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This paper presents an infinite-horizon version of intergenerational utilitarianism. By studying
discounted utilitarianism as the discount factor tends to one, we obtain a new welfare crite-
rion: limit-discounted utilitarianism (LDU). We show that LDU meets standard assumptions
of efficiency, equity, and interpersonal comparability, but allows us to compare more pairs of
utility streams than commonly-used utilitarian criteria, including the overtaking criterion and
the catching-up criterion. We also introduce a principle of compensation for postponements of
utility streams and use it to characterize the LDU criterion on a restricted domain.
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1. INTRODUCTION

Utilitarianism is the normative theory which asserts that the best social policy among a set of
alternatives is the one that generates the greatest total welfare, where total welfare is often de-
fined as the sum of the utilities for all members of society. This notion of maximizing aggregate
utility becomes problematic for an infinite-horizon society. The problem of aggregating infi-
nite utility streams u = (u 1, u 2, . . .), representing the utilities of present and future generations,
has occupied philosophers and economists for more than a century. Discounted utilitarianism
provides a popular criterion for the evaluation of such streams. However, since discounting
means assigning smaller weights to future generations, discounted utilitarianism has also been
the subject of heavy criticism.1 For instance, Ramsey (1928, p. 543) calls discounting future
generations’ utilities an “ethically indefensible” practice that “arises merely from the weakness
of the imagination”. In his axiomatic approach to discounted utilitarianism, Koopmans (1960)
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formally defines time preference through the concept of impatience. Subsequently, a long tra-
dition in welfare economics studies social preferences that combine the Strong Pareto axiom
with Anonymity, that is, invariance under transformations that swap the utility levels of any two
generations.2 The formulation of criteria that meet the two requirements turns out to be asso-
ciated with complications, the full extent of which has only been understood recently. Firstly,
on the set of infinite utility streams, complete and transitive preferences that satisfy Strong
Pareto and Anonymity are not representable by social welfare functions.3 Secondly, such pref-
erences cannot be obtained by constructive methods. In other words, all explicit descriptions
of transitive preferences satisfying Strong Pareto and Anonymity are incomplete.4

The literature on intergenerational preferences satisfying Strong Pareto and Anonymity
therefore uses incomplete preferences. A social welfare relation (SWR) is a binary relation that
is reflexive and transitive, but not necessarily complete. The most often used utilitarian SWRs
rank infinite streams on the basis of their partial sums over a finite horizon tending to infinity.5

This is the case, for instance, for the overtaking criterion (von Weizsäcker, 1965), the catching-
up criterion (Gale, 1967), and the utilitarian SWR of Basu and Mitra (2007).6 This paper inves-
tigates an alternative approach.7 By studying discounted utilitarianism as the discount factor
tends to one, we obtain a new welfare criterion: limit-discounted utilitarianism (LDU). In the
limit, any two generations are treated equally, so this approach also avoids the critique of Ram-
sey (1928). Our main results include:

The Compensation Principle. Social welfare relations that satisfy the Anonymity axiom can-
not exhibit impatience in the traditional sense of Koopmans (1960).8 However, in the literature
stemming from his seminal contribution, many authors have argued for the appropriateness
of a more inclusive concept of social time preference. The most common argument points out
that the overtaking and catching-up criterion do not exhibit impatience in the sense of Koop-
mans (1960), and rank (1, 0, 1, 0, . . .) above (0, 1, 0, 1, . . .); see, for example, Lauwers (1995), Fleur-
baey and Michel (2003), and Heal (2005). This literature advocates anonymity axioms involv-
ing classes of infinite permutations that make (1, 0, 1, 0, . . .) equivalent to (0, 1, 0, 1, . . .). Recently,
several authors (including B. Dutta (2008) and Asheim et al. (2010)) have remarked that the
equivalence of the two periodic streams means a violation of either Strong Pareto or Station-
arity, two often combined conditions in intertemporal contexts. The Compensation Principle
addresses an aspect of time preference — the effect of postponing utility streams — in a way
that does not conflict with these conditions. Informally, the principle says that a utility stream
can be postponed for one generation if the infinite-horizon society is compensated by the aver-
age utility over all generations. The precise formulation is in Section 2, where we also motivate

2Precise definitions of axioms from previous literature are in Section 2.
3Diamond’s (1965) version of this result was obtained under an additional continuity assumption on the social

welfare function. The general impossibility theorem, without this assumption, is due to Basu and Mitra (2003).
4The existence of complete, transitive binary relations satisfying Strong Pareto and Anonymity was established

by Svensson (1980). Zame (2007, Theorem 4) and Lauwers (2010, p. 33) show that Svensson’s existence theorem
cannot be proved without using the Axiom of Choice.

5Formally, lim infT→∞
∑T

t=1(u t −vt )≥ 0 must hold if u = (u 1, u 2, . . .) is at least as good as v = (v1, v2, . . .).
6The former would be more appropriately described as the SWRs induced by the overtaking and catching-up

criterion. For convenience, the expressions SWR, criterion, and welfare criterion will be used synonymously.
7Discounting with discount factors tending to one has been used extensively in the literature on stochastic games

and dynamic optimization; see, e.g., Liggett and Lippman (1969), Lippman (1969), Dutta (1991), Sennott (1999), and
Bishop et al. (2014). Basu and Mitra (2007, pp. 360-361) defend the relevance of vanishing discount rates for inter-
generational equity in a “robustness check” of their welfare criterion. They attribute the idea behind the robustness
check to Jörgen Weibull. Limit-discounted utilitarianism can be seen as a concretization of their line of thought.

