## Working Papers,

National Institute of Economic Research

# No 52: Temporal Aggregation of an Econometric Equation

*Erik Ruist*

Additional contact information

Erik Ruist: Stockholm School of Economics, Postal: Stockholm School of Economics, Box 6501, SE-113 83 Stockholm, Sweden

**Abstract:** Structural breaks in an economy may make the time period available for estimation of an econometric equation exceedingly short. To use the existing information efficiently, it may be profitable to use high-frequency data, say monthly data, for estimation of a particular equation, even if the rest of the model is expressed in terms of data of lower frequency, say quarterly or half-yearly. In order to be included in the model, this equation has to be transformed to the same data frequency as the rest of the model. If the variables are of different types, or if some of the variables are lagged, exact transformations to equations that produce equivalent predicted values of the dependent variable are not possible. This note gives approximations and estimates for the varoius terms of the equations. Linear interpolation estimates as well as estimates that are optimal in a certain sense are given for the case of aggregation of monthly variables to semi-annual ones. It turns out that in the exchange rate equation in the KOSMOS model, the approximations do not increase the equation error substantially.

**Keywords:**
Short time series; Structural breaks; Temporal aggregation

48 pages, October 1, 1996

**Full text files**

WP_52.pdf

Download statistics

Questions (including download problems) about the papers in this series should be directed to Sarah Hegardt Grant ()

Report other problems with accessing this service to Sune Karlsson ().

This page generated on 2018-01-23 23:36:14.