Scandinavian Working Papers in Economics

Working Paper Series,
Sveriges Riksbank (Central Bank of Sweden)

No 97: Bayesian Prediction with a Cointegrated Vector Autoregression

Mattias Villani ()
Additional contact information
Mattias Villani: Department of Statistics, Stockholm University, Postal: SE-106 91 Stockholm, Sweden

Abstract: A complete procedure for calculating the joint predictive distribution of future observations based on the cointegrated vector autoregression is presented. The large degree of uncertainty in the choise of the cointegration vectors is incorporated into the analysis through a prior distribution on the cointegration vectors which allows the forecaster to realistically express his beliefs. This prior leads to a form of model averaging where the predictions from the models based on the different cointegration vectors are weighted together in an optimal way. The ideas of Litterman (1980) are adapted for the prior on the short run dynamics with a resulting prior which only depends on a few hyperparameters and is therefore easily specified. A straight forward numerical evaluation of the predictive distribution based on Gibbs sampling is proposed. The prediction procedure is applied to a seven variable system with focus on forecasting the Swedish inflation.

Keywords: Bayesian; Cointegration; Inflation forecasting; Model averaging; Predictive density

JEL-codes: E50

23 pages, October 1, 1999

Full text files

WP_97.pdf PDF-file 

Download statistics

Published as
Mattias Villani, (2001), 'Bayesian Prediction with a Cointegrated Vector Autoregression', International Journal of Forecasting, vol 17, no 4, pages 585-605

Questions (including download problems) about the papers in this series should be directed to Lena Löfgren ()
Report other problems with accessing this service to Sune Karlsson ().

RePEc:hhs:rbnkwp:0097This page generated on 2024-09-13 22:16:57.