8Koopmans’s definition (see Koopmans, 1960, Def. 1) is stated for pre-orders defined by social welfare functions.
According to Banerjee and Mitra’s (2007, Sec. 2.2.2) more general ordinal formulation, impatience is displayed by
strictly preferring a stream u with u s > u t for some s < t to the stream v obtained by switching u s and u t . With
Anonymity, the two streams are equivalent.

2



the average as the suitable compensation. If u = (1, 0, 1, 0, . . .), the Compensation Principle says
that u is equivalent to (1/2, u ), which makes u strictly preferred to (0, u ) = (0, 1, 0, 1, . . .) by tran-
sitivity and Strong Pareto. In short, the Compensation Principle provides a new perspective on
time preference in a widely discussed collection of examples.

A characterization. Theorem 1 shows that Strong Pareto, the Compensation Principle, and
Additivity (a standard translation invariance axiom) characterize limit-discounted utilitarian-
ism on the set of pairs of utility streams with a summable or eventually periodic difference.

Basic properties. Theorem 2 shows that besides Strong Pareto and Additivity, the limit-
discounted utilitarian criterion satisfies Anonymity, Stationarity, and a continuity property re-
lating preferences over infinite streams to preferences over long, finite-horizon truncations.
This continuity requirement is a relaxation of a similar requirement in Brock’s (1970) classical
characterization of the overtaking criterion. Theorem 2 also shows that LDU meets the utilitar-
ian requirement that summable streams with a larger sum are strictly preferred to those with a
smaller sum; streams with equal finite sums are equivalent.

Comparison to other utilitarian criteria. The limit-discounted utilitarian criterion is closely
related to the Abel summation method from the theory of divergent series. In Lemma 1, we gen-
eralize the classical theorem of Frobenius (1880) on the relationship between Abel and Cesàro
summation to obtain a sufficient condition for comparability. Theorem 3 summarizes relations
between our criterion and overtaking, catching-up, and the Basu-Mitra criterion: If u is weakly
preferred to v according to any of these three criteria, then the same is true for LDU. For the
Basu-Mitra criterion, the implication holds for strict preference as well. Example 2 contains a
class of streams that can be ranked with LDU, but cannot be ranked using overtaking, catching-
up, or the Basu-Mitra criterion. Finally, Example 4 provides a pair of streams that LDU does not
compare.

2. INTRODUCING THE LIMIT-DISCOUNTED UTILITARIAN CRITERION

This section formally introduces our notion of limit-discounted utilitarianism and gives an ax-
iomatic description of the limit-discounted utilitarian criterion. We also show that our criterion
has a number of properties that are familiar from earlier literature.

The following notation will be used: N= {1, 2, 3, . . .} is the set of positive integers, R the set
of real numbers,

U = {u ∈RN : sup
t∈N
|u t |<+∞}

the set of bounded utility streams u = (u 1, u 2, . . .), where u t denotes the welfare level of gener-
ation t ∈N. A social welfare relation (SWR) is a reflexive and transitive binary relation ¥ onU .
For u , v ∈U , u ¥ v means that society considers u to be at least as good as v . As usual, u ∼ v
means that u ¥ v and v ¥ u , whereas u � v means that u ¥ v but not v ¥ u .

Given u ∈U , the Abel sum

lim
δ→1−

∞
∑

t=1

δt−1u t (1)

will be denoted by σA (u ) if the limit (1) exists and is finite. It is easy to see that this limit, if it
exists, is unaffected by switching any two entries of u . Abel summation thus provides a method
for evaluating streams using discounting while treating each pair of generations equally. Our
concept of limit-discounted utilitarianism builds on Abel summation and is formally defined
as follows:
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DEFINITION 1. The limit-discounted utilitarian (LDU) criterion is defined for all u , v ∈U as

u ¥LDU v ⇐⇒ lim inf
δ→1−

∞
∑

t=1

δt−1(u t −vt )≥ 0. (2)

Our first objective is to give an axiomatic description of the LDU criterion. We will do so on
a domain that accommodates frequently discussed examples from recent literature, including
all pairs u , v ∈U of eventually periodic streams, namely:9

D ≡ {(u , v )∈U ×U : u −v is summable or eventually periodic}.

Our characterization result uses three properties of LDU. We show that for a SWR¥ onU with
these three properties, every pair of streams inD can be compared using¥, where u ¥ v holds
if and only if u ¥LDU v . The first two properties are the traditional assumptions of efficiency
and interpersonal comparisons of utility, respectively:

Strong Pareto (SP): For all u , v ∈U , if u t ≥ vt for all t ∈N and u 6= v , then u � v .

Additivity (Add): For all u , v,α∈U , u ¥ v implies u +α¥ v +α.

Several authors use assumptions on interpersonal comparisons that are weaker than Additiv-
ity.10 But since u−v = (u+α)−(v+α) for all u , v,α∈U , Additivity is satisfied if weak preference
u ¥ v depends only on u −v . This is the case for all SWRs in this paper.

The third property is a principle of compensation for postponements of infinite utility
streams. Given u ∈ U and c ∈ R, call (c , u ) ≡ (c , u 1, u 2, . . . ) the postponement of u ∈ U with
compensation c .11 The Compensation Principle says that if the average ū ≡ limn→∞

∑n
t=1 u t /n

of u ∈U is well-defined, then c = ū is a suitable compensation for a postponement of u :

Compensation Principle (CP): For all u ∈U , if ū is well-defined, then

(ū , u )∼ u .

