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Abstract. Evolutionary theorizing has a long tradition in economics.
Only recently has this approach been brought into the framework of non-
cooperative game theory. Evolutionary game theory studies the robustness of
strategic behavior with respect to evolutionary forces in the context of games
played many times in large populations of boundedly rational agents. This new
strand in economic theory has lead to new predictions and opened up doors to
other social sciences. The discussion will be focused on the following questions:
What distinguishes the evolutionary approach from the rationalistic? What
are the most important ..ndings in evolutionary game theory so far? What are
the next challenges for evolutionary game theory in economics? Doc: esem.tex

1. Introduction
In the past ten years or so economists have become interested in evolutionary game
theory. New models have been developed and results from the biology literature have
been generalized. The economics literature now contains a large number of journal
articles and a few monographs in this ..eld, see the bibliography at the end of the
essay.

The rationalistic approach to game theory assumes one perfectly rational player for
each position in the game, and these players play the game exactly once, the game and
the equilibrium being common or mutual knowledge, see e.g. Tan and Werlang (1988)
and Aumann and Brandenburger (1995). By contrast, the evolutionary approach
assumes that the game in question is played many times by boundedly rational players
who are randomly drawn from large populations and who have little or no information
about the game. These two approaches are complementary, and each has its merit.
In some games the predictions are the same, in others they dicer. Also, there are
dizerences within each of the two approaches. This essay tries to outline the state of
art of evolutionary game theory in economics and compare its predictions with those
in standard non-cooperative game theory.

* This essay is composed of notes for an invited talk held 30 August 1997 at the Econometric
Society European Meeting in Toulouse. | am grateful for comments from Eric van Damme and
Fernando Vega-Redondo to an early draft.
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1.1. The economist’s research routine. Much of current economic research of
the applied theory variant goes as follows:

1. Study an economic issue.
2. Construct a model, solve for its equilibria.

3. Use the equilibria, or a selection of these, as predictions for the eco-
nomic issue.

Suppose that the researcher goes out of his way and shows his work to a non-
economist friend. She asks: Why do you model us as being able to solve any complex
mathematical problem, to form sophisticated expectations about each other and even
coordinate these expectations between us? Why don’t you model people as we are and
as we behave, boundedly rational and not perfectly coordinated? Why not learn from
psychology, sociology, observations from ..eld studies and laboratory experiments?
You, the economist-researcher, answer that you expect that indeed in many situations
people will tend to behave as if they were as smart and well-coordinated as the
imagined agents are in your model, granted, of course, that their environment is
suCciently stationary and that the economic agents are familiar with the interaction,
for example by repeatedly acting in this or similar situations. Suboptimal behaviors
will be selected against in the long run by a trial-and-error process, and market
forces will select against ..rms and ..rm practices that perform poorly. She says: If
this is your justi..cation, why don’t you prove this ”as if” claim? Why don’t you
identify conditions under which boundedly rational economic agents can be expected
to behave according to your rationalistic economic models?

This is ultimately what the economics branch of evolutionary game theory strives
to do. And it is not a Panglossian exercise. The aim is not to justify conventional
equilibrium predictions. The predictions may potentially be, and indeed turns some-
times out to be, sets of non-equilibrium behaviors.

1.2. Limitations to the discussion. Nothing will be said about evolutionary
economics. This is a ..eld by itself within the profession, usually associated with the
work of Schumpeter. Evolutionary economics and evolutionary game theory have
so far developed completely independently from each other. Nothing will be said
about the evolution of preferences. There is a literature on evolutionary selection
of preferences, in particular on the survival value of altruism and risk attitudes.
However, evolutionary game theory takes preferences as ..xed and given. Nothing
will be said about market survival. There is an emerging and potentially important
literature, starting with Winter (1964), followed by Winter (1971), Nelson and Winter
(1982), and recently taken up by Blume and Easley (1992, 1995, 1996), Dutta (1992),
Dutta and Radner (1993), Radner (1995), Vega-Redondo (1997), and Noldeke and
Samuelson (1997). Although the topic is closely related to that of evolutionary game
theory, these two literatures so far dicer methodologically. Hopefully elements of
both will be combined in the future.
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Maybe needless to say, the discussion is also limited by idiosyncratic limitations
to my memory, knowledge and understanding. | apologize for omissions and misrep-
resentations.

2. The Evolutionary Approach
2.1. General characteristics of an evolutionary model. An evolutionary
model combines two processes: one selection process that favors some varieties over
others, and one process that creates this variety, to be called the mutation process.
In evolutionary game theory, the varieties in question are strategies in a game.

In nature, the basic selection mechanism is biological survival and reproduction,
and the mutation process is basically genetic. In the market place, the basic selec-
tion mechanism is economic survival, and the mutation process is experimentation,
innovation and mistakes. In both cases there is also an element of individual and
social learning. In other social and economic interactions, the selection mechanism
can in extreme cases be that of biological or social survival, but under more nor-
mal circumstances individuals and households adapt by way of individual and social
learning.

A qualitative dicerences between evolutionary and rationalistic approaches is that
while the second focuses on individuals and what goes on in their minds, the evo-
lutionary approach usually instead analyzes the population distribution of behaviors
(decision rules, strategies). One could say that the selection process replaces the
mental process of choice made by rational players in classical non-cooperative game
theory, while the mutation process replaces the mental process of exploring the strat-
egy set and strategies’ payo= consequences.!

The evolutionary approach potentially closes the open-endedness of the bounded-
rationality approach: which out of the plethora of boundedly rational behaviors will
survive in a population of strategically interacting agents? This requires, of course,
that we have a clear picture of the nature of the relevant selection and mutation
processes. There is still a long way to go.

See Selten (1991) for a discussion of rationalistic and evolutionary theories of
economic behavior.

2.2. Evolutionary theorizing in economics. Evolutionary explanations are
not new to economics. Indeed, they can be found in the social sciences much be-
fore Darwin. For example, Adam Smith writes: “The division of labor, from which
so many advantages are derived, is not originally the ecect of any human wisdom,
which foresees and intends that general opulence to which it gives occasion. It is
the necessary, though very slow and gradual consequence of a certain propensity in
human nature which has in view no such extensive utility; the propensity of truck,
barter, and exchange one thing for another.” (Wealth of Nations, p.25)

LEasley and Rustichini (1996) develop an axiomatic model of decision processes in the mind of
an economic agent, including an evolutionary mechanism of how decision rules are mentally selected
in an uncertain environment.



