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Abstract. Bergin and Lipman (1996) show that the re¯nement e®ect
from the random mutations in the adaptive population dynamics in Kandori,
Mailath and Rob (1993) and Young (1993) is due to restrictions on how these
mutation rates vary across population states. We here model mutation rates as
endogenously determined mistake probabilities, by assuming that players with
some e®ort can control the probability of implementing the intended strategy.
This is shown to corroborate the results in Kandori-Mailath-Rob (1993) and,
under certain regularity conditions, those in Young (1993). The approach also
yields a new re¯nement of the Nash equilibrium concept that is logically inde-
pendent of Selten's (1975) perfection concept and Myerson's (1978) properness
concept.

1. Introduction

It has been shown by Kandori, Mailath and Rob (1993), henceforth \KMR," and
Young (1993), henceforth \Young," that adding small noise to certain adaptive dy-
namics in games can lead to rejection of strict Nash equilibria. Speci¯cally, in 2£ 2
coordination games these dynamics allow one to conclude that in the long run the
risk-dominant equilibrium (Harsanyi and Selten, 1988) will result. This surprisingly
strong result has recently been challenged by Bergin and Lipman (1996) who show
that it depends on speci¯c assumptions about the mutation process, namely that the
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van Damme and Weibull (1998).

1



Evolution and re¯nement with endogenous mistake probabilities 2

mutation rate does not vary \too much" across the di®erent states of the adaptive
process. They show that, if mutation rates at di®erent states are not taken to zero
at the same rate, then many di®erent outcomes are possible. Indeed, any stationary
state in the noise-free dynamics can be approximated by a stationary state in the
noisy process, by choosing the mutation rates appropriately. In particular, any of the
two strict Nash equilibria in a 2 £ 2 coordination game may be selected in the long
run.
Bergin and Lipman conclude from this lack of robustness that the nature of the

mutation process must be scrutinized more carefully if one is to derive economically
meaningful predictions, and they o®er two suggestions for doing so. As suggested
already in the original KMR and Young papers, there are two ways of interpreting the
mutations in these models: Mutations may be thought of as arising from individuals'
experiments or from their mistakes. In the ¯rst case, it is natural to expect the
mutation rate to depend on the state - individuals may be expected to experiment
less in states with higher payo®s. Also in the second case state-dependent mutation
rates appear reasonable - exploring an idea proposed in Myerson (1978) one might
argue that mistakes associated with larger payo® losses are less likely.
While Bergin and Lipman are right to point out that these considerations might

lead to state-dependent mutation rates, they do not elaborate or formalize these ideas.
Hence, it is not clear whether their concerns really matter for the conclusions drawn
by KMR and Young. The aim of this study is to shed light on this issue by means
of a model of mutations as mistakes. The model is based on the assumption that
players \rationally choose to make mistakes" because it is too costly to avoid them
completely. It turns out that our model produces mistake probabilities that under
mild regularity conditions do not vary \too much" with the state of the system.
Hence, the concerns of Bergin and Lipman are irrelevant in this case.
Indeed, in the case of a symmetric 2£ 2-coordination game, it is straightforward

to see why such a result should come about in the KMR model. Namely, for a > c
and d > b, equilibrium (A;A) is risk dominant in the game

A B
A a; a b; c
B c; b d; d

(1)

if and only if A is the unique best reply to the mixed strategy 1
2
A + 1

2
B. Hence,

(A;A) is risk dominant if and only if a + b > c + d, a condition which is equivalent
to a ¡ c > d ¡ b. This latter condition amounts to saying that a mistake at (A;A)
involves a larger payo® loss than a mistake at (B;B). Hence, any reasonable theory
of endogenous mistakes should imply that mistakes at (A;A) are less likely than
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mistakes at (B;B). In other words, the basin of attraction of population state \A"
should not only be \larger" than that of state \B", it should also be \deeper" - thus
making it even more di±cult to upset this equilibrium. This intuition is not available,
however, in other dynamics and in asymmetric games.
The formal model we develop in this paper concerns arbitrary ¯nite games in

normal form, and is similar to the control-cost model in van Damme (1987, Chapter
4). In essence, players are assumed to have a trembling hand, and by controlling it
more carefully, which involves some disutility, the amount of trembles can be reduced.
Since a rational player will try harder to avoid more serious mistakes, i.e. mistakes
that lead to larger payo® losses, such mistakes will be less likely. However, they
will still occur with positive probability since, by assumption, it is in¯nitely costly
to avoid mistakes completely. Although mistake probabilities thus depend on the
associated payo® losses, and therefore also on the state of the process, we show
that, under mild regularity conditions, they all go to zero at the same rate when
control costs become vanishingly small in comparison with the payo®s in the game.
Consequently, the results established by KMR and Young then are valid also in this
model of endogenous mistake probabilities.
As a by-product, we obtain a new re¯nement of the Nash equilibrium concept,

which we call robustness with respect to endogenous trembles. This concept is similar
in spirit to Selten's (1975) notion of trembling hand perfect equilibrium. In Selten's
model both the mistake probabilities and the conditional error distributions (in case
of a mistake) are exogenous, i.e. are chosen by the analyst. In our approach, the
conditional error distributions are exogenous but the mistake probabilities are deter-
mined endogenously. We establish existence of strategy pro¯les which are robust to
endogenous trembles, and show that these are Nash equilibria. We also show that
this form of robustness neither implies nor is implied by perfection. It also di®ers
from Myerson's (1978) concept of proper equilibrium in that in our model, all mistake
probabilities may be of the same order of magnitude where properness prescribes that
these be of di®erent order of magnitude.
From a somewhat philosophical viewpoint one could say that, while robustness

with respect to some slight probabilities of mistakes has cutting power in Selten's
(1975) approach, Bergin and Lipman (1996) showed that such robustness has no cut-
ting power in Young's (1993) approach. The present model of endogenous mistake
probabilities has cutting power in Selten's rationalistic setting, and, under mild regu-
larity conditions, also in Young's setting. While we restrict the analysis in this paper
to the adaptive dynamics proposed in KMR and Young, the methodology can of
course be applied also to other models which allow for mistakes in decision making,
such as, to name just one example, Robson and Vega-Redondo (1996), where the
long-run outcome in 2 £ 2 coordination games is the Pareto dominant equilibrium,
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even if this is di®erent from the risk dominant equilibrium.
We do not know of any earlier work along the above lines. Blume (1993) studies