Notice that if SWR ¥ satisfies Strong Pareto and u = (a , a , a , . . . ) is constant, then u � (c , u )
if c < a . In this case, (c , u ) ∼ u can only hold if c = a , i.e., the average of u . Is there a more
general rationale for this compensation level? We will return to this question below: assum-
ing commonly-used conditions on intertemporal preferences, we show that the implication
(c , u )∼ u ⇒ c = ū holds on a larger set of streams. But let us first observe that the three prop-
erties characterize LDU onD. All proofs are in the appendix.

THEOREM 1. The binary relation ¥LDU defines a SWR that satisfies Strong Pareto, Additivity, and
the Compensation Principle. Every SWR onU with these three properties coincides with¥LDU on
D.

We sketch the proof of this theorem. For the second assertion, let¥ be a SWR onU with the
three properties. The key observation is that given any u , v ∈U , the sequence s = (s1, s2, . . .) of
partial sums sn =

∑n
t=1(u t −vt ) satisfies u −v = s − (0, s ).12 By Additivity, this means that if s is

bounded (so that s and (0, s ) are both inU ), then u ¥ v holds if and only if s ¥ (0, s ). Suppose,

9Stream u ∈U is summable if the series
∑∞

t=1 u t converges, and eventually periodic (with period p ) if there are
k , p ∈Nwith u t+p = u t for all t ≥ k .

10These include the Partial Unit Comparability axiom in Basu and Mitra (2007) and Partial and Finite Translation
Scale Invariance axiom in Asheim (2010) and Asheim et al. (2010), respectively.

11Heal (2005, p. 1115) refers to (0, u ) as the postponement of u . Koopmans et al. (1964) refer to (c , u ) as the
postponement of u with “insertion” c .

12That is, for each t : s t+1− s t = u t+1−vt+1.
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in addition, that s̄ is well-defined. We then have (s̄ , s )∼ s by the Compensation Principle. Using
Additivity and Strong Pareto, we are able to conclude (equations (18) to (20)) that

u ¥ v ⇐⇒ s̄ ≥ 0. (3)

The average of s is, by definition, the Cesàro-sum of the the series
∑∞

t=1(u t−vt ). By the theorem
of Frobenius (see Duren, 2012, p. 180), the series is Abel-summable to the same sum:

σA (u −v ) = s̄ . (4)

Combining (3) and (4) gives
u ¥ v ⇐⇒ u ¥LDU v.

This argument takes care of the case when d = u − v is summable or eventually periodic with
average d̄ = 0 (Case 1 in the proof), as s̄ is defined in this case. A monotonicity argument
reduces the case when d̄ 6= 0 (Case 2) to the zero-average case.

Let us note that (4) gives us an interpretation of the Compensation Principle in terms of the
loss that society incurs when a stream is postponed with c = 0. To elaborate, suppose u ∈ U
has a well-defined average and let v = (0, u ). We then have sn =

∑n
t=1(u t − vt ) = u n for all

n ≥ 1, so the partial sums have average s̄ = ū , which by (4) means that σA (u − v ) = ū . In other
words, in terms of Abel-summation, postponing u with compensation c = 0 incurs a loss of ū
whenever ū is well-defined. For example, postponing u = (1, 1, 1, . . . ) incurs a loss of ū = 1 and
postponing w = (1, 0, 1, 0, . . . ) incurs a loss of w̄ = 1/2.

We now turn to the properties mentioned in the introduction. These properties will not
only help us relate LDU to established utilitarian SWRs, which is the topic of the next sec-
tion. They will also allow us to provide axiomatic support for the Compensation Principle. The
Anonymity axiom says that preferences are unaffected by switching the utility levels of any two
generations:

Anonymity (Ano): For all u , v ∈ U , if there are s , t ∈ N with u s = vt , u t = vs , and if
u i = vi for all other i ∈N, then u ∼ v .

Stationarity is Koopmans’s (1960) condition for dynamic consistency — preferences are inde-
pendent of the first generation if the first generation receives identical utility levels in the social
states specified by u and v :13

Stationarity (Stat): For all u , v ∈U and c ∈R, u ¥ v if and only if (c , u )¥ (c , v ).

The compensation level in the Compensation Principle can in part be justified by Stationarity
and the following property:

Total Utility (TU): For all u , v ∈U , if u −v is summable, then

u ¥ v if and only if
∞
∑

t=1

(u t −vt )≥ 0. (5)

If¥ is a stationary SWR with this property and u is eventually periodic, then (c , u )∼ u can only
hold if c = ū . To illustrate the argument with a simple example, let u = (a ,b , a ,b , . . . ), so that u
is periodic with period 2. If (c , u )∼ u , then we have (c , c , u )∼ (c , u ) by Stationarity and hence

(c , c , u )∼ u (6)

13Also Asheim et al. (2010) stress the relevance of Stationarity for intergenerational utilitarianism. They motivate
their extension of Basu and Mitra’s relation (10) by the desirability of retaining this axiom.

5



by transitivity. Since (c , c , u )−u = (c−a , c−b , 0, 0, . . . ), combining (5) and (6) gives (c−a )+(c−
b ) = 0, i.e., c = (a +b )/2, the average of u = (a ,b , a ,b , . . . ). Here we only needed to assume that
(5) holds when u −v has at most a finite number of nonzero entries, and for this it is enough to
impose Strong Pareto, Additivity, and Anonymity.14 So if we add Stationarity to this axiom set,
then (c , u )∼ u implies c = ū for all eventually periodic u (Proposition 1 in Appendix A.1).

This implication (if (c , u ) ∼ u , then c = ū ) holds on a larger set of streams, including all
convergent and consequently all summable streams, if we add a continuity assumption to the
axioms above. We defer the precise definition of this set of streams to Appendix A.1. The conti-
nuity assumption in question relates preferences over infinite streams to preferences over long,
finite-horizon truncations: for u ∈U and n ∈N, we write u [n ] = (u 1, u 2, . . . , u n , 0, 0, . . .) and de-
fine15

Continuity (Cont): For all u , v ∈ U , if there is an N ∈ N with u [n ] � v[n ] for all n ≥ N ,
then u ¥ v .