WHAT HAVE WE LEARNED FROM EVOLUTIONARY GAME THEORY SO FAR?4

Evolutionary thinking can also be found in the writings of Malthus, Marshall,
Schumpeter and Hayek.

Turning to game theorists, we note that John Nash, already when suggesting his
equilibrium concept, had in mind two interpretations, one rationalistic and one that
he called the ”mass action interpretation”: It is unnecessary to assume that the
participants have full knowledge of the total structure of the game, or the ability
and inclination to go through any complex reasoning processes. But the participants
are supposed to accumulate empirical information on the relative advantages of the
various pure strategies at their disposal. To be more detailed, we assume that there
is a population (in the sense of statistics) of participants for each position of the
game. Let us also assume that the ’average playing’ of the game involves n partici-
pants selected at random from the »n populations, and that there is a stable average
frequency with which each pure strategy is employed by the *average member’ of the
appropriate population. Since there is to be no collaboration between individuals
playing in dicerent positions of the game, the probability that a particular n-tuple of
pure strategies will be employed in a playing of the game should be the product of
the probabilities indicating the chance of each of the n pure strategies to be employed
in a random playing.” (John Nash, Ph.D. thesis, pp. 21-22.) Nash claims that this
leads to play of a Nash equilibrium: “Thus the assumption we made in the 'mass
action’ interpretation led to the conclusion that the mixed strategies representing the
average behavior in each of the populations form an equilibrium point.” (op.cit., p.
22)

Current research on learning and evolution is done much in the spirit of this
interpretation.

3. Evolutionary Game Theory

3.1. The evolutionary stability concept. A key concept in evolutionary game
theory is that of an evolutionarily stable strategy (ESS), a concept due to Maynard
Smith and Price (1973), see also Maynard Smith (1974,1982). Such a strategy is
robust to evolutionary pressures in a speci..c sense: a population playing such a
strategy is uninvadable by any other strategy. Suppose pairs of individuals are re-
peatedly drawn at random from a large population to play a symmetric (and ..nite)
two-person game, and suppose that initially all individuals play a certain pure or
mixed strategy = in the game. Now let in a small population share of individuals
who all play some other pure or mixed strategy y. The ”incumbent” strategy x is
evolutionarily stable if, for each such "mutant” strategy y, there exists a positive
’invasion barrier” such that if the population share of individuals playing the mutant
strategy y falls below this barrier, then = earns a higher (expected) payo= than y in
the post-entry population.

Formally: for each strategy y # x the following inequality should hold for all
su€ciently small ¢ > 0

ulz,(l1-e)z+ey]>uly, (1 -e)z+eyl, 1)
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where the expression on the left-hand side denotes the (expected) payo= to strategy
x when played against the mixed strategy (1 — ¢) z + ey that represents the post-
entry population mix, and the expression on the right-hand side likewise denotes the
(expected) payox= to strategy y.

A useful characterization of evolutionary stability, indeed its original de..nition,
is that a strategy z is evolutionarily stable if and only if (a) it is a best reply to
itself, (b) it is a better reply to all other best replies than these are to themselves.
To see that (a) is necessary it is su€cient to observe that otherwise there would
exist a better reply y to z. Represented in a su€ciently small population share this
mutant” strategy would almost always meet strategy = and hence earn more than
x on average. Likewise, (b) is necessary because otherwise there would be some
alternative best reply y to z which would earn the same payo= as x when meeting x
and at least as much as = when meeting y, and hence y would on average earn more
in the post-entry population.

Note that the evolutionary stability criterion does not explain how a population
arrives at such a strategy. Instead, it asks whether, once reached, a strategy is robust
to evolutionary pressures. Note also that evolutionary stability is a robustness test
against a single mutation at a time. It does not deal with situations in which two
or more “mutant” strategies are simultaneously present in the population. It thus
implicitly treats mutations as su€ciently rare events so that the population has time
to return to status quo before another mutation occurs.

Despite its biological stance, evolutionary stability also provides a relevant ro-
bustness criterion for human behaviors in a wide range of situations. Evolutionary
stability then requires that any small group of individuals who try some alternative
strategy do less well than the individuals who stick to the ”incumbent” strategy. Con-
sequently, individuals who use the incumbent strategy have no incentive to change
their strategy and the latter have an incentive to switch to the incumbent strategy.
An evolutionarily stable strategy in such a social setting may be thought of as a
convention or an established code of conduct.

Unfortunately, many games have no evolutionarily stable strategies. Accordingly,
researchers have investigated weakenings and set-valued versions of evolutionary sta-
bility, see Maynard Smith (1982), Thomas (1985a,b) and Swinkels (1992a,b). More-
over, the ESS concept does not fruitfully generalize to n-player games. Essentially,
it then requires strict Nash equilibrium play, i.e., that each strategy should be the
unique best reply to the strategy pro..le, see Selten (1980,1983,1988).

3.2. The replicator dynamics. The replicator dynamics is an explicit model of
a selection process, specifying how population shares associated with dicerent pure
strategies in a game evolve over time. The mathematical formulation of the replicator
dynamics is due to Taylor and Jonker (1978). They imagine a large population of
individuals who are randomly matched over time to play a ..nite symmetric two-player
game, just as in the setting for evolutionary stability. However, here individuals only
play pure strategies. A population state is a distribution x over pure strategies. Such
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a state is mathematically equivalent with a mixed strategy in the game.