strategic interaction between individuals who are located on a lattice and recurrently
interact with their neighbors. These individuals play stochastically perturbed myopic
best responses, in the sense that the choice probability for each pure strategy is an
increasing positive function of its current payo®. As a consequence, more costly mis-
takes are assigned lower choice probabilities. Blume (1994) elaborates and extends
this model to a more conventional random-matching setting in which choice proba-
bility ratios are an increasing function of the associated payo® di®erences. Maruta
(1997) generalizes Blume's models by letting choice probability ratios be a function
of both payo®s - not necessarily only of their di®erence. While these studies take ran-
dom choice behavior as a starting point for the analysis, we here derive such behavior
from an explicit decision-theoretic model in which individuals take account of their
own mistake probabilities. Robles (1998) extends the KMR and Young models by
letting mutation rates decline to zero over time, in one part of the study also allowing
for state-dependent mutation rates. Also his work is complementary to ours in the
sense that while he takes the state-dependence for given and analyzes implications
thereof, we suggest a model that explains why and how mutation rates vary across
population states.
The remainder of the paper is organized as follows. In Section 2 we introduce

games with endogenous mistake probabilities, derive some properties of equilibria of
such games, and introduce an accompanying re¯nement. In Section 3 we show that
the upper limit of any ratio of mistake probabilities is bounded away from zero, and we
introduce a regularity condition that guarantees that also the lower limit is positive.
In Section 4 we consider the adaptive dynamics in Young (1993, 1998) with mutations
as endogenously determined mistakes. We show that, if the regularity conditions are
satis¯ed, then Young's results for ¯nite n-player games hold, implying, in particular,
that the risk dominant equilibrium is selected in generic 2 £ 2 coordination games.
Section 5 considers an example where the regularity condition is violated. We show
that there need be no unique stochastically stable equilibrium in this case, but that
the risk dominant equilibrium nevertheless is in the limit set. Section 6 concludes.

2. Games with endogenous mistake probabilities

Van Damme (1987, chapter 4) develops a model where mistakes arise in implementing
pure strategies in games. The basic idea is that players make mistakes because it is
too costly to prevent these completely. Each player has a trembling hand, and by
making e®ort to control it more carefully, which involves disutility, the amount of
trembles can be reduced. It is assumed that the disutility of eliminating trembles
completely is prohibitive.
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We here elaborate a closely related model of mistake control. Consider a ¯nite
n-player normal-form game G, with pure strategy sets S1, ..., Sn, and mixed-strategy
sets ¢i = ¢(Si). For any mixed-strategy pro¯le ¾ = (¾1; :::; ¾n), let the payo® to
player i be ¼i(¾) 2 R, and let ¯i(¾) ½ ¢i be i's set of best replies to ¾ 2 ¢ = £i¢i.
Let V denote the class of functions v : (0; 1] ! R++ which are twice di®erentiable
with v0(") < 0 and v00(") > 0 for all " 2 (0; 1), lim"!0 v(") = +1, and v0(1) = 0.
Such a function v will be called a (mistake-control) disutility function.
Embed a game G as described above in an n-player game ~G (´; ¹v; ±), for ¹v =

(v1; :::vn) 2 V n, ´ 2 int (¢), and ± > 0, with strategy setsXi = ¢i£(0; 1], X = £iXi,
and payo® functions ui : X ! R de¯ned by

ui(x) = ¼i(!)¡ ±vi("i) , (2)

where x = (x1; :::; xn), xi = (¾i; "i) for all i, and

!i = (1¡ "i) ¾i + "i´i . (3)

Our interpretation is that each player i chooses a pair xi = (¾i; "i), where ¾i is a
mixed strategy in G and "i is a mistake probability. Given this choice, strategy ¾i
is implemented with probability 1¡ "i, otherwise the (exogenous) error distribution
´i is implemented. These random draws are statistically independent across player
positions. Associated with each mistake-probability level "i is a disutility vi("i) to
player i, from the e®ort to keep his or her mistake probability at "i. The \disutility
weight" ± measures the importance of this disutility of control e®ort relative to the
payo®s in the underlying game G.
The assumptions made above concerning the disutility functions vi imply that the

marginal disutility of reducing one's mistake probability is increasing as the proba-
bility goes down, and that the disutility of reducing it to zero is prohibitive. The
associated strategy pro¯le ! 2 int (¢), de¯ned in equation (3), is the pro¯le that will
be played in G when the players choose strategies xi = (¾i; "i) in ~G (´; ¹v; ±). We will
say that the pro¯le x in ~G (´; ¹v; ±) induces the pro¯le ! in G, and we call ~G (´; ¹v; ±)
a game with endogenous mistake probabilities. The limiting case ± = 0 represents a
situation in which all players are fully rational in the sense of being able to perfectly
control their actions at no e®ort - as if they played game G.

2.1. Nash equilibrium. It is not di±cult to characterize Nash equilibrium in
~G (´; ¹v; ±). First, it follows directly from equations (2) and (3) that a necessary
condition is ¾i 2 ¯i (!) for every player i who chooses "i < 1, while for players i with
"i = 1 any ¾i 2 ¢i is optimal. To see this, note that
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ui(x) = (1¡ "i) ¼i(¾i; !¡i) + "i¼i(´i; !¡i)¡ ±vi("i) . (4)

In other words, irrespective of the chosen mistake probability "i, as long as this is less
than one, player i will choose a best reply ¾i in G to the induced pro¯le !.1 Thus,
¼i(¾i; !¡i) = bi(!), the best payo® that player i can obtain in G against a strategy
pro¯le ! 2 ¢, where

bi(!) = max
¾i
¼i(¾i; !¡i) . (5)

Let li(!) ¸ 0 denote the payo® loss that player i incurs in G if his error-distribution
´i is played against ! 2 ¢:

li(!) = bi(!)¡ ¼i(´i; !¡i) . (6)

It follows from equation (4) that, in Nash equilibrium, each "i necessarily is the
unique solution to the ¯rst-order condition

¡v0i("i) = li(!)=± , (7)