A similar axiom is used by Brock (1970), who writes that his condition captures the idea that
“decisions on infinite programs are consistent with decisions on finite programs of length n
if n is large enough”. For a discussion of the two axioms and their relation to the Total Utility
property, see Jonsson and Voorneveld (2015).

THEOREM 2. The LDU criterion satisfies Anonymity, Stationarity, Total Utility, and Continuity.

The first three properties in Theorem 2 are easily verified. Anonymity is implied by the
Total Utility property, which in turn is a direct consequence of Abel’s theorem. To verify that
LDU satisfies Continuity, we use a generalization of the Frobenius theorem that relates upper
and lower Cesàro and Abel-limits.16 For d ∈U and δ ∈ (0, 1), define sn =

∑n
t=1 d t , n ≥ 1, and

Cn (d ) =
s1+ s2+ · · ·+ sn

n
, (7)

σδ(d ) =
∞
∑

t=1

δt−1d t . (8)

Many properties of the LDU criterion are consequences of the following result:

LEMMA 1. For d ∈U ,

lim inf
n→∞

Cn (d )≤ lim inf
δ→1−

σδ(d )≤ lim sup
δ→1−

σδ(d )≤ lim sup
n→∞

Cn (d ). (9)

This result will also help us in the next section when we compare our criterion to the over-
taking criterion and the catching-up criterion.

14 See Basu and Mitra (2007, Lemma 1) or Jonsson and Voorneveld (2015, Lemma 1).
15Our convention of considering streams with u t = 0 for t ≥ n follows Brock (1970) and Basu and Mitra (2007).

With Additivity, replacing the zeros by any other numbers would give the same condition as long as generations
t > n receive the same welfare in the two social states. For instance, if Additivity is satisfied, then Continuity is
equivalent to a relaxation of the “weak preference continuity” axiom in Asheim and Tungodden (2004, p. 223): for
all u , v ∈U , if there is an N ∈Nwith (u 1, . . . , u n , vn+1, vn+2, . . .)� v for all n ≥N , then u ¥ v .

16The inequalities in Lemma 1 are well-known from the literature on stochastic games; see Lippman (1969),
Bishop et al. (2014) and Sennott (1999). These references do not contain a proof of the result in the generality
that we stated it. Our proof is a slightly rewritten version of one suggested by an anonymous referee.
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3. COMPARISON TO OTHER UTILITARIAN CRITERIA

In this section, we compare the limit-discounted utilitarian criterion to three other utilitarian
social welfare relations:17 the criterion ¥BM of Basu and Mitra (2007) where

u ¥BM v ⇐⇒ there is a T0 ∈Nwith
T0
∑

t=1

(u t −vt )≥ 0 (10)

and u t −vt ≥ 0 for all t ≥ T0,

the overtaking criterion ¥W of von Weizsäcker (1965) where

u ¥W v ⇐⇒ there is a T0 ∈Nwith
T
∑

t=1

(u t −vt )≥ 0 for all T ≥ T0, (11)

and the catching-up criterion ¥G of Gale (1967) where

u ¥G v ⇐⇒ lim inf
T→∞

T
∑

t=1

(u t −vt )≥ 0. (12)

Our discussion will address the following (related) questions: Which properties from the previ-
ous section do these criteria satisfy? And to what extent do preferences according to LDU agree
with those of the other criteria?

Table 1 lists the properties of LDU established in the previous section and indicates which
of these properties are satisfied by overtaking, catching-up, and the Basu-Mitra criterion.

SP Add CP Ano Stat Cont TU

LDU ¥LDU + + + + + + +

Basu-Mitra ¥BM + + − + + − −

overtaking ¥W + + − + + + −

catching-up ¥G + + − + + + +

Table 1: Social welfare relations and properties they do (+) or do not (−) satisfy.

The properties that are satisfied by the three criteria are straightforward to verify and known
from the literature.18 We illustrate violations of properties in two examples where the overtak-
ing criterion ¥W and the catching-up criterion ¥G have been criticized.19

EXAMPLE 1. Let u ∈ U be a summable stream with strictly positive entries and let v = (0, u ).
Then

∑T
t=1(u t − vt ) = u T > 0 for all T ≥ 1. So u is strictly preferred to v = (0, u ) under over-

taking. Since the two streams have the same sum, this example illustrates that overtaking does
not have the Total Utility property. Nor does the Basu-Mitra criterion, which cannot compare

17Our definitions of the overtaking and catching-up criterion follow Gale (1967).
18See Basu and Mitra (2007) and Jonsson and Voorneveld (2015).
19Basu and Mitra (2007, p. 361) consider a version of Example 1. Versions of Example 2 have been discussed by,

among others, Lauwers (1995, p. 348), Lauwers (1997, p. 225), Fleurbaey and Michel (2003, p. 783), Asheim and
Tungodden (2004, p. 229), Heal (2005, p. 1115), Banerjee (2006, p. 333), Basu and Mitra (2007, p. 360), Dutta (2008,
Sec. IV), Asheim et al. (2010, p. 520), and Asheim and Banerjee (2010, p. 164).
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u and v .20 LDU and catching-up do have the Total Utility property: they find u and (0, u )
equivalent.

The next example shows that the Compensation Principle and Strong Pareto allow us to
compare streams that have appeared frequently in the literature, but which are not comparable
using overtaking, catching-up, or the Basu-Mitra criterion.