If the payo®s in the game represent biological ..tness, i.e., the number of oaspring,
and each child inherits its single parent’s strategy, then the number of individuals
using pure strategy 7 will (in a large population) grow exponentially at a rate that
equals the (expected) payor= u(ef, ) to pure strategy i when played against the mixed
strategy = that represents the current strategy distribution in the population. It
follows that the growth rate of the population share using any pure strategy i equals
the dicerence between the strategy’s payo= and the average payo= in the population.
The latter is identical with the (expected) payo= u(z,z) to mixed strategy = when
played against itself. This is the single-population replicator dynamics for symmetric
two-player games:

T = [u(ei,x) — u(z, :1:)} T (2)

Note that the best pure replies to the current population state = have the highest
growth rate in the population, the second-best pure replies have the second-highest
growth rate etc. However, although more successful pure strategies grow faster than
less successful ones, the average payo= in the population need not grow over time. The
reason for this possibility is that if an individual is replaced by an individual using a
better strategy, the opponents meeting this new individual may receive lower payo®s.
This is for example the case in a Prisoners’ Dilemma game. If initially virtually all
individuals play “cooperate” then they will gradually switch to “defect,” and the
average payo= will fall. However, if the game is doubly symmetric in the sense that
the two players always receive equal payoss, then the Fundamental Law of Natural
Selection does hold: the average payo= in the population grows over time, although
not necessarily to a global maximum (Losert and Akin, 1983). This is for example
the case in a coordination game, where all individuals gradually move toward the
same pure strategy.

The replicator dynamics can be readily generalized to n-player games, played by
individuals randomly matched in n-tuples from n population, one for each player
position, just as in Nash’s mass action interpretation. There are two versions of
the n-population replicator dynamics, one due to Taylor (1979), and another due to
Maynard Smith (1982).

More generally, we will refer to (single- and multiple-population) selection dy-
namics in the following two categories. Payo=-positive selection dynamics, where all
pure strategies that perform above average have positive growth rates, and all pure
strategies that perform below average have negative growth rates. Weakly payoa-
positive selection dynamics, where at least some pure strategy that performs above
average (granted such a strategy exists) has a positive growth rate. Both versions
of the n-population replicator dynamics are payo=-positive, and all payo=-positive
selection dynamics are weakly payo=-positive.
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4. Learning Models and Selection Dynamics
One can divide learning models into three broad categories, belief-based learning,
reinforcement learning, and learning by imitation. It has recently been shown that
the replicator dynamics results from certain models in the last two categories.

4.1. Reinforcement learning. A central model in the psychology literature on
individual learning is the so-called reinforcement model due to Bush and Mosteller
(1951). The basic idea goes back to The Law of Erect (Thorndike, 1898): “Choices
that have led to good outcomes in the past are more likely to be repeated in the
future”.?

The Bush-Mosteller reinforcement learning model, and generalizations of it, have
been used in a number of laboratory experiments where human subjects play games,
see Roth and Erev (1995), Erev and Roth (1997), and Camerer and Ho (1997).
Unfortunately, little is known about the general mathematical properties of these
models.

However, Borgers and Sarin (1997) make a theoretical comparison of Cross’ (1973)
version of Bush’s and Mosteller’s (1951) learning model with the (Taylor 2-populations)
replicator dynamics. While this learning process is stochastic and evolves in discrete
time, the replicator dynamics is deterministic and evolves in continuous time. Borg-
ers and Sarin show that, in an appropriately constructed continuous time limit, their
learning process is approximated, over bounded time intervals, by the replicator dy-
namics.

More exactly, they study a ..nite two-player game played repeatedly in rounds
n = 1,2, ..., between a ..xed pair of players who use mixed strategies. Each player
updates the probabilities with which she uses the pure strategies at her disposal as
follows. If player 1 (likewise for player 2) in round n of the game uses pure strategy
k and obtains a positive payoa Vj(n), a stochastic variable that depends on the
random choice made by player 2, then she increases her future probability for using
this strategy, the more so the higher is the payoa. Conditional on having played
strategy & in round n, her probabilities in round n + 1 are updated as follows:

{ Xi(n+1) = Xp(n) + 6Vi(n) [1 — Xi(n)] 3)
Xh(n -+ 1) = Xh(n) — 5Vk(n)Xh(n) Yh 7§ k

Player 2 updates her choice probability vector Y in the same way. All payogs are
assumed to lie in the open unit interval.> Hence all choices are reinforcing; once a
strategy has been used its probability is increased.

Starting from any initial probability vectors X (0) = z° and Y (0) = y°, equations
(3) de..ne a Markov chain {X(n),Y (n)} ~  in the game’s mixed-strategy space. The
parameter 6 > 0 represents the time between two rounds of the game: ¢ = én is the
”real” time at which round n is played. Borgers and Sarin obtain their continuous-
time limit of the this process, evaluated at any ..nite real” time ¢, by letting n — oo

2Note that choice is implicitly taken to be probabilistic in the citation.
3The payoss in this model cannot be interpreted as von Neumann-Morgenstern utilities.
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and 6 — 0 in such a way that én = t. Hence, rounds are played at shorter and shorter
time intervals and probabilities are adapted in proportionately smaller amounts. They
show that in this limit the process places unit probability on the state (z(¢), y(¢)) that
the replicator dynamics would have reached at time ¢ if its initial state at time zero had
been (z°,4°). In this sense, the replicator dynamics approximates the reinforcement
dynamics (3) over bounded time intervals.

However, the asymptotic properties of the two models are quite distinct. To see
the intuition for this discrepancy, suppose, for instance, that the payo= to player 1
is constant - independent both of her strategy choice and that of player 2. Let the
initial state of player 1 in the reinforcement dynamics assign equal probabilities to all
pure strategies available to player 1. Likewise, let the initial state of the replicator
dynamics assign equal population shares to all pure strategies. The solution to the
replicator dynamics is clearly constant: all population shares remain equal forever.
However, a realization of the reinforcement dynamics may easily converge over time
to any one of the pure strategies available to player 1. For the pure strategy that
happens to be drawn in the ..rst round will have a higher probability to be drawn in
the next round etc., a property of the reinforcement dynamics that makes it possible
for player 1 to ”lock in” on anyone of her pure strategies over time (with a priori equal
probability for each pure strategy to be so selected). Borgers and Sarin show that
for any ..nite two-player game the reinforcement dynamics converges with probability
one to a pure strategy pro..le - unlike the replicator dynamics.

4.2. Learning by way of imitation.

A. Aspiration levels. Gale, Binmore and Samuelson (1995) provide a simple
model of social learning in a ..nite but large population of individuals playing pure
strategies. Each individual maintains an aspiration level for the payo= to be earned
in the game. Again at discrete times 0, 6, 26, ..., where 6 > 0 is small, the population
share 6 of individuals, drawn at random from the population, compare their current
payoas with their aspiration levels. If an individual’s realized payo= falls below her
aspiration level then she imitates a randomly drawn individual in the population,
with equal probability for all other individuals in the same player population.