Note that "i = 1 if and only if ´i 2 ¯i (!).2 Equation (7) simply says that, unless
´i happens to be a best reply to !, the mistake probability should be chosen such
that the marginal disutility of a reduction of the mistake probability equal the payo®
loss in case of a mistake. If ´i is a best reply to !, then no e®ort to reduce the mistake
probability is worthwhile. In sum: if x = (x1; :::; xn), with xi = (¾i; "i) for all i, is a
Nash equilibrium of ~G (´; ¹v; ±), then each "i satis¯es equation (7), and ¾i 2 ¯i (!) if
"i < 1. Conversely, if each "i satis¯es equation (7), and if ¾i 2 ¯i (!) if "i < 1, then
x = (x1; :::; xn), for xi = (¾i; "i), is a Nash equilibrium of ~G (´; ¹v; ±).
It follows from the assumed properties of the marginal-utility function ¡v0i that

it has an inverse, which we denote fi : R+ ! (0; 1]. Clearly fi is di®erentiable with
f 0i < 0, fi (0) = 1, and limy!1 fi (y) = 0. Equation (7) can be re-written in terms of
this inverse function as "i = "̂i (±; !), where

"̂i (±; !) = fi [li(!)=±] . (8)

It follows immediately that a player chooses a smaller mistake probability if the
expected loss in case of a mistake is larger:

li(!) > li(!
0) ) "̂i(±; !) < "̂i(±; !

0) . (9)

1Since ! is interior, this implies that ¾i is undominated.
2Since ´i is interior, this happens if and only if all pure strategies available to player i are best

replies to !.
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Moreover, if the disutility weight ± is reduced, then each player i chooses a smaller
mistake probability against every pro¯le ! to which ´i is not a best reply:

±0 < ± and ´i =2 ¯i (!) ) "̂i(±
0; !) < "̂i(±; !) . (10)

After having characterized Nash equilibria of games with endogenous mistake
probabilities, we now show that each such game has at least one Nash equilibrium.

Proposition 1. For every ´ 2 int (¢), ¹v 2 V n and ± > 0, the game ~G (´; ¹v; ±) has
at least one Nash equilibrium.

Proof: De¯ne the correspondence ® : ¢ ³ ¢ by

®i(!) = f!0i 2 ¢i : !0i = (1¡ fi [li(!)=±])¾i + fi [li(!)=±] ´i for some ¾i 2 ¯i (!)g .
(11)

It follows from Berge's Maximum Theorem that each loss function li : ¢ ! R+ is
continuous. Since each inverse function fi is continuous, and each correspondence ¯i
is upper hemi-continuous, ®i is upper hemi-continuous too. Moreover, since ¯i(!)
is non-empty, convex and compact for all ! 2 ¢, so is ®i(!). The polyhedron ¢
of mixed-strategy pro¯les being convex and compact, there exists at least one ¯xed
point under ® by Kakutani's Fixed-Point Theorem. Given such a ¯xed point !, let
"i = fi [li(!)=±] and let ¾i 2 ¯i (!) satisfy equation (3), for all i. Then x = ((¾i; "i))i2I
induces !, and x is a Nash equilibrium of ~G (´; ¹v; ±). End of proof.

2.2. Robustness against endogenous trembles. In the spirit of Selten's (1975)
perfection of the Nash equilibrium concept, one could require that a strategy pro¯le
in a given ¯nite game G be robust to slight disutilities of mistake control in the sense
that some game with endogenous mistakes, and with a small weight attached to the
disutility of mistake control, has some nearby Nash equilibrium. The above ideas can
be used as a re¯nement of the Nash equilibrium concept. Formally:

De¯nition 1. A strategy pro¯le ¾¤ in G is robust to endogenous trembles if
there exists a sequence h ~G (´; ¹v; ±t)it2N of games with endogenous mistake proba-
bilities with ±t ! 0, and an accompanying convergent sequence of Nash equilibria
xt = (¾t; "t) such that !t ! ¾¤.

Note that this concept di®ers from Selten's (1975) notion of trembling hand per-
fect equilibria in that in Selten's model both the mistake probability and the con-
ditional error distribution, once a mistake is made, are exogenous, i.e. they can be
freely chosen by the analyst. According to the above de¯nition, the analyst can
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choose the conditional error distribution, but the mistake probabilities are deter-
mined endogenously. We also note that, as with perfection, every completely mixed
Nash equilibrium ¾¤ in G is robust to endogenous trembles in this sense. Just set
´ = ¾¤ 2 int (¢). Then xt = (¾; "), with ¾i = ¾¤i and "i = 1 for all i, constitutes a
Nash equilibrium of ~G (´; ¹v; ±t), for every t. Likewise, it is easily veri¯ed that strict
equilibria are robust to endogenous trembles.
More generally, it follows from standard arguments that every ¯nite game has at

least one strategy pro¯le which is robust to endogenous trembles, and that every such
strategy pro¯le constitutes a Nash equilibrium.

Proposition 2. Every ¯nite game G has at least one strategy pro¯le which is robust
to endogenous trembles, and every such pro¯le is a Nash equilibrium of G.

Proof: First, let ´ 2 int (¢), ¹v 2 V n and h±ti1t=1 ! 0. Then each game ~G (´; ¹v; ±t)
has at least one Nash equilibrium xt = ((¾ti ; "

t
i))i2I 2 X, by proposition 1. Let !t be

the strategy pro¯le induced by xt. By the Bolzano-Weierstrass Theorem, there exists
a convergent subsequence of hxti1t=1, with limit in the closure of X. Along such a
subsequence, let ¾i = limt!1 ¾ti , "i = limt!1 "

t
i , and µi = limt!1 !ti . By de¯nition,

µ is robust against endogenous trembles.
Secondly, let µ 2 ¢ be robust to endogenous trembles. Then there exist ´ 2

int (¢), ¹v 2 V n, and sequences ±t ! 0 and xt ! x, such that xt is a Nash equilibrium
of ~G (´; ¹v; ±t) for each t, and !

t ! µ. Suppose ´i is not a best reply to µ. Then
li(µ) > 0, and thus li(!

t) > 0 for all large t, by continuity of li. Thus "
t
i = 0 and

¾ti 2 ¯i (!t) for all i and all large t. Consequently, "i = 0, and ¾i 2 ¯i (µ) since the
graph of ¯i is closed. Hence, µi = ¾i 2 ¯i (µ) in this case. Next, suppose ´i is a best
reply to µ. Since ´i is interior, all pure strategies in Si are best replies to µ, and thus
µi 2 ¯i (µ) also in this case. In sum: µi 2 ¯i (µ) for all i 2 I. End of proof.
Remark: The above de¯nition of robustness is invariant under positive a±ne

transformations of payo®s: If a game G0 is obtained from a game G by a positive a±ne
transformation of a player's payo®s, then a strategy pro¯le is robust to endogenous
trembles in G i® it is robust to endogenous trembles in G0. For although losses
li(!) are a®ected by linear re-scaling of payo®s, the analyst can compensate such a
transformation by multiplying that player's disutility function by the same scalar,
and thus leave equation (7) unchanged.