EXAMPLE 2. Consider the periodic stream u = (1, 0, 1, 0, . . .) and let v = (c , u ) for some real num-
ber c . Since u − v = (1− c ,−1, 1,−1, . . .), Basu and Mitra’s criterion does not compare u and v
for any value of c . We have

T
∑

t=1

(u t −vt ) =−
T
∑

t=1

(vt −u t ) =

(

−c +1 if T is odd,

−c if T is even.

So u and v are not comparable with the overtaking criterion or the catching-up criterion if c ∈
(0, 1). Both criteria rank u above v if c ≤ 0. In particular, they prefer (1, 0, 1, 0, . . .) to (0, 1, 0, 1, . . .).
The LDU criterion compares u and v for all c . Indeed, for δ ∈ (0, 1),

∞
∑

t=1

δt−1(u t −vt ) =
∞
∑

t=1

(−δ)t−1− c =
1

1+δ
− c .

Letting δ go to one, the Abel sum of
∑∞

t=1(u t −vt ) is 1/2−c . This means that u ∼LDU v if c = 1/2,
u �LDU v if c < 1/2, and v �LDU u if c > 1/2. From the axioms: we have u ∼LDU v for c = 1/2 by
the Compensation Principle and therefore strict preference for all other c by Strong Pareto.

The next example contains a pair of streams over which catching-up has a strict preference,
but LDU is indifferent; Example 1 gave a corresponding result for overtaking.

EXAMPLE 3. Define u ∈U by setting u t = 1 if t = 2n for some n ∈N and u t = 0 otherwise. Then
u −(0, u ) = (u 1, u 2−u 1, u 3−u 2, . . .) has partial sums sn = u n , which means that u �G (0, u ). But
since ū = 0, the Compensation Principle implies that u ∼LDU (0, u ).

To describe to what degree LDU agrees with overtaking, catching up, and the Basu-Mitra
criterion, we use the following terminology: Given two SWRs ¥A and ¥B on U , say that ¥B

weakly extends ¥A if for all u , v ∈ U , u ¥A v implies u ¥B v . If, in addition, for all u , v ∈ U ,
u �A v implies u �B v , we say that ¥B extends ¥A .

THEOREM 3. The following relations hold between the LDU criterion ¥LDU, the Basu-Mitra crite-
rion ¥BM, overtaking ¥W, and catching-up ¥G:

(i) ¥LDU extends ¥BM.

(ii) ¥LDU weakly extends ¥G and ¥G weakly extends ¥W.

(iii) ¥LDU does not extend ¥W: there are u , v ∈U with u �W v and u ∼LDU v .

(iv) ¥LDU does not extend ¥G: there are u , v ∈U with u �G v and u ∼LDU v .

In summary, if a pair of streams can be compared using overtaking, catching-up, or the
Basu-Mitra criterion, then the same is true for LDU. But we also saw that LDU can compare
streams that have appeared frequently in the literature, but which are not comparable using
any of these other criteria. The pairs of streams in Example 1 and 2 are all in D. Theorem 1
shows that all pairs of streams in this domain can be compared using Additivity, Strong Pareto,
and the Compensation Principle.

20Since
∑∞

t=1 u t =
∑∞

t=1 vt and
∑T

t=1(u t − vt ) > 0 for every T , there is no T0 with u t ≥ vt for all t ≥ T0. Therefore,
u ¥BM v does not hold. Likewise, v ¥BM u does not hold. This also shows that ¥BM violates Continuity: u [n ] �BM v[n ]
for all n , but u and v are not comparable.
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4. LIMITATIONS

We conclude our study of the LDU criterion by providing examples of streams that it does not
allow us to rank. By means of these examples, we briefly discuss the extent to which LDU is
characterized by properties that we have established.

Lemma 1 tells us that for all u , v ∈U ,

lim inf
δ→1−

σδ(u −v )≥ lim inf
n→∞

Cn (u −v ). (13)

If the partial sums
∑n

t=1(u t − vt ), n ≥ 1, are bounded below or above and limδ→1−σδ(u − v )
exists, then the inequality in (13) is an equality.21 That we may have strict inequality in (13)
even with bounded partial sums was demonstrated by, among others, Liggett and Lippman
(1969). We use an example from Bishop et al. (2014, Sec. 4) to define a pair of streams that¥LDU

does not to compare:

EXAMPLE 4. Define a = (a 1, a 2, . . . )∈U by

a t =

(

0 if k !≤ t < 2k ! for some k ∈N,

1 otherwise.

We then have (Bishop et al., 2014, Proposition 2)

lim inf
n→∞

1

n

n
∑

t=1

a t = 1/2< lim inf
δ→1−

(1−δ)σδ(a ) = 3/4 (14)

and

lim sup
n→∞

1

n

n
∑

t=1

a t = lim sup
δ→1−

(1−δ)σδ(a ) = 1. (15)

If we take u = a − (0, a ), then the partial sums of u equal sn =
∑n

t=1 u t = a n , n ≥ 1. Summation
by parts gives thatσδ(u ) = (1−δ)σδ(a ). By (14) and (15),

lim inf
n→∞

Cn (u ) = 1/2< lim inf
δ→1−

σδ(u ) = 3/4 and lim sup
n→∞

Cn (u ) = lim sup
δ→1−

σδ(u ) = 1.

Consequently, u and v = (r, 0, 0, . . . ) are not ¥LDU-comparable if r ∈ (3/4, 1).