It follows that if aspiration levels have a rectangular distribution (over some in-
terval containing all possible payoa values) in the population, then the probability
for imitation is linearly decreasing in the expected payo= to the individual’s current
strategy. The authors show that for small ¢ this process can be approximated by the
replicator dynamics over bounded time intervals.

B. Review impulses. Alternatively one may view individual strategy adapta-
tion as a stochastic process in continuous time. Suppose that every now and then each
individual in a ..nite population gets an impulse to revise her (pure) strategy choice.
If these impulses arrives according to i.i.d. Poisson processes, then the probability
of simultaneous impulses is zero, and the aggregate process is also a Poison process.
Moreover, the intensity of the aggregate process is just the sum of the intensities of
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the individual processes. If the population is large, then one may approximate the
aggregate process by deterministic fows given by the expected values.

Bjornerstedt and Weibull (1996) study a number of such models, where revising
individuals imitate other individuals in their own player population, and show that
a number of payoz-positive selection dynamics, including all three versions of the
replicator dynamics, may be so derived.* In particular, if the individual revision rate
is linearly decreasing in the expected payoa to her strategy (or to the individual’s
latest payoz realization), then the intensity of each pure strategy’s Poisson process
will be proportional to its population share, and the proportionality factor will be
linearly decreasing in its expected payo=. If every revising individual selects her future
strategy by imitating a randomly drawn individual in their own player population,
then the resulting fow approximation is again the replicator dynamics.

C. Why imitate. Schlag (1997) analyses the question what imitation rules an
individual should choose, when she now and then has the opportunity to imitate
another individual in the same player position but is otherwise constrained by severe
restrictions on information and memory. He ..nds that if the individual wants a learn-
ing rule that is payo= increasing in all stationary environments, then the individual
should (a) always imitate (not experiment) when changing strategy, (b) never imi-
tate an individual whose payo= realization was worse than her own, and (c) imitate
individuals whose payo= realizations are better than her own, with a probability that
is proportional to this payo= dicerence.

This model is developed for a variety of environments. In the context of a ..nite
two-player game, Schlag imagines pairwise matchings between individuals randomly
drawn from two equally large ..nite populations, one for each player position. In-
dividuals always play pure strategies. After every payoa realization each individual
samples at random another individual in her player population and compares the two
payor realizations. A behavior rule is a function that maps the pair of payo= realiza-
tions and strategies used to a probability distribution over the set of pure strategies
available in the player position of the game, the new strategy to adopt. In other
words, the only data the individual is allowed to use is such a pair of payo= realiza-
tions and pure strategies. In particular, payoz realizations from earlier rounds are
neglected. Moreover, it is assumed that the individual uses the same behavior rule
in all games (decision situations) with the same number of pure strategies (decision
alternatives); i.e., individuals need not know what game they play, it is su€cient that
they know the number of pure strategies at their disposal.

A behavior rule that results in a weakly increasing expected payo= in any such
game, and for any ..xed strategy distribution in the opponent population, is called
improving. The main result in the paper is a characterization of all such rules. One
feature of improving rules is that they are imitative: an individual either sticks to
her original strategy or adopts the sampled individual’s strategy; she never switches

4The approximations in Bjornerstedt and Weibull (1996) are heuristic. Rigorous approximation
techniques are adapted to this setting in Benaim and Weibull (1997).
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to a third strategy.

A behavior rule is said to dominate the improving rules if there is no improving rule
that yields a higher expected rate of payoa improvement in some game and against
some strategy distribution in the opponent population. Schlag identi..es a certain
behavior rule that dominates the improving rules, and which has properties (a)-(c)
given above. This proportional imitation rule is itself an improving rule and is shown
to have a number of other attractive properties. Schlag shows that a discrete-time
version of the (Taylor two-population) replicator dynamics approximates the induced
stochastic process over any given ..nite time horizon, granted the populations are
suCciently large.

Remark: In an earlier version of his paper, Schlag showed that the two above-
mentioned learning rules (subsections A and B), which do not rely on the imitated
individual’s payox, dominate those improving rules that do not depend on the imi-
tated individual’s payo=.

5. Some Results in Evolutionary Game Theory
The focus will here be on explicitly dynamic population models for ..nite n-player
games, where individuals play pure strategies. First deterministic selection dynamics
are studied, then stochastic evolutionary models will be discussed where a determin-
istic or stochastic selection process is combined with a stochastic mutation process.

5.1. In the long-run. An immediate way to study the properties of a determin-
istic dynamic model is to select an initial population state and ’go for a cup of cocee
while the computer runs.” One should then just remember to initially let all pure
strategies be present in the population, since initially extinct strategies will remain
extinct forever in a selection process. Such solution trajectories will be called interior.
The solution trajectory may or may not settle down over time, i.e., may converge or
diverge.

A. Convergence. If the population state does converge, what is the nature
of the long-run limit state? It turns out that in any weakly payo=-positive selec-
tion dynamics, and along any convergent interior solution trajectory, the limit state
necessarily constitutes a Nash equilibrium. The researcher, when he or she returns
after the coree break, will ..nd that the population plays (an approximation of) some
Nash equilibrium. This result was ..rst proved for the (single-population) replicator
dynamics by Nachbar (1990). See Weibull (1995) for the more general result.

In sum: if the selection process meets the relatively mild condition of weak payo=-
positivity, and if aggregate behavior settles down over time, then individuals in the
long-run population state will behave as if they all expected a particular Nash equi-
librium played a best reply against this - just as claimed in Nash’s “mass action”
interpretation.