One might conjecture that robustness with respect to endogenous trembles implies
robustness with respect to exogenous trembles, i.e. perfection in the sense of Selten
(1975). However, the following example shows that this is not the case. Consider the
two-player game (similar to Figure 4.3.1 in van Damme (1983)) with payo® bi-matrix
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L R
T 2; 2 2; 0
B 2; 2 0; 0

(12)

This game has one perfect equilibrium, (T;L), and a continuum of imperfect Nash
equilibria - all strategy pro¯les where player 2 plays L, and player 1 plays T with any
probability less than one. Suppose ´1 = ´2 =

¡
1
2
; 1
2

¢
. Hence, each player randomizes

50=50 in case of a mistake. A mistake for player 2 is to play R, and, faced with 2's
positive mistake probability, a mistake for player 1 is to play B. Let the common
disutility function be v(") = " ¡ ln ". Then equation (7) gives 1="1 ¡ 1 = "2=± and
1="2 ¡ 1 = 1=±. It follows that "2=± ! 1 as ± ! 0, and thus "1 ! 1=2. Hence,
the imperfect Nash equilibrium µ where player 2 plays L and player 1 plays T with
probability 3=4 is robust to endogenous trembles. Even in the limit, player 1 does
not fully control his actions. The cost of doing so, near µ, exceeds the bene¯t that it
brings. It may be noted that there is a similar ¯nding in evolutionary game theory:
evolutionary dynamics do not necessarily wipe out weakly dominated strategies, see
Samuelson (1993) and Weibull (1995).
Similarly, a perfect equilibrium need not be robust to endogenous trembles. For

example, add to the above game a third strategy, M , for player 2, as in the bi-matrix

L M R
T 2; 2 0; 1 2; 0
B 2; 2 2; 1 0; 0

(13)

Because of the monotonicity property (9) of endogenous mistake probabilities, the
choiceM is more likely than R. Hence, player 1 has to choose B in an equilibrium that
is robust against endogenous trembles. Nevertheless, (T;L) is a perfect equilibrium of
this game. Hence, the re¯nement concept introduced above is logically independent
from Selten's perfectness concept.
The spirit of this model of endogenous mistake probabilities is close to Myerson's

(1978) notion of proper equilibrium - both view mistakes that result in larger payo®
losses as less likely than mistakes that result in smaller payo® losses. However, while
Myerson proposes no explicit model of mistake probability choice, his properness
concept prescribes that more costly mistakes are an order of magnitude less likely
than less costly mistakes. This need not be the case in the present model.3 In fact,
we will here identify two regularity conditions on the disutility functions under which
all mistake probabilities are of the same order of magnitude when the disutility weight

3The same conclusion was drawn in the model of control costs developed in van Damme
(1983,1987).
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± is taken to zero. As a consequence, the concept of robustness proposed here is also
logically independent of Myerson's properness concept: a robust equilibrium need not
be proper and a proper equilibrium need not be robust.

3. Regular disutility function profiles

There are two questions that are relevant concerning the order of magnitude of mis-
take probabilities when the disutility weight ± is taken to zero:

i) Will the mistake probabilities of one player be of the same order of magnitude
as the mistake probabilities of another player, at any given strategy pro¯le?

ii) Will the mistake probabilities of one player be of the same order of magnitude
at di®erent strategy pro¯les?

We discuss both issues in turn. First, however, we provide a simple condition
under which all mistake probabilities necessarily are of the same order of magnitude,
for all players and mixed-strategy pro¯les. The condition is that lim"!0¡"v0i(") exists,
is ¯nite and non-zero, for all players i. Essentially, this condition requires all disutility
functions to be logarithmic at small mistake probabilities. Suppose the condition is
met. Consider two mixed-strategy pro¯les ! and !0 where two players, say i and
j, have positive payo® losses in case of a mistake, li(!) > 0 and lj(!

0) > 0. Then
condition (7) implies

¡v0i ["̂i(±; !)] =li(!) = ± = ¡vj ["̂j(±; !0)] =lj(!0) (14)

Hence

¡"̂i(±; !)v0i ["̂i(±; !)]
"̂i(±; !)li(!)

=
¡"̂j(±; !0)v0j ["̂i(±; !0)]

"̂j(±; !0)lj(!0)
(15)

Since the losses li(!) and lj(!
0) are positive, both "̂i(±; !) and "̂j(±; !0) go to zero as

± ! 0. Thus,

lim
±!0

"̂i(±; !)

"̂j(±; !0)
= �

lj(!
0)

li(!)
> 0 , (16)

where � > 0 is the ratio of lim"!0¡"v0i(") and lim"!0¡"v0j("). Hence, under the
conditions stated, the mistake probabilities associated with positive losses are of the
same order of magnitude in the limit as ± ! 0.
We now turn to more general, su±cient conditions for this conclusion.
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3.1. Similarity. Our formulation assumes that di®erent players assign the same
weight ± to the disutility of control e®ort. Hence, already this assumption introduces
some comparability between players, and, as we have seen above, it implies that all
mistakes are of the same order of magnitude under a certain condition. Assuming
such comparability makes sense, for example, if individuals are drawn from the same
background population, in which case one might even assume that all player pop-
ulations have the same disutility function. This strict assumption, however, is not
needed for our results. We will assume that the disutility functions of di®erent player
populations are similar in the sense that

lim inf
y!1

fi(y)=fj(y) > 0 8i; j 2 I , (17)

(where fi is the inverse of the marginal-utility function ¡v0i, see section 2). This con-
dition is for example met if one player's disutility function is proportional to another
player's disutility function. More generally, a su±cient condition for similarity is that
there for every pair (i; j) of individuals exist a continuously di®erentiable function
gij : R++ ! R++ such that vj(") = gij [vi(")] for all " 2 (0; 1), where aij < g0ij < bij,
for some aij > 0 and bij < +1.
In Section 5 we will show that, without a similarity assumption of this kind,

results for adaptive population processes of the kind studied in Young (1993,1998)
may depend on di®erences between disutility functions. (It is intuitive that some
assumption of this type is needed. Because otherwise one player population may be
induced to makes mistakes with much larger probability, and, essentially, the stability
of an equilibrium depends on the largest mistake probability at that equilibrium.)