The arguments in the proof of Theorem 1 apply whenever the sequence s = (s1, s2, . . . ) of
partial sums sn =

∑n
t=1(u t − vt ), n ≥ 1, is bounded and has a well-defined average. But if s̄ is

undefined, then the Compensation Principle does not help us compare s and (0, s ). Lemma 1
gives us that for all u ∈ U and c ∈ R: (c , u ) ¥LDU u if c ≥ lim supn→∞

1
n

∑n
t=1 u t , where u ¥LDU

(c , u ) if c ≤ lim infn→∞
1
n

∑n
t=1 u t . However, characterizing LDU on larger domains is made

difficult by the complicated relations between upper and lower Abel- and Cesàro-limits (see
Bishop et al. (2014) and Example 4 above). We leave this investigation for future work.

A. APPENDIX

This appendix contains all proofs. Proposition 1 in Section A.1 gives axiomatic support for
using the average in our Compensation Principle. Section A.2 to A.5 contain proofs of Theorem
1, Lemma 1, Theorem 2, and Theorem 3, respectively. In the proofs, we refer to axioms using
their abbreviations from Section 2.

21This follows from the Hardy-Littlewood theorem (Duren, 2012, p. 184).
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A.1 Motivating the Compensation Principle

We will argue that if a stream u on average gives each generation a utility of ū , then c = ū is
a reasonable compensation in a compensated postponement (c , u ) of u : using some of our
earlier axioms, Proposition 1 shows — on a fairly large set of well-behaved streams — that
(c , u ) ∼ u can only hold if c = ū . We will say that a stream u ∈ U has a regular average if
(i) its average ū is well-defined and (ii) for every ε > 0 the average of u over sufficiently long,
but finite segments of consecutive coordinates differs from ū by at most ε. That is, u ∈U has
a regular average if ū is well-defined and for every ε > 0 there is an N ∈N such that

�

�

�

�

�

1

n

t0+n
∑

t=t0+1

u t − ū

�

�

�

�

�

< ε for all t0 ∈N and n ≥N .

For instance, the set of streams with a regular average contains all streams that are eventually
periodic, summable, or convergent.22

PROPOSITION 1. Let ¥ be a SWR on U that satisfies Strong Pareto, Anonymity, Additivity, and
Stationarity. If u ∈U is eventually periodic and c ∈R, then

(i) (c , u )¥ u implies c ≥ ū .

(ii) u ¥ (c , u ) implies c ≤ ū .

(iii) (c , u )∼ u implies c = ū .

If ¥ also satisfies Continuity, these implications hold for all u ∈U with a regular average.

PROOF. Recall from footnote 14 that SP, Ano, and Add imply that for all u , v ∈ U where u − v
has only finitely many nonzero entries:

u ¥ v ⇐⇒
∞
∑

t=1

(u t −vt )≥ 0. (16)

Assume that SWR¥ onU satisfies SP, Ano, Add, and Stat. Let u ∈U be eventually periodic and
let c ∈R. To prove (i), assume that (c , u )¥ u . Since u is eventually periodic, there are k , p ∈N
with u t+p = u t for t ≥ k . If p = 1, then u = (u 1, . . . , u k , u k , u k , . . .) is eventually constant, so
(c , u )−u has a finite number of nonzero entries that sum to c −u k . Since SP, Ano, and Add
are satisfied, (16) implies that c ≥ u k = ū . If p ≥ 2, we have (c , c , u ) ¥ (c , u ) ¥ u by Stat and
(c , c , u )¥ u by transitivity. Iterating (if p > 2) gives (c p , u )¥ u , where c p is a short-cut notation
for p consecutive coordinates equal to c . Since u t = (c p , u )t for all t > k + p , the difference

(c p , u )− u has finitely many nonzero entries and sum p c −
∑k+p

t=k+1 u t . By (16), (c p , u ) ¥ u

implies that that this sum is nonnegative: c ≥
∑k+p

t=k+1 u t /p = ū .
(ii): By Add, u ¥ (c , u ) implies (−c ,−u )¥−u , which by (i) implies −c ≥−ū , so that c ≤ ū .
(iii): This follows from (i) and (ii).

Now add axiom Cont. We prove implication (i) for streams with a regular average; (ii) and
(iii) follow as above. So let u ∈U and c ∈R be such that u has regular average ū and (c , u )¥ u .
By Stat and transitivity, (c N , u )¥ u for all N ∈N. To prove that c ≥ ū , suppose, to the contrary,
that c < ū . We obtain a contradiction by showing that u � (c N , u ) for some N ∈N.

22A stream with an average that is not regular is u = (0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, . . .), consisting of a zero followed by
a one, then two zeros followed by two ones, three zeros followed by three ones, etc. Its average is 1/2. But it does
not have a regular average: for every n , the stream contains infinitely many segments of n consecutive zeros (and n
consecutive ones).
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If c < ū , there are b ∈Rwith c <b < ū and N ∈N such that the average of u over any n ≥N
consecutive generations differs from ū by at most ε ≡ (ū −b )/2. Let d = u − (b N , u ). For n >N :

n
∑

t=1

d t = u n +u n−1+ · · ·+u n−N+1−N b

=N ((u n +u n−1+ · · ·+u n−N+1)/N −b )

≥N (ū − ε−b )

=Nε.

Since d [n ] has finitely many nonzero entries and positive sum, (16) implies that d [n ] � (0, 0, 0, . . .)
for all n > N . By Cont, we have d ¥ (0, 0, 0, . . .). Hence u ¥ (b N , u ) by Add. By SP and b > c :
u � (c N , u ), which is our contradiction.

