.07 0.00045 5.26 0.26 1.22 0.30 0.1636 0.2072
H∗01 94.83 0 21.95 0 15.10 0.0045 3.49 0.0074 0.286 0.4184

Note: The table presents the sequence of homogeneity tests for selecting the order m of the logistic
transition function in a PSTR model for investment with lagged Tobin’s Q (Qi,t−1), sales to assets
(Si,t−1), cash flow to assets (CFi,t−1) and long-term debt to assets (Di,t−1), for a balanced panel
of 560 US firms for the period 1973–1987. The listed null hypotheses have the implications H∗

01:
β∗
1 = 0|β∗

3 = β∗
2 = 0, H∗

02: β∗
2 = 0|β∗

3 = 0, and H∗
03: β∗

3 = 0, respectively, in the auxiliary regression (4)
with m = 3.
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Table 9: Misspecification tests

LMχ LMF HACχ HACF WB WCB
m test p-val test p-val test p-val test p-val p-val p-val

No remaining heterogeneity

Transition variable Qi,t−1
ma = 1 118.37 1.4e−15 5.20 8.4e−14 48.15 0.00066 2.12 0.0021 0.61 0.75

Transition variable Di,t−1
ma = 1 131.40 0 5.78 6.7e−16 38.19 0.012 1.68 0.027 0.42 0.60

Transition variable CFi,t−1
ma = 1 109.01 7.1e−14 4.79 2.8e−12 35.46 0.025 1.56 0.05 0.56 0.70

Transition variable Si,t−1
ma = 1 162.56 0 7.15 0 33.35 0.042 1.47 0.078 0.75 0.82

Parameter constancy

ha = 1 54.45 8.5e−05 2.39 0.00035 132.28 0 5.82 4.4e−16 1.00 1.00

Note: The table presents misspecification tests in a PSTR model for investment with lagged Tobin’s Q
(Qi,t−1), sales to assets (Si,t−1), cash flow to assets (CFi,t−1) and long-term debt to assets (Di,t−1) as
regressors and Qi,t−1 as transition variable, for a balanced panel of 560 US firms for the period 1973–1987.

Table 10: Transition function statistics

Year Perc. of firms with Value of g(Qi,t−1; γ, c) Mean abs. change
g(Qi,t−1; γ, c) > 0.5 Mean Median 25% 75% of g(Qi,t−1; γ, c)

1974 60.71 0.63 0.63 0.35 0.98
1975 38.04 0.48 0.35 0.21 0.76 0.17
1976 51.61 0.57 0.51 0.27 0.93 0.12
1977 60.54 0.62 0.60 0.34 0.95 0.09
1978 59.82 0.63 0.61 0.34 0.95 0.09
1979 60.36 0.62 0.62 0.33 0.95 0.09
1980 60.89 0.62 0.62 0.33 0.94 0.09
1981 65.36 0.66 0.69 0.36 0.97 0.09
1982 59.64 0.63 0.65 0.31 0.97 0.10
1983 63.21 0.66 0.72 0.35 0.98 0.10
1984 76.96 0.75 0.90 0.52 1.00 0.12
1985 73.21 0.73 0.86 0.48 0.99 0.07
1986 78.75 0.77 0.93 0.57 1.00 0.08
1987 80.89 0.79 0.94 0.62 1.00 0.07

Avg 63.57 0.65 0.69 0.38 0.95 0.10

Note: The table presents summary statistics for the value of the transition function g(Qi,t−1; γ, c) in a PSTR
model for investment with lagged Tobin’s Q (Qi,t−1), sales to assets (Si,t−1), cash flow to assets (CFi,t−1)
and long-term debt to assets (Di,t−1) as regressors and Qi,t−1 as transition variable, for a balanced panel
of 560 US firms for the period 1973–1987.
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Table 11: Estimation results of two-regime PSTR model, where the standard errors
are obtained by using the cluster-robust and heteroskedasticity-consistent covariance
estimator allowing for error dependency within individual firms.

estimates s.e.
Low Q firms
β0j × 100
Qi,t−1 -1.72 6.77
Si,t−1 -0.05 0.41
Di,t−1 -6.39 2.04
CFi,t−1 8.60 3.12
High Q firms
(β0j + β0j)× 100
Qi,t−1 0.68 0.12
Si,t−1 0.99 0.31
Di,t−1 0.38 1.17
CFi,t−1 3.93 1.24

γ 4.95 1.21
c 0.49 0.25
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Figure 1: Estimated transition function (21) of the PSTR model (20). Each circle
represents an observation.

Figure 2: Coefficient estimates of yearly dummies (solid line) with lower and upper
bound of 90% confidence intervals based on cluster-robust and heteroskedasticity-
consistent standard errors.
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