3.2. Niceness. We now turn to the more interesting issue of whether mistake
probabilities of the same player, associated with di®erent strategy pro¯les, ! and !0,
will be of the same order in the limit. We ¯rst claim that in a game with endogenous
mistake probabilities, as de¯ned in section 2, the mistake probability "̂i(±; !) cannot
be of smaller order of magnitude than "̂i(±; !

0) for all small ±. More exactly, in the
appendix we prove:

Lemma 1. Suppose ´i =2 ¯i (!0). Then

lim sup
±!0

"̂i(±; !)

"̂i(±; !0)
> 0

It follows from this observation that if the ratio of two mistake probabilities con-
verges, the limit must be positive. However, one can construct arti¯cial examples
in which the ratio does not converge, and where even the limit inferior of the ratio
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"̂i(±; !)="̂i(±; !
0) is zero. We wish to exclude such examples by imposing a regularity

condition on the disutility functions. We call this condition \niceness." Formally:

De¯nition 2. vi 2 V is nice if lim infy!1 fi(¸y)=fi(y) > 0 for some ¸ > 1.

It follows from the above lemma that a su±cient condition for niceness is that,
for some scalar ¸ > 1, the limit of fi(¸y)=fi(y), as y ! 1, exists.4 Moreover, it is
easily veri¯ed (and formally proved in the appendix) that if vi is nice, then

lim inf
y!1

fi(¸y)=fi(y) > 0 for all ¸ > 0. (18)

Niceness is de¯ned rather indirectly, in terms of the inverse to the derivative of
the disutility function in question. As for more direct su±cient conditions, we have
already seen one, namely

0 < lim inf
"!0

¡"v0i(") � lim sup
"!0

¡"v0i(") < +1 . (19)

Yet another su±cient condition is lim"!0¡"v0i(") = +1 (see van Damme (1983,
Theorem 4.4.2) for a proof). The next result (of which the proof is again in the
appendix) provides a third su±cient condition for niceness. It essentially says that
the positive second derivative of the disutility function should not be increasing with
", and that its relative risk aversion should be positive at small mistake probabilities.

Lemma 2. vi 2 V is nice if it is trice di®erentiable with v000i � 0, and

lim inf
"!0

¡"v00i (")=v0i(") > 0:

An example of a nice disutility function is vi(") = "¡ ln ". Then v0i(") = 1¡ 1=",
v00i (") = 1="2, and v000i (") = ¡2="3. Thus ¡"v0i(") ! 1 and ¡"v00i (")=v0i(") ! 1 as
" ! 0.

3.3. Regularity. We are now in a position to state the advertised result. If the
disutility function pro¯le ¹v is regular in the sense that all disutility functions are nice,
and they are pairwise similar, then all mistake probabilities are of the same order of
magnitude at all strategy pro¯les where all players have positive losses:

4By lemma 1, the limit superior of the ratio fi(¸y)=fi(y), as y ! 1, is positive, where ¸ =
li(!)=li(!

0). Hence, if the limit of this ratio exists, then it is positive and is identical with the limit
inferior.
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Proposition 3. Consider a sequence of games ~G (´; ¹v; ±t) with ¹v regular, and ±t ! 0.
Suppose !; !0 2 ¢, and lj(!0) > 0. Then

lim inf
t!1

"̂i(±t; !)

"̂j(±t; !0)
> 0 .

Proof: If li(!) � lj(!
0), then "̂i(±t; !) ¸ "̂j(±t; !

0) for all t, and thus the limit
inferior is at least 1. If li(!) > lj(!

0) > 0, then write ¸ = li(!)=lj(!
0) > 1, and we

have

lim inf
±!0

"̂i(±; !)

"̂j(±; !0)
= lim inf

±!0

fi [li(!)=±]

fj [lj(!0)=±]
= lim inf

y!1
fi (¸y)

fj (y)
(20)

= lim inf
y!1

fi (y) fi (¸y)

fj (y) fi (y)
> 0 ,

where the inequality follows from niceness and similarity: fi (¸y) =fi (y) > a and
fi (y) =fj (y) > b for some a; b > 0, for all y su±ciently large. End of proof.

4. Boundedly rational adaptation

Kandori, Mailath and Rob (1993) analyze situations where a symmetric two-player
game is recurrently played by a population of individuals. In each period, all pairs
of individuals play against each other, and all individuals play pure strategies. Each
individual plays a best reply to last period's strategy distribution with probability 1¡
", for " > 0 small. With the remaining probability, the individual plays a suboptimal
strategy, with equal probability for all suboptimal strategies, and with statistical
independence across individuals and periods. Hence, for any positive such mutation
rate ", this de¯nes an ergodic Markov process. Kandori, Mailath and Rob (1993)
study the limit as " ! 0 of the associated unique stationary strategy distribution.
In the case of a symmetric 2 £ 2-coordination game, they show that this limiting
distribution places all probability mass on the risk-dominant equilibrium.
It is easy to see that this result holds also under the present model of endogenous

mistake probabilities mistakes. In a game with payo® bi-matrix (1), equilibrium
(A;A) is risk dominant if and only if A is the unique best reply to the mixed strategy
1
2
A+ 1

2
B. In this case, the state in which all individuals play A has a larger basin of

attraction, under the above-mentioned best-reply dynamics, than the state where all
individuals play B. Hence, it takes more simultaneous mutations to disrupt the ¯rst
stationary state than the second. In the limit as " ! 0, the probability of the ¯rst
event becomes in¯nitesimally smaller than the probability of the latter. The ergodic
process thus places all probability on state \A" in the limit. For the equilibrium
(A;A) is risk dominant if and only if a ¡ c > d ¡ b. This latter condition amounts
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to saying that a mistake at (A;A) involves a larger payo® loss than a mistake at
(B;B). Hence, if mutation rates are modelled as endogenously determined mistake
probabilities, then mistakes in state \A" are less likely than mistakes in state \B".
In other words, the basin of attraction of state \A" is not only \larger" than that of
state \B", it is also \deeper" - thus making state \A" even more di±cult to upset.
This is true without any regularity conditions imposed on the disutility function; it
only relies on the monotonicity property (9).
This simple intuition is not available in asymmetric games. In the risk-dominant

equilibrium, one of the two deviation losses may be quite small, thus inducing rel-
atively large mistake probabilities in that player position, as is shown in a counter-
example in section 5. However, under the regularity conditions introduced in section
3 above, all mistake probabilities will be of the same order of magnitude and below
we show that this implies that the results from Young (1993, 1998) carry over to this
case.