A.2 Proof of Theorem 1

We start with a lemma linking Strong Pareto, Additivity, and the Compensation Principle to
summability:

LEMMA 2. Let the SWR ¥ satisfy Strong Pareto, Additivity, and the Compensation Principle. For
u , v ∈U , if the series

∑∞
t=1(u t −vt ) is Cesàro-summable and has bounded partial sums, then

u ¥ v ⇐⇒ lim
n→∞

Cn (u −v )≥ 0. (17)

In particular, ¥ has the Total Utility property.

PROOF. For u and v as in the lemma, Add gives u ¥ v if and only if u − v ¥ (0, 0, . . .). The
sequence s = (s1, s2, . . .) of partial sums sn =

∑n
t=1(u t − vt ), n ∈ N, is bounded and u − v =

s − (0, s ). So

u ¥ v ⇐⇒ s − (0, s )¥ (0, 0, . . .). (18)

By CP, s ∼ (s̄ , s ), where s̄ = limn→∞Cn (u − v ) by definition (7). By Add, s − (0, s )∼ (s̄ , s )− (0, s ).
Since

(s̄ , s )− (0, s ) = (s̄ , 0, 0, . . .), (19)

equation (18) implies

u ¥ v ⇐⇒ (s̄ , 0, 0, . . .)¥ (0, 0, 0, . . .). (20)

By reflexivity and SP, (s̄ , 0, 0, . . .)¥ (0, 0, 0, . . .) holds if and only if s̄ ≥ 0. With (20), this gives (17).
For TU, if

∑∞
t=1(u t −vt ) is convergent, it is Cesàro-summable to the same sum. That is, s is

bounded (s ∈U ) and s̄ =
∑∞

t=1(u t −vt ). By (17), u ¥ v if and only if
∑∞

t=1(u t −vt )≥ 0.

This leaves us properly equipped for the proof of Theorem 1:

Proof of Theorem 1. For δ ∈ (0, 1) and u ∈ U , we use the notation σδ(u ) for
∑∞

t=1δ
t−1u t . We

first show that ¥LDU is a social welfare relation. It is reflexive: σδ(u − u ) = σδ(0, 0, . . .) = 0 for
all u ∈ U and δ ∈ (0, 1). It is transitive: let u , v, w ∈ U have u ¥LDU v and v ¥LDU w . For each
δ ∈ (0, 1), the discounted sums satisfy

σδ(u −w ) =σδ(u −v )+σδ(v −w ),
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so taking lower limits and using u ¥LDU v and v ¥LDU w gives

lim inf
δ→1−

σδ(u −w )≥ lim inf
δ→1−

σδ(u −v )+ lim inf
δ→1−

σδ(v −w )≥ 0+0= 0,

i.e., u ¥LDU w . We proceed to the axioms:
SP: If u t ≥ vt for all t ∈N and u t > vt for some t ∈N, the discounted sumσδ(u−v ) is a positive,
increasing function of δ ∈ (0, 1). So limδ→1−σδ(u −v ) exists in (0,+∞] and limδ→1−σδ(v −u ) =
− limδ→1−σδ(u −v )∈ [−∞, 0). So u �LDU v .
Add: For all u , v,α∈U , (u +α)− (v +α) = u −v .
CP: Let u ∈U have a well-defined average ū and let c ∈R. We show that the discounted sum
of d = u − (c , u ) = (u 1− c , u 2−u 1, u 3−u 2, . . .) satisfies

lim
δ→1−

σδ(u − (c , u )) = ū − c . (21)

By Frobenius’s theorem, it suffices to show that the series
∑∞

t=1 d t is Cesàro-summable to ū−c ,
i.e., that its partial sums sn =

∑n
t=1 d t satisfy

s1+ · · ·+ sn

n
→ ū − c as n→∞.

But that is easy: the partial sum of the first n ∈N terms is sn = u n − c , so

s1+ · · ·+ sn

n
=

u 1+ · · ·+u n

n
− c .

Since ū exists by assumption, the right-hand side tends to ū − c as n →∞. This proves (21). It
follows that (c , u )∼LDU u if c = ū .

For the second assertion of the theorem, let SWR ¥ satisfy SP, Add, and CP. Let (u , v ) ∈ D.
If d ≡ u −v is summable, the Total Utility property (Lemma 2 for both¥LDU and¥) implies that
u ¥ v if and only if u ¥LDU v .

So assume that d is eventually periodic: there are p , T ∈N with d t+p = d t for all t ≥ T . For
all t ≥ T , we then have d̄ =

∑t+p
i=t+1 d i /p , i.e., p d̄ =

∑t+p
i=t+1 d i .

Case 1: If d̄ = 0, then
∑t+p

i=t+1 d i = 0 for all t ≥ T . Then sn =
∑n

t=1 d t , n ≥ 1, is eventually pe-
riodic, so that s is bounded and s̄ is well-defined. Since both ¥LDU and ¥ satisfy the conditions
of Lemma 2,

u ¥ v ⇐⇒ s̄ ≥ 0 ⇐⇒ u ¥LDU v.

Case 2: If d̄ 6= 0, let’s suppose that d̄ > 0: the argument when d̄ < 0 is similar. We show that
u � v and u �LDU v both hold.

Since d = u − v is bounded, there is an M ∈ [0,∞) such that −M ≤ d t ≤ M for all t ∈ N.
Then also−M ≤ d̄ ≤M . Because d̄ > 0 implies sn →+∞, we can choose N ≥ T with sN ≥ 2p M .
We abbreviate k ∈N consecutive zero coordinates by 0k and define

u ′ = u − (0N , p d̄ , 0p−1, p d̄ , 0p−1, p d̄ , 0p−1, . . .).