Remark: Use of selection dynamics of the present type presume that whole strate-
gies are selected (get imitated, learned). By contrast, if, in an extensive-form game,
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only the local strategies, or actions, at reached information sets are selected (get im-
itated, learned) then convergence does not necessarily imply Nash equilibrium in the
limit, but some correspondingly weaker equilibrium property such as self-con..rming
equilibrium (see Fudenberg and Levine (1993a,b, 1997), Kalai and Lehrer (1993),
Fudenberg and Kreps (1995), Noldeke and Samuelson (1995)).°

B. Divergence. If an interior solution to a weakly payo=-positive selection dy-
namics converges over time, then we have seen that the surviving strategies are ra-
tional in the sense of being best replies to the resulting mixed-strategy pro..le. The
question hence is what happens if the solution trajectory does not converge. When
there is no hope of equilibrium play in the long run we are lead to the question
whether play is rational.

A basic rationality postulate in non-cooperative game theory is that players never
use pure strategies that are strictly dominated.® This postulate requires no knowledge
of other players’ preferences or behavior. A more stringent rationality-cum-knowledge
postulate is that players never use pure strategies that are iteratively strictly dom-
inated. In addition to avoidance of strictly dominated strategies, this postulate re-
quires that all players know each others payogs, that they know that they know each
others payoss, etc. up to a some ..nite level of mutual knowledge su¢cient to halt
the procedure of iterated elimination of strictly dominated pure strategies (see e.g.
Tan and Werlang (1988)).

A fundamental question in evolutionary game theory thus is whether evolutionary
selection processes do eliminate all strictly dominated pure strategies or even all
iteratively strictly dominated pure strategies. If all iteratively strictly dominated
strategies do vanish, this provides an evolutionary justi..cation for the presumption
that strategically interacting agents behave as if it were mutual knowledge that they
are rational. Clearly, this justi..cation is more compelling the wider is the class of
evolutionary selection processes for which this result is valid.

Akin (1980) shows that all strictly dominated pure strategies vanish along any
interior solution trajectory to the (single-population) replicator dynamics in any (.-
nite) symmetric two-player game. Samuelson and Zhang (1992) extend this conclu-
sion to all iteratively strictly dominated pure strategies in a certain subclass of payo=-

5Self-con..rming equilibrium essentially requires that each player’s strategy be optimal under her
beliefs and that each player’s beliefs are correct on the equilibrium path through the game tree. In
general, this criterion is weaker than that of a Nash equilibrium. However, under certain conditions
these two criteria are outcome equivalent in the sense that to each self-enforcing equilibrium there
exists a Nash equilibrium which induces the same probability distribution over the end-nodes of the
game tree, see Fudenberg and Levine (1993a,b).

A pure strategy is strictly dominated if there is some pure or mixed strategy that yields a higher
payoa against all strategy pro..les in the game. A pure strategy is iteratively strictly dominated if
it is strictly dominated in the original game G, or in the reduced game G’ obtained by elimination
from G of all strictly dominated pure strategies in G, or in the further reduced game G” obtained
by elimination from G’ of all strictly dominated pure strategies in G’, etc. The set S of pure-
strategy pro..les being ..nite, this procedure stops after a ..nite number of iterations (and the result
is independent of the details of the elimination procedure).
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positive two-population selection dynamics that they call aggregate monotonic. Dekel
and Scotchmer (1992) show, by way of a counter-example, that a strictly dominated
strategy may survive forever in a discrete-time version of the replicator dynamics.
Bjornerstedt (1995) provide a weakly payoz-positive selection dynamics in continuous
time and a game in which a strictly dominated strategy survives forever. Hofbauer
and Weibull (1996) introduce a class of weakly-payoa positive selection dynamics
that contain the aggregate monotonic selection dynamics. This property, convex
monotonicity, is su€cient, and essentially also necessary, for the elimination of iter-
atively strictly dominated pure strategies in continuous time in any (..nite) n-player
game. Cabrales (1996) develops a stochastic version of the (Taylor, n-population)
replicator dynamics by adding perpetual random shocks to the population state and
to the payoms. He provides conditions under which iteratively strictly dominated
strategies still get wiped out in the long run.

Remark: As a by-product we obtain that selection dynamics that wipe out itera-
tively strictly dominated strategies lend some support to forward induction reasoning
in extensive-form games. Forward induction relies in part on players assuming other
players to avoid strictly dominated strategies (see van Damme (1989)). This question
is studied in some detail in Noldeke and Samuelson (1993).

5.2. Stability. A complementary approach to long-run analysis is to study sta-
bility properties of population states, i.e., how population states react to small per-
turbations.

Bomze (1986) shows that if a population state is (weakly) dynamically stable
in the (single-population) replicator dynamics, then this state, viewed as a mixed
strategy, necessarily is a best reply to itself.” Hence, not only the static stability
criterion of evolutionary stability, but also dynamic stability in the replicator dy-
namics implies Nash equilibrium play. This result can be generalized to any weakly
payoz-positive selection dynamics in any (..nite) n-player game (Weibull (1995)). In
sum: stability against evolutionary pressures, formalized in various ways, require
Nash equilibrium play. However, not all Nash equilibria are stable in this respect.
Hence, these evolutionary stability criteria are re..nements of the Nash equilibrium
concept. A comparison with non-cooperative re..nements follows.

Remark: If in extensive-form games not whole strategies are selected, only the
local strategies at reached information sets, then the conclusion is accordingly weak-
ened to self-enforcing equilibria. Moreover, stability is harder to obtain since there
is more scope for “drift” at unreached information sets, see Noldeke and Samuelson
(1993).

A. More cutting power against mixed-strategy Nash equilibria. Mixed-
strategy Nash equilibria are thought by many game theorists and practitioners of

"The stability criterion used here is that of Lyapunov stability: a state x is Lyapunov stable if
every neighborhood B of x contains a neighboorhood A of x such that every solution starting in A
remains forever in B. A state that is not Lyapunov stable is called unstable.
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game theory to be inherently unstable since players do not have an incentive to

randomize according to the equilibrium prescription. Despite this, completely mixed

strategy equilibria easily meet such re..nements of the Nash equilibrium concept as

Selten’s (1975) “trembling hand” perfection. By contrast, stability with respect to

evolutionary pressures does reject certain completely mixed-strategy equilibria.
Consider the 2 x 2 Coordination game with payo= bi-matrix

A B
A 4,4 0,2
B 2,0 3,3

There are two strict Nash equilibria, (A,A) and (B,B), and one mixed-strategy equi-
librium. In the latter both players assign probability 0.6 to pure strategy A, rendering
each player an equilibrium payo® of 2.4. This mixed equilibrium meets the re..nements
in the non-cooperative game-theory literature: it is robust to all strategy trembles
and to all small perturbations of payoas. However, it is not evolutionarily stable,
and it is unstable in the replicator dynamics. To see the latter property, note that
if the population share playing A is slightly above (below) its equilibrium value, 0.6,
then pure strategy A (B) earns a higher payo= than the other, and so the replicator
dynamics brings the population state towards pure strategy A (B).