4.1. Young's model. Let an n-person game G, as de¯ned above, be given and,
for each player position i = 1; :::n, let Ci be a ¯nite population of individuals. In
the Young model, the game is played recurrently between individuals, one from each
population, who are randomly drawn from these populations. The state h of the
system in his model is a full description of the pure-strategy pro¯les played in the
last m such rounds (\the recent m-history"). Hence, h 2 H = Sm. Each individual
drawn to play in position i of the game is assumed to make a statistically independent
sample of k of these m pro¯les, and plays a best reply to the opponent population's
empirical frequency of actions (pure strategies) in the sample.
Noise is added to this selection process. Basically, an individual in player position

i plays a best response with probability 1 ¡ ¸i". In case of multiple best replies, all
are played with positive probability. A mutation occurs with positive probability ¸i",
with statistical independence across time, states and individuals. Hence, all mutation
rates ¸i" are positive, and the ratios between mutation rates across states and player
positions are constant as " ! 0. Once a mutation occurs, qi (¢ j h) 2 int [¢i] is the
conditional error distribution over player i's pure-strategy set.
With these mistakes as part of the process, each state of the system is reachable

with positive probability from every other state. Hence, the full process is an irre-
ducible Markov chain on the ¯nite state space H. Consequently, there exists a unique
stationary distribution ¹" for each " > 0, and Young establishes the existence of the
limit distribution ¹¤ = lim"!0 ¹", and studies its properties. He calls an equilibrium
of the underlying game G stochastically stable if ¹¤ places positive probability weight
on the state in which this equilibrium is played (in the last m periods).
One noteworthy result is that, for a 2 £ 2 game with a unique risk-dominant
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equilibrium, this is the unique stochastically stable equilibrium. More generally,
Young (1998) establishes that, for a generic class of ¯nite n-player games, the limit
distribution places all probability mass in one of the game's minimal curb sets, more
exactly on a minimal curb set where the stochastic potential (in Young's model) is
minimized (Theorem 7.2 in Young (1998)).5 In the case of a 2£2 coordination game,
there are two minimal curb sets, each corresponding to one of the strict equilibria,
and such an equilibrium is risk dominant if and only if its stochastic potential is lower
than that of the other equilibrium.

4.2. The Bergin-Lipman critique. Young derives his results under the assump-
tion that the ratio between any pair of mutation probabilities is kept constant as
" ! 0. Bergin and Lipman (1996) note that the results continue to hold even with
state-dependent mutation probabilities if the ratio between any pair of mutation prob-
abilities, across all population states and player positions, has a non-zero limit when
" ! 0. However, Bergin and Lipman (1996) also show that if the mutation probabili-
ties in di®erent states are allowed to go to zero at di®erent rates, then any stationary
distribution in the mutation-free process can be turned into the unique limiting dis-
tribution ¹¤ = lim"!0 ¹" of the process with mutations. They conclude: \In other
words, any re¯nement e®ect from adding mutations is solely due to restrictions of
how mutation rates vary across states." (Bergin and Lipman, p. 944).
What is missing in this modelling approach, and this is Bergin's and Lipman's

main message, is a theory of why and how mutations occur. One reason why this may
be the case, suggested by Bergin and Lipman, is that mutation rates might be lower
in high-payo® states than in low-payo® states, which might be expected if mutations
are due to individuals' experimentation (see Bergin and Lipman, pp. 944, 945 and
947). Another reason why mutation probabilities may di®er across population states,
also suggested by Bergin and Lipman (pp. 945 and 955), is that mutations leading to
larger payo® losses might have lower probabilities than mutations leading to smaller
payo® losses. Bergin and Lipman do not investigate the consequences of either of
these two ideas. We now follow up on their latter suggestion and show that it leads
to a con¯rmation of the results of Young.

4.3. Endogenous mutation rates in Young's model. Let h 2 H denote the
state of the population process in Young (1993). The state determines a range of
possible probabilistic beliefs ! 2 ¢ for each of the individuals drawn to play the
game. More exactly, ! is one of the ¯nitely many empirical statistically independent
frequency distributions, over the other player positions' pure strategy sets, that cor-

5A curb set is a product set that is closed under rational behavior, i.e., that contains its best
replies, see Basu and Weibull (1991).
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respond to a sample of size k from the other populations' past m plays. Since the
state space H is ¯nite, the set  = £ii ½ ¢ of possible beliefs ! is ¯nite. Now
suppose that, instead of an exogenous mistake probability ", we take as exogenous
the \disutility weight" ±, a regular pro¯le ¹v = (v1; :::; vn) of disutility functions, and,
for each state h in the ¯nite state space H, an interior strategy pro¯le ´(h) = q (¢ j h),
the conditional (and potentially state dependent) error distribution in Young's (1993)
model. Instead of taking " to zero, we let ± go to zero.
Since all mistake probabilities "̂i (±; !) are positive, for any ± > 0, and the error

distribution ´(h) is interior in all states h, the resulting stochastic process is ergodic,
just as in Young's (1993) model, and thus has a unique stationary distribution ¹±.
We are interested in the limit as ± ! 0, i.e. when the disutility of e®ort becomes
insigni¯cant in comparison with the game payo®s.

Proposition 4. If the disutility function pro¯le is regular, then Theorems 2 and 3
in Young (1993), and Theorems 3.1 and 7.2 in Young (1998) hold. In particular, in a
2£ 2 coordination game with a unique risk-dominant equilibrium, this is the unique
stochastically stable equilibrium.

Proof: This follows from proposition 3 above, combined with the proofs in Young
(1993,1998). While Young establishes the result formally only for the case where all
mistakes are a positive multiple of " (at each state h player i makes a mistake with
probability ¸i"), it is easily veri¯ed that his arguments remain valid in the more
general case considered here. To see this, note that if !; !0 2  and i; j 2 I are such
that ¯i(!) 6= ¢i and ¯j(!