Since u − v and (0N , p d̄ , 0p−1, p d̄ , 0p−1, p d̄ , 0p−1, . . .) are eventually periodic with period p and

average d̄ , stream u ′−v is eventually periodic with period p and average 0. Arguing as in Case
1, its sequence of partial sums s ′n =

∑n
t=1(u

′
t − vt ), n ≥ 1, is bounded, i.e., s ′ = (s ′1, s ′2, . . .) ∈ U ,

and eventually periodic with period p . We claim that s ′n ≥ 0 for all n > N . By periodicity, it
suffices to show that s ′N+k ≥ 0 for all k = 1, . . . , p . By construction,

s ′N+k = sN −p d̄ −
k
∑

m=1

(u N+m −vN+m )≥ 2p M −p M −k M ≥ 0.

12



Since s ′n ≥ 0 for all n >N , s̄ ′ ≥ 0. By CP, s ′ ∼ (s̄ ′, s ′), so s ′ ¥ (0, s ′) by SP. By Add, u ′ ¥ v . By SP,
u � u ′. By transitivity, u � v . Since ¥LDU also satisfies Add, SP, and CP, the same arguments
show that u �LDU v .

A.3 Proof of Lemma 1

We prove Lemma 1 slightly more generally, for all real sequences d = (d 1, d 2, . . .) whose dis-
counted sum σδ(d ) is well-defined for each δ ∈ (0, 1). Let sn =

∑n
t=1 d t , n ∈ N. In (9), note

that all upper/lower limits are well-defined in R ∪ {−∞,+∞} and that the second inequality
holds: all infima and suprema are taken over nonempty sets. The first inequality in (9) implies
the third using a sign change: lim supδ→1−σδ(d ) = − lim infδ→1−σδ(−d ), lim supn→∞Cn (d ) =
− lim infn→∞Cn (−d ). So it suffices to prove the first inequality:

lim inf
n→∞

Cn (d )≤ lim inf
δ→1−

σδ(d ).

Summation by parts, first for the sequence d and then for its partial sums, gives

∞
∑

n=1

δn−1d n = d 1+
∞
∑

n=2

δn−1(sn − sn−1)

= (1−δ)
∞
∑

n=1

δn−1sn

= (1−δ)2
∞
∑

n=1

δn−1(s1+ · · ·+ sn ).

So, recalling from (7) that Cn (d ) = (s1+ · · ·+ sn )/n , the discounted sum equals

σδ(d ) =
∞
∑

n=1

δn−1d n = (1−δ)2
∞
∑

n=1

δn−1nCn (d ). (22)

Distinguish three cases. Firstly, if lim infn→∞Cn (d ) =+∞, then (22) and the equality

∞
∑

n=1

nδn−1 =
1

(1−δ)2
(23)

immediately give that also lim infδ→1−σδ(d ) = +∞. Secondly, if lim infn→∞Cn (d ) = −∞, the
inequality lim infn→∞Cn (d )≤ lim infδ→1−σδ(d ) holds trivially, since both lower limits are well-
defined. Finally, suppose that lim infn→∞Cn (d ) is finite. For λ∈R, (22) and (23) give

∞
∑

n=1

δn−1d n −λ= (1−δ2)
∞
∑

n=1

δn−1n (Cn (d )−λ).

Takeλ= lim infn→∞Cn (d ). By definition ofλ, for each ε > 0 there is a T such that Cn (d )−λ≥−ε
for all n > T . Then

∞
∑

n=1

δn−1d n −λ≥ (1−δ2)
T
∑

n=1

δn−1n (Cn (d )−λ)− ε(1−δ2)
∞
∑

n=T+1

δn−1n

≥ (1−δ2)
T
∑

n=1

δn−1n (Cn (d )−λ)− ε. (24)

The first term in (24) tends to 0 as δ → 1−, so lim infδ→1−σδ(d )− λ ≥ −ε. Since ε > 0 was
arbitrary, lim infδ→1−σδ(d )≥λ= lim infn→∞Cn (d ).
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A.4 Proof of Theorem 2

TU: If u −v is summable, then
∑∞

t=1(u t −vt ) = limδ→1−σδ(u −v ) by Abel’s theorem; cf. Duren
(2012, p. 76). (An indirect proof is given by Lemma 2.)
Ano: If v ∈ U is obtained from u ∈ U by permuting two coordinates, then

∑∞
t=1(u t − vt ) = 0.

So Ano follows from TU.
Stat: For all u , v ∈U , lim infδ→1−σδ(u −v ) = (u 1−v1)+ lim infδ→1−σδ((u 2, u 3, . . .)− (v2, v3, . . .)).
Cont: Let u , v ∈ U and N ∈ N be such that u [n ] �LDU v[n ] for all n ≥ N . Since u [n ] and v[n ] are
summable, sn =

∑n
t=1(u t − vt )> 0 for all n ≥N by TU. By Lemma 1, lim infδ→1−σδ(u − v )≥ 0,

i.e., u ¥LDU v .

A.5 Proof of Theorem 3

(i): Since ¥LDU satisfies SP, Ano, and Add, it extends ¥BM; see Basu and Mitra (2007, Theorem 1)
or Jonsson and Voorneveld (2015, Theorem 6).
(ii): By definition,¥G weakly extends¥W. To see that¥LDU extends¥G, let u , v ∈U have u ¥G v :
the partial sums sn =

∑n
t=1(u t −vt ) of u −v satisfy lim infn→∞ sn ≥ 0. Consequently,

lim inf
n→∞

Cn (u −v ) = lim inf
n→∞

s1+ · · ·+ sn

n
≥ 0.

By Lemma 1, also lim infδ→1−σδ(u −v )≥ 0. That is, u ¥LDU v .
Finally, (iii) was illustrated in Example 1, and (iv) in Example 3.
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