B. Less cutting power against weakly dominated strategies. Weakly
dominated strategies are ruled out by non-cooperative re..nements, such as trembling-
hand” perfection. They are also ruled out by the evolutionary stability criterion.®
However, several researchers have pointed out that weakly dominated strategies may
be weakly dynamically stable in such deterministic selection dynamics as the repli-
cator dynamics. Thus, the requirement of weak dynamic stability in such dynamics
lends little support to the practice of discarding weakly dominated strategies, see Bin-
more (1990), Samuelson (1988,1993,1994), Samuelson and Zhang (1992), and Weibull
(1995).

Consider the two-player Entry-Deterrence game represented by the payoz bi-
matrix.

yield  fight
enter 2,2 0,0
stay out 1,4 1,4

This game can be interpreted as the stage game in Selten’s (1978) Chain-Store game,
where player 1 is a potential entrant into 2’s monopoly market. The set of Nash
equilibria consists of two components, the singleton set where player 1 enters and
player 2 yields, and the continuum set where player 1 stays out and player 2 ..ghts

8For suppose a (pure or mixed) strategy « is evolutionarily stable and weakly dominated by some
(pure or mixed) strategy y. Then y is an alternative best reply to z, and = doesn’t do better against
any strategy than y does, by weak dominance. In particular, x does not do better than y against y
itself, contradicting the hypothesis that = was evolutionarily stable.
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with a probability of at least 0.5. The unique subgame perfect equilibrium of the
well-known extensive form representation of this game (see Figure 1 below) is that
the entrant does enter and the monopolist yields. The Nash equilibrium threat”
of the latter to ..ght is not “credible.” In terms of dominance relations: the pure
strategy ..ght is weakly dominated by the pure strategy yield.

Applying the (Taylor 2-population) replicator dynamics to this game one obtains
a fow diagram as shown in Figure 1 (see also Gale, Binmore and Samuelson (1995),
Weibull (1995)). The diagram shows that the evolutionary selection pressure against
the strategy ..ght is weak when only a small fraction of individuals in the potential-
entrant population try to enter. The latter learn that this is costly so their population
fraction shrinks over time. Consequently, the selection pressure against ..ght is de-
creased. As shown in the diagram potential entrants may learn to stay out before all
monopolists have learned not to ..ght.

Figure 1: The (Taylor 2-population) replicator dynamics in the Entry-Deterrence
Game.

As a by-product we conclude that dynamic evolutionary stability does not lend
strong support to backward induction. As pointed out in Gale, Binmore and Samuel-
son (1995) this suggests a resolution of Selten’s (1978) famous chain-store paradox
even in the case of a single store, and without invoking incomplete information.
They also suggest that this explains the weak empirical support for backward induc-
tion found in laboratory experiments with the ultimatum game (the entry deterrence
game can be viewed as a mini ultimatum game).
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C. More cutting power in cheap-talk coordination games. Consider a
2 x 2 Coordination game with two strict Nash equilibria and one mixed-strategy
Nash equilibrium, such as the game discussed above. While the mixed equilibrium
was rejected by both static and dynamic evolutionary stability criteria, neither of the
two strict Nash equilibria can be so rejected. Any strict Nash equilibrium is evolu-
tionarily stable and dynamically stable in deterministic selection dynamics. However,
Robson (1990), Warneryd (1991), Schlag (1993, 1994) and Kim and Sobel (1995) have
shown that if one extends a coordination game to include a pre-play communication
stage, then evolutionary stability criteria, applied to the extended game, may reject
Pareto ineCcient strict equilibria in the underlying game, while the Nash equilibrium
criterion has no cutting power at all. The possibility of rejecting strict equilibria
in the underlying game is that these need not correspond to strict equilibria in the
extended game.

In this literature one usually work with static criteria such as evolutionary stability
and neutral stability, where the latter (due to Maynard Smith (1982)) is obtained from
the ..rst by weakening the strict inequality.®

The setting is the following: there is a symmetric and ..nite two-player base
game” to be played after a pre-play communication session. Communication takes
the form of costlessly and simultaneously sent messages, one from each player. These
messages are chosen from a ..nite set of available messages, the same set for both
players. The sent messages are observed without error by both players before they
choose a strategy to play in the base game. A pure strategy in this symmetric cheap-
talk game thus consists of a message to send and a decision rule that prescribes a
pure base-game strategy for every pair of sent messages.

Consider such a cheap-talk extension of the 2 x 2 Coordination game given above
and suppose momentarily that individuals always play pure strategies. If a population
plays the Pareto ine¢cient equilibrium (B,B) in this base game, and there exists some
unused message in the message set, then the population is vulnerable to invasion by
individuals who always send this unused message, play the Pareto e€cient equilibrium
(A,A) when they meet each other, and play a best reply to the (pure) strategy that
the “natives” play when they receive this unused message. In this way the “invaders”
earn a higher (expected) payo= than the natives,” and hence play of (B,B) is not
even neutrally stable.

More general results are available for the special case of 2 x 2 coordination games
(not relying on unused messages or pure strategies). Schlag (1994) shows that those
cheap-talk strategies that result in the Pareto e¢cient outcome together constitutes
an evolutionarily stable set in the sense of Thomas (1985a). He also shows that there
is only one cheap-talk strategy that is evolutionarily stable.!® When the message

9Each of these criteria implies a form of dynamic stability in the replicator dynamics. An evo-
lutionarily stable strategy, viewed as a population state, is (locally) asymptotically stable (Taylor
and Jonker (1978)), and a neutrally stable strategy is Lyapunov stable (Thomas (1985a) and Bomze
and Weibull (1996)).