0) 6= ¢j , then li(!); lj(!
0) > 0 (since ´(h) by hypothesis

is interior for all h 2 H). Proposition 3 implies that there for such !; !0 2  and
i; j 2 I exist positive real numbers ®, ¯ and ¹±, such that ® < "̂i(±; !)="̂j(±; !0) < ¯
for all ± 2

¡
0; ¹±

¢
. The sets  and I being ¯nite, we can ¯nd ®, ¯ and ¹± that work for

all !; !0 2  and i; j 2 I such that ¯i(!) 6= ¢i and ¯j(!0) 6= ¢j . Hence, all mistake
probabilities go to zero at the same rate, as ± ! 0, in all states h which permit
no sample that renders some individual indi®erent. In the excluded states, however,
there is a positive probability that some mistake probability will optimally be chosen
to be 1. That individual will in e®ect play his conditional error distribution, which
assigns positive probability to all his pure strategies. But this is just as in Young's
model, where all best replies are played with positive probability, which, in this case,
means that all pure strategies are played with positive probability. The proofs of
Theorems 2 and 3 in Young (1993) and Theorems 3.1 and 7.2 in Young (1998) thus
apply. End of proof.
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5. Non-regular disutility function profiles

5.1. Non-similarity. As indicated in section 3, it is easy to see that without a
similarity assumption on the disutility functions, the results may depend on di®er-
ences between disutility functions. For example, consider the following \battle of the
sexes" type game:

L R
T 2; 1 0; 0
B 0; 0 1; 2

(21)

First, assume that only individuals in player population 2 make mistakes, and let
their mistake probability be ¯xed and independent of the state. Then two thirds or
more of the sample taken from population 2 has to be mistakes, in order to upset
(T; L), the equilibrium preferred by the error-free population 1. Similarly, it takes at
least one third of mistakes to upset the other strict equilibrium. Hence, only the ¯rst
equilibrium is stochastically stable. Second, note that this conclusion remains valid
with a nice disutility function for each population, such that "̂1 is of smaller order
than "̂2.

5.2. Non-niceness. We now brie°y turn to the more interesting case of disutility
functions that are similar, in fact identical, but non-nice. In this case, Young's results
need not hold. What might happen is that no stochastically stable equilibrium exists.
The intuition is simple. Consider the following asymmetric payo® bi-matrix for a 2£2
coordination game:

A B
A 5; 1 0; 0
B 0; 0 2; 2

(22)

With pi denoting the probability that player i assigns to his pure strategy A in the
unique mixed equilibrium of this game, we have p1 =

2
3
and p2 =

2
7
. Hence p1+p2 < 1,

so (A;A) is the risk-dominant equilibrium. With mistake probabilities that are of the
same order of magnitude, we will, hence, select the equilibrium (A;A) in the limit.
However, a mistake by player 2 at this equilibrium incurs the smallest payo® loss in
the two equilibria - this player loses only 1 payo® unit, while all other equilibrium
payo® losses are at least 2 units. Consequently, the largest mistake probability occurs
in state \(A;A)". Now imagine a non-nice disutility function which is such that a
mistake with a loss of only 1 is much more likely than a mistake resulting in a payo®
loss of 2 or more. Then the limit outcome will be fully determined by the mistakes
of player 2 at the state \(A;A)". Obviously, if the only mistakes that count occur
at this equilibrium, then the limit outcome will be \(B;B)". Hence, for a non-nice
disutility function, both \(B;B)" and \(A;A)" can be elements of the limit set.
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In the remainder of this section, we formalize this observation. We ¯rst construct
a non-nice disutility function.6 For this purpose, consider the sequence h(xn; yn)i1n=1
in R2

+;de¯ned by x1 = 1, y1 =
1
3
, and for all integers n > 1:

½
(xn; yn) =

¡
2xn¡1; yan¡1

¢
if n is even

(xn; yn) = (3xn¡1 + 2=yn¡1; yn¡1=2) if n is odd
(23)

where a > 1. Clearly hxni is an increasing sequence, going to plus in¯nity, and hyni is
a decreasing sequence, going to zero. Hence, there exist di®erentiable (to any order)
and strictly decreasing functions f : R+ ! R+ such that f(0) =

1
2
, and f(xn) = yn

for all positive integers n. Any such function f decreases su±ciently on intervals
(xn; xn+1) with n odd in order for f(2xn)=f(xn) ! 0 to hold for n odd, as n ! 1.
On the other intervals, however, f decreases su±ciently little in order for its total
integral to be in¯nite (the integral of f over any interval (xn; xn+1) with n even is at
least 1). The equation v0 = ¡f¡1 de¯nes a disutility function v that is non-nice, with
f as the inverse to ¡v0.
For the bi-matrix game in (22), and with f as constructed above, we construct a

sequence of ±'s going to zero, such that the associated sequence of stationary distri-
butions in the limit places all probability mass on state \(B;B)". To that end, for
every odd integer n, let ±n = 1=xn. By de¯nition of f , and condition (9)

7,

"̂2(±n; A) = yn, "̂1(±n; B) = "̂2(±n; B) = y
a
n , and "̂1(±n; A) � yan , (24)

By following arguments as in Young (1993, Sect. 7) we can now show that the
equilibrium (A;A) is more easily upset than the equilibrium (B;B) when ± = ±n with
n odd. Let m be the common memory size of the players, let k be the (¯xed) sample
size and, let "(A;A)" (resp. "(B;B)") be the stationary state in which (A;A) (resp.
(B;B)) is played constantly. As in Young (1993), the path of least resistance from
"(A;A)" to "(B;B)" either consists of player 1 making mistakes until player 2 has B
as a best response to the sample of mistakes, or has player 2 making mistakes until
player 1's best response is B. Let k0 be the number of mistakes required by player 1
and let k00 be the number required by player 2. Then

k0 = [k=3] and k00 = [5k=7] (25)

where [x] denotes the smallest integer equal to or larger than x. The probability

6The following construction of a function f , that is the negative of the inverse of a non-nice
disutility function, is an adaptation of a function suggested to us by Henk Norde, Tilburg University.