0Evolutionarily stable strategies, and evolutionarily stable sets of strategies, are dynamically
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set is large, its payo= is close to the Pareto e¢cient outcome. Banerjee and Weibull
(1997) show that, with ..nite message sets, the set of neutrally stable outcomes is
..nite and contains both strict Nash equilibrium payoss. As the size of the message
set increases, the set of neutrally stable outcomes converges to a certain countable
limit set which has the Pareto e@cient Nash equilibrium outcome as its unique cluster
point.!* Hence, evolutionary robustness, even in the weak form of neutral stability,
has some cutting power when combined with (costless) preplay communication, and
it slightly favors socially e&ciency.'?

These results contrast sharply with those obtained with non-cooperative re..ne-
ments: any payoe value between the worst and best Nash equilibrium payoss can be
approximated by a (strictly) perfect Nash equilibrium in the cheap talk game when
the message set is su€ciently large (Banerjee and Weibull, 1997).

5.3. Stochastic dynamic stability. It appears quite natural to model evolu-
tionary processes as noisy: Especially the mutation process appears as inherently
random. Random shocks are implicitly accounted for in deterministic selection dy-
namics by way of stability analysis: a stable population state is robust to isolated
small perturbations of the population state. However, such stability analysis has lit-
tle to say about robustness against sequences of small shocks or simultaneous small
shocks that together make up a big perturbation. Such sequential or simultaneous
cascades” of shocks may take the population state out of one of the selection process’
basins of attraction, and may thus lead the population state far away. Although such
cascades may be quite unlikely events in the case of statistically independent and rare
mutations, this possibility changes the nature of the dynamic process in a fundamen-
tal way. Instead of being history dependent (depend on the initial population state),
the process may become ergodic, i.e., have an asymptotic distribution that is history
independent (the same for all initial population states).

This research route was pioneered by Foster and Young (1990), followed by Fuden-
berg and Harris (1992), Young (1993a,b), Kandori, Mailath and Rob (1993), Néldeke
and Samuelson (1993), Samuelson (1994), Kandori and Rob (1995), Binmore, Samuel-
son and Vaughan (1995), Bergin and Lipman (1996), Cabrales (1996), Robson and
Vega-Redondo (1996) and Binmore and Samuelson (1997).

Below follows an account of Kandori, Mailath and Rob (1993) and Young (1993a),
whereafter some of the other models are briety commented.

A. Kandori-Mailath-Rob and Young. Consider the distribution of pure
strategies in a ..nite population of individuals who are repeatedly matched in pairs to

(asymptotically) stable in the replicator dynamics, results due to Taylor and Jonker (1978) and
Thomas (1985a), respectively.
11\We also show “continuity at in..nity” in the sense that the limit set of neutrally stable outcomes
is identical with the set of neutrally stable outcomes when the message set is countably in..nite.
12 neutrally stable strategy is dynamically (Lyapunov) stable in the replicator dynamics, see
Thomas (1985a) and Bomze and Weibull (1996).
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play a symmetric two-player game. Suppose individuals change their strategy at dis-
crete points in time, always changing to a best reply to the last period’s distribution
of strategies. This is a special case of the selection process in Kandori, Mailath and
Rob (1993). In Young (1993a) individuals play a best reply to a ..nite sample from a
..nite record of past play. Hence, the selection process in Young’s model is noisy, the
more so the smaller is the sample in relation to the record of past play.*®

Young shows that if the sample is su€ciently small in relation to the record in
his selection process, i.e., the selection is su€ciently noisy, then the selection process
converges almost surely in a certain class of games that he calls weakly acyclic. The
de..ning property is that from every pure strategy pro..le in the game there exist a
..nite sequence of best replies, by one player at a time, that ends in a strict Nash
equilibrium.4

Kandori, Mailath, Rob (1993) and Young (1993a) show that the addition of a
small probability ¢ of mistakes, or ”mutations,” has drastic consequences for the
asymptotic outcome. Suppose every pure strategy has a positive probability of being
mistakenly played, or mutated to. This is the mutation process in their evolutionary
model. Combined with the selection process one obtains an evolutionary process that
is an irreducible ..nite Markov chain. Since every such process has a unigque invariant
distribution, x¢ , to which the population state converges from any initial distribution,
the addition of mutations makes the limit distribution of the so perturbed process
unique, for any given mistake/mutation probability ¢ > 0. The authors establish the
existence of the limit z* = lim. o ze of the sequence of such invariant distributions
as ¢ is taken to zero, and they proceed to analyze its properties.

Consider again the 2 x 2 Coordination game discussed above. This game has two
strict Nash equilibria, (A,A) and (B,B), where the ..rst Pareto dominates the second.
We now add the observation that the second risk dominates the ..rst in the sense of
Harsanyi and Selten (1988). The equilibrium (B,B) involves less strategic risk than
(AA) in the sense that strategy B is optimal even if the chance is only 40% that one’s
opponent will play B, while the chance need to be at least 60% that one’s opponent
will play A for A to be optimal. Hence (B,B) is ”preferable” to (A,A) in terms of the
strategic risks involved.

A best-reply selection process in discrete time and without mutations will settle
in one step on any one of these two Nash equilibria.’> If initially more than 60%
of the population play strategy A, then the whole population will move to strategy
A in one step. If initially more than 40% play B, the population will move to B in
one step. Hence, the long-run solution is history dependent. (In these simple games

13Note that these selection mechanisms presume more information than the earlier discussed
selection dynamics: knowledge of one’s payoa matrix and of past population state(s). Note also the
built-in inertia: players believe that past play represents future play.

14In the absense of noise (i.e., if the sample is complete) there is a possibility that the selection
process diverges - players may miscoordinate forever.

15The mixed-strategy Nash equilibrium, in which each player assings probability .6 to pure strategy
A, is unstable in such a process.
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the long-run outcome is the same for the replicator dynamics as for this best-reply
dynamics.)