7To see this, note that if ±n = 1=xn then b"i(±n; !) = f [li(!)xn]. Hence, b"2(±n; A) = f (xn) = yn,
and b"1(±n; B) = b"2(±n; B) = f (2xn) = f (xn+1) = ya

n.
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to move from "(A;A)" to "(B;B)" is thus given by

max fb"1(±; A)k
0
; b"2(±; A)k

00g (26)

If ± = ±n with n odd, and a > 3 then (24) implies that the easiest way to upset
"(A;A)" is by player 2 making mistakes. Similarly, the easiest way to leave "(B;B)"
is by player 2 making mistakes and the "resistance" of "(B;B)" is measured by

b"2(±;B)k
000
with k

000
= [2k=7] (27)

Now, with ± = ±n and n odd, we have

b"2(±n; B)k000

b"2(±n; A)k00
=
yak

000

n

yk
00
n

= y(ak
000¡k00)

n ; (28)

so that, if a > 3, the ratio goes to zero as n ! 1. Hence, for large n (and
associated ±n) we have that "(A;A)" is much easier to upset than "(B;B)".
We conclude that for this sequence of ±'s, converging to zero, the associated sub-

sequence of stationary distributions in the limit indeed places all probability mass
on state \(B;B)". At the same time, proposition 2 implies that there exists another
sequence of ±'s, also going to zero, such that the associated subsequence of stationary
distributions places all probability mass on state \(A;A)" in the limit. Hence, the
overall limit of stationary distributions does not exist for this disutility function.
Another way of formulating this observation is that, for every disutility func-

tion, the risk-dominant equilibrium belongs to the limit set of supports of stationary
distributions, and that this limit set is a singleton if all disutility functions are nice.8

6. Conclusion

Bergin and Lipman (1996) showed that if mutation rates are state dependent, then
the long-run equilibrium depends on exactly how these rates do vary with the state.
They conclude that the causes of mutations need to be modeled in order to derive
justi¯able restrictions on how mutation rates depend on the state. In particular,
they suggest that one might investigate the consequences of letting the probability of
mistakes be related to the payo® losses resulting from these mistakes. This is exactly
what we have done in this paper. We have developed a model in which mistakes are
endogenously determined, and shown that this model vindicates the original results
obtained by Kandori, Mailath and Rob (1993) and Young (1993).

8By the limit set of supports of stationary distributions, for a given control-cost function, we
here mean the union of the supports of probability distributions ¹, each of which is the limit to
some subsequence of stationary distributions (i.e., associated with some sequence of positive ±0s
converging to zero).
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The model analyzed in this paper, although allowing for mistakes, is based on
strong rationality assumptions. Mistakes arise because players choose to make them,
since it involves too much disutility to avoid them completely. Our individuals are
hence unboundedly rational when it comes to decision making. Their lack of ra-
tionality is only procedural: At no disutility can they choose their own mistake
probabilities in every population state. This is a very strong rationality assumption.
However, we believe that our conclusions are robust in this respect, at least for generic
2£ 2 coordination games. For the e®ect of introducing control disutility was seen to
only \deepen" the \basin of attraction" of the risk-dominant equilibrium, and hence
speeding up the convergence to it. The limit result should therefore also be valid in
intermediate cases of rationality.
As a by-product, we obtained a re¯nement of the Nash equilibrium concept -

robustness to endogenous trembles. We showed that such robustness is logically in-
dependent from Selten's (1975) perfection concept and from Myerson's (1978) proper-
ness concept. Further study and elaboration of this new re¯nement might be worth-
while, but fall outside the scope of the present study.

7. Appendix

7.1. Proof of Lemma 1. Without loss of generality, assume li(!) > li(!
0). (Oth-

erwise the result is immediate by (9)). Suppose that the claimed inequality does not
hold. Then lim±!0 "̂i(±; !)="̂i(±; !

0) = 0, or, equivalently (using (8)),

lim
±!1

fi [li(!)=±] =fi [li(!
0)=±] = 0 . (29)

Writing ¸ = li(!)=li(!
0), this in turn is equivalent to limy!1 fi(¸y)=fi(y) = 0, since

fi is everywhere positive. Thus fi(¸y)=fi(y) � 1
2
¸¡1 for all y su±ciently large, say

y > y0. Hence, Z 1

y0

fi(y)dy � (¸¡ 1)y0fi(y0)
1X

t=0

2¡t <1 , (30)

and thus
R1
0
fi(y)dy < 1 since fi is decreasing with fi(0) = 1. But we also have

Z 1

0

fi(y)dy = ¡
Z 1

0

v0i(p)dp =lim
"!0

vi(")¡ vi(1) , (31)

which contradicts the assumption that lim"!0 vi(") = +1.

7.2. Proof of inequality (18). Assume that the condition in the de¯nition holds
for ¸o > 1. Then it holds for all ¸ 2 (0; ¸o), by monotonicity of fi. And if ¸ > ¸o,
then ¸no > ¸ for some positive integer n. Again by monotonicity of fi:
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lim inf
y!1

fi(¸y)=fi(y) ¸ lim inf
y!1

fi(¸
n
oy)=fi(y) (32)

= lim inf
y!1

fi(¸
n
oy)

fi(¸n¡1o y)
¢ fi(¸

n¡1
o y)

fi(¸n¡2o y)
¢ ::: ¢ fi(¸oy)

fi(y)
(33)

¸
�
lim inf

y!1
fi(¸oy)=fi(y)

¸n
> 0 (34)

7.3. Proof of Lemma 2. Under the hypothesis of the lemma, the function ¡v0i
is convex. Thus, for any y > 0, ¸ > 1, and " 2 (0; 1) such that y = ¡v0i ("):

¸y ¡ y
fi(y)¡ fi(¸y)

¸ v00i (") . (35)

(To see this, draw a diagram with " on the horizontal axis, and ¡v0i (") on the vertical
axis.) Equivalently,

fi (¸y) ¸ fi (y)¡ (¸¡ 1) y

v00i (")
, (36)

or

fi (¸y)

fi (y)
¸ 1 + (¸¡ 1) v

0
i (")

"v00i (")
.

Consequently,

lim inf
y!1

fi (¸y)

fi (y)
¸ 1 + (¸¡ 1) lim inf

"!0
v0i (")

"v00i (")
. (37)

But under the last hypothesis of the lemma, there exits a scalar ¸ > 1 such that

lim sup
"!0

¡v0i(")
"v00i (")

<
1

¸¡ 1 . (38)

Hence, for this ¸,

1 + (¸¡ 1) lim inf
"!0

v0i(")

"v00i (")
> 0 . (39)
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