Suppose now that each individual, having decided to play the optimal strategy,
mistakenly adopts the other pure strategy with an exogenously speci..ed probability
¢ (mistakes being i.i.d.). Since any population state in this way can be reached with
positive probability from any other population state, the population process indeed
constitutes an irreducible Markov chain. The asymptotic behavior of such a process is
independent of the initial state. Instead, it is determined by the number of mistakes
or mutations it takes to move the population from one of the two strict Nash equilibria
to the other. The equilibrium which is most easily disrupted by mutations in this
sense is given zero probability as the mutation probability ¢ goes to zero. The basin
of attraction of strategy B (in the selection process) was above seen to be larger than
that of strategy A. Therefore more mutations are needed to bring the population out
of equilibrium (B,B) than out of equilibrium (A,A). As the probability ¢ of a mistake
goes to zero, the ..rst event becomes in..nitely more likely than the second, and the
population state will spend almost all time in (B,B) - despite the fact that the (B,B)
is Pareto dominated by (AA).

Note that what upsets a strict equilibrium here is not a sequence of independent
small shocks but a large number of simultaneous shocks.

Bergin and Lipman (1996) point out that it is crucial for the results in these two
models that the mutation probabilities go to zero at the same rate in all population
states. Otherwise any invariant population distribution in the selection process can be
turned into the limiting distribution when (suitably chosen state-dependent) mutation
probabilities are taken to zero. The authors accordingly claim that what is missing
from the models of Kandori, Mailath and Rob (1993) and Young (1993a) is a theory
of mutations.

One such theory is that mutations are mistakes, where the probability of a mistake
depends on the individual’s ecort to control his or her actions. Assume that there
is a convex cost function of ¢, with in..nite marginal cost at € = 0, and subtract this
cost from the payoss in the game. Assume that individuals choose their control ecort
optimally in each population state. Give a utility weight 6 > 0 to the cost term (when
subtracted from payoss), and let 6 — 0, i.e., study the limit as control costs become
arbitrarily small in comparison with the payoss in the game. It turns out that in 2 x 2
Coordination games one then obtains in the limit the risk dominant Nash equilibrium,
just as in the Kandori, Mailath and Rob (1993) and Young (1993a) models (van
Damme and Weibull (1997)). One may argue that this theory of mutations is too
rationalistic in spirit. However, the mentioned qualitative conclusion should hold
even if only some individuals are (somewhat) rational in this sense while others make
mistakes with the same probability in all population states.

B. Other stochastic models. Some of the other above-mentioned models in
the literature on stochastic evolutionary processes favor the Pareto e¢cient outcome
over the risk-dominant equilibrium in 2 x 2 coordination games. The result depends
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on players’ information, the matching technology, and on the selection and mutation
processes. For example, Robson and Vega-Redondo (1996) show that if one changes
the set-up in Kandori, Mailath and Rob (1993) so that there is random matching
and imitation of successful players, then the Pareto e@cient equilibrium is selected in
the long run. Moreover, in their model population movements are much faster. Two
mutating individuals that happen to be matched can initiate a cascade of imitators,
and lead the population state to the other equilibrium. No6ldeke and Samuelson (1993)
dizer from the other studies in that they develop a stochastic evolutionary/learning
process for games in extensive form.

6. Summary and Remaining Challenges
We have seen that evolution does not always lead to optimality, equilibrium and/or
social e¢ciency. The economist’s friend was thus at least partially justi..ed in being
sceptical about the general validity of the economist’s as if”” approach.
Some desiderata concerning future research:

e Bring in institutions, and analyze market selection mechanisms. See Winter
(1964, 1971), Nelson and Winter (1982), Blume and Easley (1992, 1995, 1996),
Dutta (1992), Dutta and Radner (1993), Radner (1995), Noldeke and Samuelson
(1997), Vega-Redondo (1997).

e Study the evolutionary robustness of learning rules in games. Eventually, this
may lead to models where individuals are endowed with intermediate cogni-
tive capacity. See Harley (1981), Stahl (1993), Lu and Stahl (1993), Banerjee
Weibull (1995), Vega-Redondo (1995), Binmore and Samuelson (1997).

e Analyze settings where instead of the same game being played over and over,
similar games are being played. Although it is dic¢cult to say what similarity
IS, robustness in this respect is needed for the validity of the ~as if” approach.

e More analysis of evolutionary processes in extensive-form games. See Fudenberg
and Levine (1993a,b, 1997), Noldeke and Samuelson (1993).

e More approximation theory: We need to better understand the relations be-
tween deterministic and stochastic models. See Boylan (1992), Binmore, Samuel-
son and Vaughan (1995), Cabrales (1996), Borgers and Sarin (1996), Sarin
(1996).

e More empirical analysis of human subjects in laboratory experiments, and in
the ..eld. See Roth and Erev (1995), Cooper and Feltovich (1996), Mookerjee
and Sopher (1997), Erev and Roth (1997), Camerer (1997) and Camerer and
Ho (1997).

e Search for structurally robust predictions. It appears that certain game sub-
structures, such as sets of pure strategies closed under best replies and un-
der weakly better replies, are robust attractors to evolutionary processes. See



WHAT HAVE WE LEARNED FROM EVOLUTIONARY GAME THEORY SO FAR?20

Hurkens (1995), Ritzberger and Weibull (1995), Sanchirico (1996) and Young
(1997a,b).

Two ..nal comments:

Dependency on context: Some of the results in evolutionary game theory depend
on the details of the selection and mutation processes involved. Is this a drawback?
Perhaps not always. Maybe it is not so strange if predictions in some games depend
on the context in which the game is played (a point made at several occasions by
Ken Binmore). Of course, this is not a theoretically defensible position if we take
the game to be a complete description of the situation at hand. However, in our
search for models of economic agents with intermediate cognitive capacity - what the
economist-researcher’s friend asked for - why can’t we view the game as only one part
of the model, where the other is a description of the context, including boundedly
rational processes of adaptation and learning? After all, apparently similar markets,
institutions and whole economies sometimes produce very dicerent outcomes. In
some such cases it may be appropriate to consider these as dicerent games, but in
other cases we might view them as the same game played in dicerent contexts.

Contact with behavior sciences: Recent developments in evolutionary game the-
ory, of which some have been sketched here, and in models of learning in games,
suggest new channels for communication with the other social sciences. In order to
narrow down the relevant classes of selection, learning and mutation processes we
need to know much more about the qualitative properties of how individuals, groups
of individuals, organizations, ..rms, and whole societies adapt and learn over time.
This in part a task for experimental game theory, but this is also an area where we
could learn from the other social sciences.
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